R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist       
##  Min.   : 4.0   Min.   :  2.00  
##  1st Qu.:12.0   1st Qu.: 26.00  
##  Median :15.0   Median : 36.00  
##  Mean   :15.4   Mean   : 42.98  
##  3rd Qu.:19.0   3rd Qu.: 56.00  
##  Max.   :25.0   Max.   :120.00

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot. # 3

之前的code报错,evaluate函数有误,缺少大括号,已修改。

# install.packages("lattice")
library(lattice)
# install.packages("zoo")
library(zoo)

evaluate <- function(PARAM, minVal = NA, maxVal = NA, y = 2014,
                     transform = FALSE, verbose = FALSE,
                     negative = FALSE, transformOnly = FALSE,
                     returnData = FALSE, accountParams = NULL){
  
  # Step 1
  # Convert and declare parameters if they exist on unbounded (-inf,inf) domain
  if( transform | transformOnly ){
    PARAM <- minVal +
      (maxVal - minVal) * unlist(lapply( PARAM, function(v) (1 + exp(-v))^(-1) ))
    if( transformOnly ){

    }
  }
 return(PARAM)  
} 
## 修改
  
 
# Declare bounds and step size for optimization
lowerBound <- c(n1 = 5, nFact = 3, nSharpe = 22, shThresh = 0.05)
upperBound <- c(n1 = 80, nFact = 3, nSharpe = 22, shThresh = 0.95)
stepSize <- c(n1 = 5, nFact = 1, nSharpe = 1, shThresh = 0.05)

pnames <- names(stepSize)
np <- length(pnames)

# Declare list of all test points
POINTS <- list()
for( p in pnames ){
  POINTS[[p]] <- seq(lowerBound[[p]], upperBound[[p]], stepSize[[p]])
}

OPTIM <- data.frame(matrix(NA, nrow = prod(unlist(lapply(POINTS, length))),
                           ncol = np + 1))
names(OPTIM)[1:np] <- names(POINTS)
names(OPTIM)[np+1] <- "obj"

# Store all possible combinations of parameters
for( i in 1:np ){
  each <- prod(unlist(lapply(POINTS, length))[-(1:i)])
  times <- prod(unlist(lapply(POINTS, length))[-(i:length(pnames))])
  OPTIM[,i] <- rep(POINTS[[pnames[i]]], each = each, times = times)
}

# Test each row of OPTIM
timeLapse <- proc.time()[3]
for( i in 1:nrow(OPTIM) ){
  OPTIM[i,np+1] <- evaluate(OPTIM[i,1:np], transform = FALSE, y = 2014)
  cat(paste0("##  ", floor( 100 * i / nrow(OPTIM)), "% complete\n"))
  cat(paste0("##  ",
             round( ((proc.time()[3] - timeLapse) * 
                       ((nrow(OPTIM) - i)/ i))/60, 2),
             " minutes remaining\n\n"))
}


library(lattice)
wireframe(obj ~ n1*shThresh, data = OPTIM,
          xlab = "n1", ylab = "shThresh",
          main = "Long-Only MACD Exhaustive Optimization",
          drape = TRUE,
          colorkey = TRUE,
          screen = list(z = 15, x = -60)
)

levelplot(obj ~ n1*shThresh, data = OPTIM,
          xlab = "n1", ylab = "shThresh",
          main = "Long-Only MACD Exhaustive Optimization"
)

4

之前的报错是找不到initVALS,修改为上题的POINTS,并修改np =4

#install.packages("lattice")
library(lattice)
K <- maxIter <- 200

# Vector theta_0
initDelta <- 6
deltaThresh <- 0.05
PARAM <- PARAMNaught <-
  c(n1 = 0, nFact = 0, nSharpe = 0, shThresh = 0) - initDelta/2

# bounds
minVal <- c(n1 = 1, nFact = 1, nSharpe = 1, shThresh = 0.01)
maxVal <- c(n1 = 250, nFact = 10, nSharpe = 250, shThresh = .99)

# Optimization parameters
alpha <- 1
gamma <- 2
rho <- .5
sigma <- .5


randomInit <- FALSE

np <- 4 ## 修改


OPTIM <- data.frame(matrix(NA, ncol = np + 1, nrow = maxIter * (2 * np + 2)))


SIMPLEX <- data.frame(matrix(NA, ncol = np + 1, nrow = np + 1))
names(SIMPLEX) <- names(OPTIM) <- c(names(POINTS), "obj") #修改


