General project set-up

# Load libraries and sources required to run the script
    library(tidyverse)
    library(ggthemes)
    library(lmerTest)
    library(emmeans)
    library(multcomp)
    library(effects)
    library(gridExtra)
    library(rstatix)

# Default ggplot settings

   Fill.colour<-scale_colour_manual(values = c ("#4A6CAA", "#469B53", "#AA4A74"))

    ggthe_bw<-theme_bw() + theme(panel.grid.major = element_blank(), 
                    panel.grid.minor = element_blank(),
                    #panel.background = element_blank(), 
                    axis.line = element_line(colour = "black"),
                    plot.background=element_blank(),
                    legend.title = element_blank(), 
                    legend.box.background = element_rect(),
                    panel.background =element_rect(fill = NA, color = "white"),
                    legend.position="bottom",
                    strip.background =element_rect(fill=NA))

Data exploration

1. Get the files with all the YII by species

Metadata

  YII.data<-read.csv("YII_Data/All_YII_data.csv", header = T)
  YII.Acer<-subset(YII.data, Spp=="Ac")
  YII.Acer<-droplevels(YII.Acer)
  summary(YII.Acer)
##         Sample             Date      Spp          Fragment    Treatment
##  Ac_288_T21:   2   2017-07-26: 120   Ac:2281   Ac_108 :  24   A  :856  
##  Ac_101_T0 :   1   2017-08-30: 120             Ac_116 :  24   N  :705  
##  Ac_101_T1 :   1   2017-10-10: 120             Ac_119 :  24   N+P:720  
##  Ac_101_T10:   1   2017-10-19: 120             Ac_122 :  24            
##  Ac_101_T11:   1   2017-11-06: 120             Ac_143 :  24            
##  Ac_101_T12:   1   2017-11-16: 120             Ac_152 :  24            
##  (Other)   :2274   (Other)   :1561             (Other):2137            
##  Replicate      YII         Genotype        Days           Time_Point  
##  R1:1202   Min.   :0.1540   G_07:462   Min.   :-112.00   T0     : 120  
##  R2:1079   1st Qu.:0.5330   G_08:145   1st Qu.:  -9.00   T1     : 120  
##            Median :0.5920   G_31:304   Median :  28.00   T10    : 120  
##            Mean   :0.5719   G_48:570   Mean   :  29.67   T2     : 120  
##            3rd Qu.:0.6240   G_50:223   3rd Qu.:  84.00   T3     : 120  
##            Max.   :0.6870   G_62:577   Max.   : 130.00   T4     : 120  
##                                                          (Other):1561  
##        Phase        TotalSH           logSH             D.Prp   Community
##  Baseline :720   Min.   :0.0012   Min.   :-2.9313   Min.   :0   A:2281   
##  Heat     :408   1st Qu.:0.0485   1st Qu.:-1.3141   1st Qu.:0            
##  Nutrients:950   Median :0.1133   Median :-0.9459   Median :0            
##  Ramping  :179   Mean   :0.1581   Mean   :-0.9831   Mean   :0            
##  Recovery : 24   3rd Qu.:0.2259   3rd Qu.:-0.6461   3rd Qu.:0            
##                  Max.   :0.8947   Max.   :-0.0483   Max.   :0            
##                  NA's   :1821     NA's   :1821                           
##  InitialCommunity
##  A:2281          
##                  
##                  
##                  
##                  
##                  
## 

Merge/Transform

# Organize data type
      YII.Acer$Date<-as.Date(YII.Acer$Date, "%Y-%m-%d")
      YII.Acer$Days<-(as.numeric(YII.Acer$Date) -17485)
      #Time as a factor, not as int
      str(YII.Acer)
## 'data.frame':    2281 obs. of  16 variables:
##  $ Sample          : Factor w/ 2280 levels "Ac_101_T0","Ac_101_T1",..: 1 2 10 11 12 13 14 15 16 17 ...
##  $ Date            : Date, format: "2017-07-26" "2017-08-30" ...
##  $ Spp             : Factor w/ 1 level "Ac": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Fragment        : Factor w/ 120 levels "Ac_101","Ac_102",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Treatment       : Factor w/ 3 levels "A","N","N+P": 3 3 3 3 3 3 3 3 3 3 ...
##  $ Replicate       : Factor w/ 2 levels "R1","R2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ YII             : num  0.644 0.576 0.563 0.568 0.645 0.589 0.595 0.606 0.605 0.606 ...
##  $ Genotype        : Factor w/ 6 levels "G_07","G_08",..: 5 5 5 5 5 5 5 5 5 5 ...
##  $ Days            : num  -112 -77 -36 -27 -9 1 8 14 21 28 ...
##  $ Time_Point      : Factor w/ 24 levels "T0","T1","T10",..: 1 2 12 18 19 20 21 22 23 24 ...
##  $ Phase           : Factor w/ 5 levels "Baseline","Heat",..: 1 1 1 1 1 1 3 3 3 3 ...
##  $ TotalSH         : num  NA NA NA NA NA ...
##  $ logSH           : num  NA NA NA NA NA ...
##  $ D.Prp           : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Community       : Factor w/ 1 level "A": 1 1 1 1 1 1 1 1 1 1 ...
##  $ InitialCommunity: Factor w/ 1 level "A": 1 1 1 1 1 1 1 1 1 1 ...
      YII.Acer$DaysF<-as.factor(YII.Acer$Days)