# Print function for reporting progress in loop
printUpdate <- function(){
  cat("Iteration: ", k, "of", K, "\n")
  cat("\t\t", paste0(strtrim(names(OPTIM), 6), "\t"), "\n")
  cat("Global Best:\t",
      paste0(round(unlist(OPTIM[which.min(OPTIM$obj),]),3), "\t"), "\n")
  cat("Simplex Best:\t",
      paste0(round(unlist(SIMPLEX[which.min(SIMPLEX$obj),]),3), "\t"), "\n")
  cat("Simplex Size:\t",
      paste0(max(round(simplexSize,3)), "\t"), "\n\n\n")
}

o <- 1
# Initialize SIMPLEX
for( i in 1:(np+1) ) {
    
  SIMPLEX[i,1:np] <- PARAMNaught + initDelta * as.numeric(1:np == (i-1))
  SIMPLEX[i,np+1] <- evaluate(SIMPLEX[i,1:np], minVal, maxVal, negative = TRUE,
                              y = y)
  OPTIM[o,] <- SIMPLEX[i,]
  o <- o + 1

}



# Optimization loop
for( k in 1:K ){
  
  SIMPLEX <- SIMPLEX[order(SIMPLEX[,np+1]),]
  centroid <- colMeans(SIMPLEX[-(np+1),-(np+1)])
  
  cat("Computing Reflection...\n")
  reflection <- centroid + alpha * (centroid - SIMPLEX[np+1,-(np+1)])
  
  reflectResult <- evaluate(reflection, minVal, maxVal, negative = TRUE, y = y)
  OPTIM[o,] <- c(reflection, obj = reflectResult)
  o <- o + 1
  
  if( reflectResult > SIMPLEX[1,np+1] & 
      reflectResult < SIMPLEX[np, np+1] ){
    
    SIMPLEX[np+1,] <- c(reflection, obj = reflectResult)
    
  } else if( reflectResult < SIMPLEX[1,np+1] ) {
    
    cat("Computing Expansion...\n")
    expansion <- centroid + gamma * (reflection - centroid)
    expansionResult <- evaluate(expansion,
                                minVal, maxVal, negative = TRUE, y = y)
    
    OPTIM[o,] <-  c(expansion, obj = expansionResult)
    o <- o + 1
    
    if( expansionResult < reflectResult ){
      SIMPLEX[np+1,] <- c(expansion, obj = expansionResult)
    } else {
      SIMPLEX[np+1,] <- c(reflection, obj = reflectResult)
    }
    
  } else if( reflectResult > SIMPLEX[np, np+1] ) {
    
    cat("Computing Contraction...\n")
    contract <- centroid + rho * (SIMPLEX[np+1,-(np+1)] - centroid)
    contractResult <- evaluate(contract, minVal, maxVal, negative = TRUE, y = y)
    
    OPTIM[o,] <- c(contract, obj = contractResult)
    o <- o + 1
    
    if( contractResult < SIMPLEX[np+1, np+1] ){
      
      SIMPLEX[np+1,] <- c(contract, obj = contractResult)
      
    } else {
      cat("Computing Shrink...\n")
      for( i in 2:(np+1) ){
        SIMPLEX[i,1:np] <- SIMPLEX[1,-(np+1)] +
          sigma * (SIMPLEX[i,1:np] - SIMPLEX[1,-(np+1)])
        SIMPLEX[i,np+1] <- c(obj = evaluate(SIMPLEX[i,1:np],
                                            minVal, maxVal,
                                            negative = TRUE, y = y))
      } 
      
      OPTIM[o:(o+np-1),] <- SIMPLEX[2:(np+1),]
      o <- o + np
      
    }
    
  }
  
  centroid <- colMeans(SIMPLEX[-(np+1),-(np+1)])
  simplexSize <- rowMeans(t(apply(SIMPLEX[,1:np], 1,
                                  function(v) abs(v - centroid))))
  
  if( max(simplexSize) < deltaThresh ){
    
    cat("Size Threshold Breached: Restarting with Random Initiate\n\n")
    
    for( i in 1:(np+1) ) {
    
    SIMPLEX[i,1:np] <- (PARAMNaught * 0) +
      runif(n = np, min = -initDelta, max = initDelta)
    
    SIMPLEX[i,np+1] <- evaluate(SIMPLEX[i,1:np],
                                minVal, maxVal, negative = TRUE, y = y)
    OPTIM[o,] <- SIMPLEX[i,]
    o <- o + 1

    SIMPLEX <- SIMPLEX[order(SIMPLEX[,np+1]),]
    centroid <- colMeans(SIMPLEX[-(np+1),-(np+1)])
    simplexSize <- rowMeans(t(apply(SIMPLEX[,1:np], 1, function(v) abs(v - centroid))))
    
    }
    
  }
  
  printUpdate()
  
}


# Return the best optimization in untransformed parameters
evaluate(OPTIM[which.min(OPTIM$obj),1:np], minVal, maxVal, transformOnly = TRUE)