      YII.Acer$Treatment <- as.factor(YII.Acer$Treatment)
      
      YII.Acer$Genotype<-factor(as.character(YII.Acer$Genotype), 
                             levels=c("G_48", "G_62","G_31", 
                                      "G_08","G_07", "G_50"
                            ))  # Survivorship order

# Differentiate ambient from elevated nutrients (N and N+P)      
      YII.Acer$Nutrients<-"Nutrients"
      YII.Acer$Nutrients[YII.Acer$Treatment=="A"]<-"Ambient"
 
# Check the data
      str(YII.Acer)
## 'data.frame':    2281 obs. of  18 variables:
##  $ Sample          : Factor w/ 2280 levels "Ac_101_T0","Ac_101_T1",..: 1 2 10 11 12 13 14 15 16 17 ...
##  $ Date            : Date, format: "2017-07-26" "2017-08-30" ...
##  $ Spp             : Factor w/ 1 level "Ac": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Fragment        : Factor w/ 120 levels "Ac_101","Ac_102",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ Treatment       : Factor w/ 3 levels "A","N","N+P": 3 3 3 3 3 3 3 3 3 3 ...
##  $ Replicate       : Factor w/ 2 levels "R1","R2": 1 1 1 1 1 1 1 1 1 1 ...
##  $ YII             : num  0.644 0.576 0.563 0.568 0.645 0.589 0.595 0.606 0.605 0.606 ...
##  $ Genotype        : Factor w/ 6 levels "G_48","G_62",..: 6 6 6 6 6 6 6 6 6 6 ...
##  $ Days            : num  -112 -77 -36 -27 -9 1 8 14 21 28 ...
##  $ Time_Point      : Factor w/ 24 levels "T0","T1","T10",..: 1 2 12 18 19 20 21 22 23 24 ...
##  $ Phase           : Factor w/ 5 levels "Baseline","Heat",..: 1 1 1 1 1 1 3 3 3 3 ...
##  $ TotalSH         : num  NA NA NA NA NA ...
##  $ logSH           : num  NA NA NA NA NA ...
##  $ D.Prp           : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ Community       : Factor w/ 1 level "A": 1 1 1 1 1 1 1 1 1 1 ...
##  $ InitialCommunity: Factor w/ 1 level "A": 1 1 1 1 1 1 1 1 1 1 ...
##  $ DaysF           : Factor w/ 24 levels "-112","-77","-36",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ Nutrients       : chr  "Nutrients" "Nutrients" "Nutrients" "Nutrients" ...
      summary(YII.Acer)
##         Sample          Date            Spp          Fragment    Treatment
##  Ac_288_T21:   2   Min.   :2017-07-26   Ac:2281   Ac_108 :  24   A  :856  
##  Ac_101_T0 :   1   1st Qu.:2017-11-06             Ac_116 :  24   N  :705  
##  Ac_101_T1 :   1   Median :2017-12-13             Ac_119 :  24   N+P:720  
##  Ac_101_T10:   1   Mean   :2017-12-14             Ac_122 :  24            
##  Ac_101_T11:   1   3rd Qu.:2018-02-07             Ac_143 :  24            
##  Ac_101_T12:   1   Max.   :2018-03-25             Ac_152 :  24            
##  (Other)   :2274                                  (Other):2137            
##  Replicate      YII         Genotype        Days           Time_Point  
##  R1:1202   Min.   :0.1540   G_48:570   Min.   :-112.00   T0     : 120  
##  R2:1079   1st Qu.:0.5330   G_62:577   1st Qu.:  -9.00   T1     : 120  
##            Median :0.5920   G_31:304   Median :  28.00   T10    : 120  
##            Mean   :0.5719   G_08:145   Mean   :  29.67   T2     : 120  
##            3rd Qu.:0.6240   G_07:462   3rd Qu.:  84.00   T3     : 120  
##            Max.   :0.6870   G_50:223   Max.   : 130.00   T4     : 120  
##                                                          (Other):1561  
##        Phase        TotalSH           logSH             D.Prp   Community
##  Baseline :720   Min.   :0.0012   Min.   :-2.9313   Min.   :0   A:2281   
##  Heat     :408   1st Qu.:0.0485   1st Qu.:-1.3141   1st Qu.:0            
##  Nutrients:950   Median :0.1133   Median :-0.9459   Median :0            
##  Ramping  :179   Mean   :0.1581   Mean   :-0.9831   Mean   :0            
##  Recovery : 24   3rd Qu.:0.2259   3rd Qu.:-0.6461   3rd Qu.:0            
##                  Max.   :0.8947   Max.   :-0.0483   Max.   :0            
##                  NA's   :1821     NA's   :1821                           
##  InitialCommunity     DaysF       Nutrients        
##  A:2281           -112   : 120   Length:2281       
##                   -77    : 120   Class :character  
##                   -36    : 120   Mode  :character  
##                   -27    : 120                     
##                   -9     : 120                     
##                   1      : 120                     
##                   (Other):1561

Remove / subset timepoints

 # Remove baseline values
      YII.Acer<-subset(YII.Acer, Days>-1)
    # Remove recovery values
      YII.Acer<-subset(YII.Acer, Days<112)
      # write.csv(YII.data, "Outputs/Experiment_YII_data.csv", row.names = F)  
    # YII.Wide<- reshape(YII.data, idvar = "Fragment", timevar = "Days", direction = "wide")
      
      Spp.fragments<-YII.Acer %>% 
        group_by(Spp, Genotype, Treatment, Replicate) %>% count(Fragment)
      Spp.fragments
      #write.csv(Spp.fragments, "Outputs/Meassurments_perFragments.csv", row.names = F)

# Subset data 
      YII.nutrients<-subset(YII.Acer, Days<80)
      YII.heat<-subset(YII.Acer, Days>75)
      
      Y.II76<-subset(YII.Acer, Days==76)
      write.csv(Y.II76, "YII76.csv", row.names = F)
      
      Y.II99<-subset(YII.Acer, Days==99)
      write.csv(Y.II99, "YII99.csv", row.names = F)
      
      Y.II110<-subset(YII.Acer, Days==110)
      write.csv(Y.II110, "Y.II110.csv", row.names = F)

2. Exploratory graphs

All time points (nutrients + heat stress)

  • Colony (Genotype) differences
YII_Colony<- ggplot(YII.Acer, aes (Days, YII, colour=Genotype)) +
        stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 0.5)+
        stat_summary(fun.y=mean, geom="line", alpha=0.6) +   theme_bw()
    YII_Colony + ylim(0.0, 0.65) + facet_grid (Spp~Treatment)

YII_Frag_Gen<- ggplot(YII.Acer, aes (Days, YII, colour=Genotype, group=Fragment)) +
        stat_summary(fun.y=mean, geom="line", alpha=0.5) +  
        theme_bw() + theme(legend.position = "bottom",
                           legend.title = element_blank())
    YII_Frag_Gen + ylim(0.0, 0.65) + facet_grid (Spp~Treatment)

3. Treatment effect (A, N and N+P)

Figure S3: Treatments overall and by genotype

Colour.colour<-scale_colour_manual(values = c ("#4A6CAA", "#469B53", "#AA4A74"))
Fill.colour<-scale_fill_manual(values = c ("#4A6CAA", "#469B53", "#AA4A74"))

YII_Treat<- ggplot(data=YII.Acer, aes (Days, YII,fill=Treatment, shape=factor(Treatment))) + 
      scale_shape_manual(values=c(21, 22, 24), labels=c("Ambient", "NH4", "NH4+PO4"))+
      ggthe_bw + Fill.colour + ggtitle("b") +
        stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 1,
                     position = position_dodge(1) )+
        stat_summary(fun.y=mean, geom="line", position = position_dodge(1), 
                     linetype=1, alpha=1) + 
         stat_summary(fun.y=mean, geom="point", size =2,
                   position=position_dodge(width=1), alpha=0.8)  +
       scale_y_continuous(limits = c(0.1, 0.7),
                           breaks = seq(0.1, 0.6, 0.1),  
                           expand = c(0, 0),
                           name=expression(~italic("Fv / Fm"))) +
       scale_x_continuous(name="Days in the experiment",
                           limits = c(-1,113),
                           breaks = seq(0, 113, 15),  
                           expand = c(0, 0))+
      annotate("segment", x = 2, xend = 91, y = 0.12, yend = 0.12,
                  colour = "gray35", linetype=2)+
      annotate("segment", x = 79, xend = 90, y = 0.12, yend = 0.20,
                  colour = "gray35", linetype=3)+
      annotate("segment", x = 91, xend = 110, y = 0.20, yend = 0.20,
                  colour = "gray35", linetype=3)+
      annotate("text", x = 45, y = 0.15, label = "Nutrients", size=3)+
      annotate("text", x = 99, y = 0.15, label = "Heat", size=3)
YII_Treat

FigureS3<-YII_Treat + facet_wrap (Genotype ~.)
FigureS3

#ggsave(file="Outputs/Fig_3b_Acer_YII_Treat.svg", plot=FigureS3, width=5.5, height=5)

Model 1: onlyu treatments (A, N and N+P)

# 1. Find the best model

YII.Acer$DaysF<-as.factor(YII.Acer$Days)

Model1<-lmerTest::lmer(YII ~ Treatment * DaysF + 
                             (1|Genotype) + (1|Replicate) +  (1|Fragment), 
                              data=YII.Acer, na.action=na.omit)
      summary(Model1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: YII ~ Treatment * DaysF + (1 | Genotype) + (1 | Replicate) +  
##     (1 | Fragment)
##    Data: YII.Acer
## 
## REML criterion at convergence: -7082.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -14.5801  -0.4034   0.0606   0.4568   5.5508 
## 
## Random effects:
##  Groups    Name        Variance  Std.Dev.
##  Fragment  (Intercept) 1.213e-04 0.011014
##  Genotype  (Intercept) 1.969e-04 0.014033
##  Replicate (Intercept) 7.484e-06 0.002736
##  Residual              5.142e-04 0.022676
## Number of obs: 1620, groups:  Fragment, 120; Genotype, 6; Replicate, 2
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            6.117e-01  7.298e-03  1.099e+01  83.810  < 2e-16 ***
## TreatmentN            -1.116e-02  5.641e-03  1.026e+03  -1.978 0.048220 *  
## TreatmentN+P          -6.811e-03  5.676e-03  1.025e+03  -1.200 0.230412    
## DaysF8                -1.641e-03  5.135e-03  1.450e+03  -0.320 0.749342    
## DaysF14                6.462e-03  5.135e-03  1.450e+03   1.258 0.208487    
## DaysF21               -6.231e-03  5.135e-03  1.450e+03  -1.213 0.225190    
## DaysF28               -1.144e-02  5.135e-03  1.450e+03  -2.227 0.026101 *  
## DaysF49               -3.320e-02  5.135e-03  1.450e+03  -6.466 1.37e-10 ***
## DaysF65               -4.377e-02  5.135e-03  1.450e+03  -8.523  < 2e-16 ***
## DaysF71               -4.256e-02  5.135e-03  1.450e+03  -8.289 2.58e-16 ***
## DaysF76               -5.182e-02  5.135e-03  1.450e+03 -10.091  < 2e-16 ***
## DaysF84               -4.601e-02  5.429e-03  1.460e+03  -8.474  < 2e-16 ***
## DaysF89               -6.429e-02  5.429e-03  1.460e+03 -11.842  < 2e-16 ***
## DaysF92               -5.326e-02  5.429e-03  1.460e+03  -9.810  < 2e-16 ***
## DaysF96               -5.304e-02  5.429e-03  1.460e+03  -9.770  < 2e-16 ***
## DaysF99               -7.876e-02  5.429e-03  1.460e+03 -14.507  < 2e-16 ***
## DaysF103              -9.810e-02  5.429e-03  1.460e+03 -18.070  < 2e-16 ***
## DaysF106              -1.150e-01  5.429e-03  1.460e+03 -21.184  < 2e-16 ***
## DaysF110              -2.122e-01  5.429e-03  1.460e+03 -39.092  < 2e-16 ***
## TreatmentN:DaysF8      2.749e-02  7.173e-03  1.450e+03   3.833 0.000132 ***
## TreatmentN+P:DaysF8    2.182e-02  7.217e-03  1.450e+03   3.023 0.002547 ** 
## TreatmentN:DaysF14     8.197e-03  7.173e-03  1.450e+03   1.143 0.253333    
## TreatmentN+P:DaysF14   1.586e-02  7.217e-03  1.450e+03   2.198 0.028094 *  
## TreatmentN:DaysF21     4.433e-02  7.173e-03  1.450e+03   6.180 8.32e-10 ***
## TreatmentN+P:DaysF21   2.751e-02  7.217e-03  1.450e+03   3.811 0.000144 ***
## TreatmentN:DaysF28     4.173e-02  7.173e-03  1.450e+03   5.817 7.34e-09 ***
## TreatmentN+P:DaysF28   4.296e-02  7.217e-03  1.450e+03   5.953 3.30e-09 ***
## TreatmentN:DaysF49     6.755e-02  7.173e-03  1.450e+03   9.417  < 2e-16 ***
## TreatmentN+P:DaysF49   6.270e-02  7.217e-03  1.450e+03   8.689  < 2e-16 ***
## TreatmentN:DaysF65     4.211e-02  7.173e-03  1.450e+03   5.871 5.37e-09 ***
## TreatmentN+P:DaysF65   5.629e-02  7.242e-03  1.451e+03   7.773 1.44e-14 ***
## TreatmentN:DaysF71     5.269e-02  7.248e-03  1.453e+03   7.269 5.87e-13 ***
## TreatmentN+P:DaysF71   2.824e-02  7.242e-03  1.451e+03   3.899 0.000101 ***
## TreatmentN:DaysF76     5.121e-02  7.276e-03  1.453e+03   7.038 3.00e-12 ***
## TreatmentN+P:DaysF76   3.903e-02  7.242e-03  1.451e+03   5.390 8.21e-08 ***
## TreatmentN:DaysF84     3.552e-02  7.801e-03  1.464e+03   4.554 5.71e-06 ***
## TreatmentN+P:DaysF84   4.127e-02  7.733e-03  1.462e+03   5.337 1.09e-07 ***
## TreatmentN:DaysF89     3.831e-02  7.847e-03  1.465e+03   4.882 1.16e-06 ***
## TreatmentN+P:DaysF89   3.065e-02  7.733e-03  1.462e+03   3.964 7.73e-05 ***
## TreatmentN:DaysF92    -5.450e-03  8.071e-03  1.466e+03  -0.675 0.499588    
## TreatmentN+P:DaysF92   2.439e-02  7.863e-03  1.464e+03   3.101 0.001965 ** 
## TreatmentN:DaysF96    -4.801e-02  8.377e-03  1.468e+03  -5.731 1.21e-08 ***
## TreatmentN+P:DaysF96  -1.997e-02  8.390e-03  1.467e+03  -2.381 0.017409 *  
## TreatmentN:DaysF99    -1.157e-01  8.576e-03  1.469e+03 -13.487  < 2e-16 ***
## TreatmentN+P:DaysF99  -4.192e-02  8.590e-03  1.468e+03  -4.880 1.18e-06 ***
## TreatmentN:DaysF103   -1.113e-01  8.967e-03  1.470e+03 -12.408  < 2e-16 ***
## TreatmentN+P:DaysF103 -9.823e-02  8.705e-03  1.468e+03 -11.284  < 2e-16 ***
## TreatmentN:DaysF106   -1.785e-01  9.819e-03  1.477e+03 -18.178  < 2e-16 ***
## TreatmentN+P:DaysF106 -1.426e-01  9.331e-03  1.471e+03 -15.278  < 2e-16 ***
## TreatmentN+P:DaysF110 -1.298e-01  1.225e-02  1.477e+03 -10.599  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
      Step.LME_Acer<-step (Model1) # Replicate is not significant
      anova(Model1)
      ranova(Model1)# Replicate is not significant
      summary(Model1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: YII ~ Treatment * DaysF + (1 | Genotype) + (1 | Replicate) +  
##     (1 | Fragment)
##    Data: YII.Acer
## 
## REML criterion at convergence: -7082.2
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -14.5801  -0.4034   0.0606   0.4568   5.5508 
## 
## Random effects:
##  Groups    Name        Variance  Std.Dev.
##  Fragment  (Intercept) 1.213e-04 0.011014
##  Genotype  (Intercept) 1.969e-04 0.014033
##  Replicate (Intercept) 7.484e-06 0.002736
##  Residual              5.142e-04 0.022676
## Number of obs: 1620, groups:  Fragment, 120; Genotype, 6; Replicate, 2
## 
## Fixed effects:
##                         Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)            6.117e-01  7.298e-03  1.099e+01  83.810  < 2e-16 ***
## TreatmentN            -1.116e-02  5.641e-03  1.026e+03  -1.978 0.048220 *  
## TreatmentN+P          -6.811e-03  5.676e-03  1.025e+03  -1.200 0.230412    
## DaysF8                -1.641e-03  5.135e-03  1.450e+03  -0.320 0.749342    
## DaysF14                6.462e-03  5.135e-03  1.450e+03   1.258 0.208487    
## DaysF21               -6.231e-03  5.135e-03  1.450e+03  -1.213 0.225190    
## DaysF28               -1.144e-02  5.135e-03  1.450e+03  -2.227 0.026101 *  
## DaysF49               -3.320e-02  5.135e-03  1.450e+03  -6.466 1.37e-10 ***
## DaysF65               -4.377e-02  5.135e-03  1.450e+03  -8.523  < 2e-16 ***
## DaysF71               -4.256e-02  5.135e-03  1.450e+03  -8.289 2.58e-16 ***
## DaysF76               -5.182e-02  5.135e-03  1.450e+03 -10.091  < 2e-16 ***
## DaysF84               -4.601e-02  5.429e-03  1.460e+03  -8.474  < 2e-16 ***
## DaysF89               -6.429e-02  5.429e-03  1.460e+03 -11.842  < 2e-16 ***
## DaysF92               -5.326e-02  5.429e-03  1.460e+03  -9.810  < 2e-16 ***
## DaysF96               -5.304e-02  5.429e-03  1.460e+03  -9.770  < 2e-16 ***
## DaysF99               -7.876e-02  5.429e-03  1.460e+03 -14.507  < 2e-16 ***
## DaysF103              -9.810e-02  5.429e-03  1.460e+03 -18.070  < 2e-16 ***
## DaysF106              -1.150e-01  5.429e-03  1.460e+03 -21.184  < 2e-16 ***
## DaysF110              -2.122e-01  5.429e-03  1.460e+03 -39.092  < 2e-16 ***
## TreatmentN:DaysF8      2.749e-02  7.173e-03  1.450e+03   3.833 0.000132 ***
## TreatmentN+P:DaysF8    2.182e-02  7.217e-03  1.450e+03   3.023 0.002547 ** 
## TreatmentN:DaysF14     8.197e-03  7.173e-03  1.450e+03   1.143 0.253333    
## TreatmentN+P:DaysF14   1.586e-02  7.217e-03  1.450e+03   2.198 0.028094 *  
## TreatmentN:DaysF21     4.433e-02  7.173e-03  1.450e+03   6.180 8.32e-10 ***
## TreatmentN+P:DaysF21   2.751e-02  7.217e-03  1.450e+03   3.811 0.000144 ***
## TreatmentN:DaysF28     4.173e-02  7.173e-03  1.450e+03   5.817 7.34e-09 ***
## TreatmentN+P:DaysF28   4.296e-02  7.217e-03  1.450e+03   5.953 3.30e-09 ***
## TreatmentN:DaysF49     6.755e-02  7.173e-03  1.450e+03   9.417  < 2e-16 ***
## TreatmentN+P:DaysF49   6.270e-02  7.217e-03  1.450e+03   8.689  < 2e-16 ***
## TreatmentN:DaysF65     4.211e-02  7.173e-03  1.450e+03   5.871 5.37e-09 ***
## TreatmentN+P:DaysF65   5.629e-02  7.242e-03  1.451e+03   7.773 1.44e-14 ***
## TreatmentN:DaysF71     5.269e-02  7.248e-03  1.453e+03   7.269 5.87e-13 ***
## TreatmentN+P:DaysF71   2.824e-02  7.242e-03  1.451e+03   3.899 0.000101 ***
## TreatmentN:DaysF76     5.121e-02  7.276e-03  1.453e+03   7.038 3.00e-12 ***
## TreatmentN+P:DaysF76   3.903e-02  7.242e-03  1.451e+03   5.390 8.21e-08 ***
## TreatmentN:DaysF84     3.552e-02  7.801e-03  1.464e+03   4.554 5.71e-06 ***
## TreatmentN+P:DaysF84   4.127e-02  7.733e-03  1.462e+03   5.337 1.09e-07 ***
## TreatmentN:DaysF89     3.831e-02  7.847e-03  1.465e+03   4.882 1.16e-06 ***
## TreatmentN+P:DaysF89   3.065e-02  7.733e-03  1.462e+03   3.964 7.73e-05 ***
## TreatmentN:DaysF92    -5.450e-03  8.071e-03  1.466e+03  -0.675 0.499588    
## TreatmentN+P:DaysF92   2.439e-02  7.863e-03  1.464e+03   3.101 0.001965 ** 
## TreatmentN:DaysF96    -4.801e-02  8.377e-03  1.468e+03  -5.731 1.21e-08 ***
## TreatmentN+P:DaysF96  -1.997e-02  8.390e-03  1.467e+03  -2.381 0.017409 *  
## TreatmentN:DaysF99    -1.157e-01  8.576e-03  1.469e+03 -13.487  < 2e-16 ***
## TreatmentN+P:DaysF99  -4.192e-02  8.590e-03  1.468e+03  -4.880 1.18e-06 ***
## TreatmentN:DaysF103   -1.113e-01  8.967e-03  1.470e+03 -12.408  < 2e-16 ***
## TreatmentN+P:DaysF103 -9.823e-02  8.705e-03  1.468e+03 -11.284  < 2e-16 ***
## TreatmentN:DaysF106   -1.785e-01  9.819e-03  1.477e+03 -18.178  < 2e-16 ***
## TreatmentN+P:DaysF106 -1.426e-01  9.331e-03  1.471e+03 -15.278  < 2e-16 ***
## TreatmentN+P:DaysF110 -1.298e-01  1.225e-02  1.477e+03 -10.599  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
#2. Extract EMMs
      Acer.YII.emm<-emmeans(Model1, ~Treatment | DaysF)
      contrast(Acer.YII.emm, "tukey")
## DaysF = 1:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N      0.011157 0.00564 1035   1.978  0.1182
##  A - (N+P)  0.006811 0.00568 1034   1.200  0.4534
##  N - (N+P) -0.004346 0.00560 1035  -0.775  0.7182
## 
## DaysF = 8:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.016338 0.00564 1035  -2.896  0.0108
##  A - (N+P) -0.015005 0.00568 1034  -2.644  0.0226
##  N - (N+P)  0.001333 0.00560 1035   0.238  0.9693
## 
## DaysF = 14:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N      0.002960 0.00564 1035   0.525  0.8593
##  A - (N+P) -0.009053 0.00568 1034  -1.595  0.2483
##  N - (N+P) -0.012012 0.00560 1035  -2.143  0.0818
## 
## DaysF = 21:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.033172 0.00564 1035  -5.880  <.0001
##  A - (N+P) -0.020695 0.00568 1034  -3.646  0.0008
##  N - (N+P)  0.012477 0.00560 1035   2.226  0.0673
## 
## DaysF = 28:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.030572 0.00564 1035  -5.419  <.0001
##  A - (N+P) -0.036150 0.00568 1034  -6.369  <.0001
##  N - (N+P) -0.005578 0.00560 1035  -0.995  0.5800
## 
## DaysF = 49:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.056390 0.00564 1035  -9.996  <.0001
##  A - (N+P) -0.055894 0.00568 1034  -9.848  <.0001
##  N - (N+P)  0.000496 0.00560 1035   0.088  0.9957
## 
## DaysF = 65:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.030954 0.00564 1035  -5.487  <.0001
##  A - (N+P) -0.049479 0.00571 1043  -8.669  <.0001
##  N - (N+P) -0.018525 0.00564 1044  -3.287  0.0030
## 
## DaysF = 71:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.041534 0.00574 1062  -7.240  <.0001
##  A - (N+P) -0.021428 0.00571 1043  -3.754  0.0005
##  N - (N+P)  0.020107 0.00573 1071   3.508  0.0014
## 
## DaysF = 76:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.040049 0.00577 1073  -6.939  <.0001
##  A - (N+P) -0.032223 0.00571 1043  -5.646  <.0001
##  N - (N+P)  0.007827 0.00577 1082   1.357  0.3640
## 
## DaysF = 84:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.024364 0.00642 1235  -3.795  0.0005
##  A - (N+P) -0.034460 0.00632 1204  -5.453  <.0001
##  N - (N+P) -0.010096 0.00651 1261  -1.552  0.2672
## 
## DaysF = 89:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N     -0.027157 0.00648 1247  -4.193  0.0001
##  A - (N+P) -0.023842 0.00632 1204  -3.773  0.0005
##  N - (N+P)  0.003315 0.00656 1272   0.505  0.8688
## 
## DaysF = 92:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N      0.016607 0.00675 1303   2.462  0.0371
##  A - (N+P) -0.017575 0.00648 1240  -2.713  0.0185
##  N - (N+P) -0.034181 0.00698 1347  -4.900  <.0001
## 
## DaysF = 96:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N      0.059167 0.00711 1366   8.323  <.0001
##  A - (N+P)  0.026784 0.00711 1359   3.769  0.0005
##  N - (N+P) -0.032383 0.00788 1456  -4.108  0.0001
## 
## DaysF = 99:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N      0.126823 0.00734 1399  17.272  <.0001
##  A - (N+P)  0.048727 0.00734 1394   6.637  <.0001
##  N - (N+P) -0.078096 0.00830 1488  -9.411  <.0001
## 
## DaysF = 103:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N      0.122428 0.00780 1452  15.706  <.0001
##  A - (N+P)  0.105041 0.00748 1412  14.049  <.0001
##  N - (N+P) -0.017387 0.00881 1517  -1.972  0.1194
## 
## DaysF = 106:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N      0.189641 0.00876 1515  21.645  <.0001
##  A - (N+P)  0.149366 0.00820 1482  18.221  <.0001
##  N - (N+P) -0.040275 0.01025 1555  -3.930  0.0003
## 
## DaysF = 110:
##  contrast   estimate      SE   df t.ratio p.value
##  A - N        nonEst      NA   NA      NA      NA
##  A - (N+P)  0.136642 0.01141 1564  11.971  <.0001
##  N - (N+P)    nonEst      NA   NA      NA      NA
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 3 estimates
      Acer.YII.emm<-emmeans(Model1, ~Treatment * DaysF)
      
      # Effect plot options
      #emmip(Model1, ~DaysF|Treatment, CIs = TRUE) + theme_bw() # interaction plot of predictions
      
      Acer.YII_groups<-cld(Acer.YII.emm, by=NULL) # compact-letter display
      Acer.YII_groups<-Acer.YII_groups[order(Acer.YII_groups$Treatment, Acer.YII_groups$Day),]
      Acer.YII_groups
      #write.csv(Acer.YII_groups, "Outputs/Multicomp_AcerYII.csv", row.names = F)

4. Pooled N and N+P versus A.

Figure 4

YII.AcerB<-YII.Acer
YII.AcerB<-subset(YII.AcerB, Sample!="Ac_103_T11")

YII_Genotype<- ggplot(data=YII.AcerB, aes (Days, YII, colour=factor(Genotype))) +
        ggthe_bw + 
  
  annotate("segment", x = 2, xend = 91, y = 0.05, yend = 0.05,
                  colour = "gray35", linetype=2)+
  annotate("segment", x = 79, xend = 91, y = 0.06, yend = 0.65,
                  colour = "gray35", linetype=3)+
  annotate("segment", x = 91, xend = 110, y = 0.65, yend = 0.65,
                  colour = "gray35", linetype=3)+
  
   annotate("text", x = 45, y = 0.02, label = "Nutrients", size=3)+
        annotate("text", x = 100, y = 0.61, label = "Heat", size=3)+
  
  stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 1,
                     position = position_dodge(1), alpha=0.5 )+
  #stat_summary(fun.y=mean, geom="line", position = position_dodge(1), linetype=1, alpha=1) + 
  stat_summary(fun.y=mean, geom="point", size =2,
                   position=position_dodge(width=1), alpha=0.5)  +
  theme(legend.position="bottom", 
              legend.title = element_blank(),
              strip.background = element_rect(fill="white"))+
  scale_y_continuous(limits = c(0.0, 0.7),
                           breaks = seq(0.0, 0.6, 0.1),  
                           expand = c(0, 0),
                           name=expression(~italic("Fv / Fm"))) +
  scale_x_continuous(name="Days in the experiment",
                           limits = c(-1,113),
                           breaks = seq(0, 113, 15),  
                           expand = c(0, 0))+
  facet_grid (~Nutrients)

Figure4 <- YII_Genotype + geom_smooth(method = "loess", span=0.4, alpha=0.1, size=0.5)
Figure4

#ggsave(file="Outputs/Figure4.svg", plot=Figure4, width=6.5, height=5.5)

Model 2: Nutrient Treatments (A versus elevated nutrients)

# 1. Find the best model

Model2<-lmerTest::lmer(YII ~ Genotype* Nutrients * DaysF + 
                             (1|Replicate) +  (1|Fragment), 
                              data=YII.Acer, na.action=na.omit)
    
      #step (Model2) # Replicate is not significant
      anova(Model2)
      ranova(Model2)# Replicate is not significant
      summary(Model2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: YII ~ Genotype * Nutrients * DaysF + (1 | Replicate) + (1 | Fragment)
##    Data: YII.Acer
## 
## REML criterion at convergence: -6268.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -12.4269  -0.3670   0.0344   0.4112   5.4935 
## 
## Random effects:
##  Groups    Name        Variance  Std.Dev.
##  Fragment  (Intercept) 7.873e-05 0.008873
##  Replicate (Intercept) 8.487e-06 0.002913
##  Residual              5.185e-04 0.022771
## Number of obs: 1620, groups:  Fragment, 120; Replicate, 2
## 
## Fixed effects:
##                                            Estimate Std. Error         df
## (Intercept)                               6.260e-01  7.998e-03  1.346e+02
## GenotypeG_62                             -7.761e-03  1.123e-02  1.156e+03
## GenotypeG_31                             -7.571e-03  1.339e-02  1.156e+03
## GenotypeG_08                             -2.150e-02  1.893e-02  1.156e+03
## GenotypeG_07                             -2.921e-02  1.123e-02  1.156e+03
## GenotypeG_50                             -1.625e-02  1.446e-02  1.156e+03
## NutrientsNutrients                       -9.261e-03  9.639e-03  1.156e+03
## DaysF8                                   -4.600e-03  1.018e-02  1.318e+03
## DaysF14                                   7.600e-03  1.018e-02  1.318e+03
## DaysF21                                  -6.000e-04  1.018e-02  1.318e+03
## DaysF28                                  -4.600e-03  1.018e-02  1.318e+03
## DaysF49                                  -2.950e-02  1.018e-02  1.318e+03
## DaysF65                                  -2.440e-02  1.018e-02  1.318e+03
## DaysF71                                  -2.740e-02  1.018e-02  1.318e+03
## DaysF76                                  -3.870e-02  1.018e-02  1.318e+03
## DaysF84                                  -3.325e-02  1.084e-02  1.330e+03
## DaysF89                                  -5.663e-02  1.084e-02  1.330e+03
## DaysF92                                  -4.188e-02  1.084e-02  1.330e+03
## DaysF96                                  -5.063e-02  1.084e-02  1.330e+03
## DaysF99                                  -7.125e-02  1.084e-02  1.330e+03
## DaysF103                                 -9.425e-02  1.084e-02  1.330e+03
## DaysF106                                 -1.008e-01  1.084e-02  1.330e+03
## DaysF110                                 -2.053e-01  1.084e-02  1.330e+03
## GenotypeG_62:NutrientsNutrients          -1.327e-03  1.375e-02  1.156e+03
## GenotypeG_31:NutrientsNutrients          -1.155e-03  1.633e-02  1.156e+03
## GenotypeG_08:NutrientsNutrients          -2.121e-03  2.216e-02  1.156e+03
## GenotypeG_07:NutrientsNutrients           7.711e-03  1.394e-02  1.156e+03
## GenotypeG_50:NutrientsNutrients          -6.583e-03  1.757e-02  1.156e+03
## GenotypeG_62:DaysF8                       3.822e-03  1.480e-02  1.318e+03
## GenotypeG_31:DaysF8                       9.800e-03  1.764e-02  1.318e+03
## GenotypeG_08:DaysF8                       1.860e-02  2.494e-02  1.318e+03
## GenotypeG_07:DaysF8                       2.667e-04  1.480e-02  1.318e+03
## GenotypeG_50:DaysF8                      -1.900e-03  1.905e-02  1.318e+03
## GenotypeG_62:DaysF14                      4.178e-03  1.480e-02  1.318e+03
## GenotypeG_31:DaysF14                      8.000e-04  1.764e-02  1.318e+03
## GenotypeG_08:DaysF14                     -8.100e-03  2.494e-02  1.318e+03
## GenotypeG_07:DaysF14                     -8.822e-03  1.480e-02  1.318e+03
## GenotypeG_50:DaysF14                      2.400e-03  1.905e-02  1.318e+03
## GenotypeG_62:DaysF21                      2.267e-03  1.480e-02  1.318e+03
## GenotypeG_31:DaysF21                     -1.080e-02  1.764e-02  1.318e+03
## GenotypeG_08:DaysF21                      1.100e-03  2.494e-02  1.318e+03
## GenotypeG_07:DaysF21                     -2.384e-02  1.480e-02  1.318e+03
## GenotypeG_50:DaysF21                      6.600e-03  1.905e-02  1.318e+03
## GenotypeG_62:DaysF28                     -7.333e-04  1.480e-02  1.318e+03
## GenotypeG_31:DaysF28                     -1.000e-03  1.764e-02  1.318e+03
## GenotypeG_08:DaysF28                      1.160e-02  2.494e-02  1.318e+03
## GenotypeG_07:DaysF28                     -3.029e-02  1.480e-02  1.318e+03
## GenotypeG_50:DaysF28                     -1.400e-03  1.905e-02  1.318e+03
## GenotypeG_62:DaysF49                      7.500e-03  1.480e-02  1.318e+03
## GenotypeG_31:DaysF49                     -1.000e-04  1.764e-02  1.318e+03
## GenotypeG_08:DaysF49                      1.800e-02  2.494e-02  1.318e+03
## GenotypeG_07:DaysF49                     -3.294e-02  1.480e-02  1.318e+03
## GenotypeG_50:DaysF49                      1.225e-02  1.905e-02  1.318e+03
## GenotypeG_62:DaysF65                     -2.227e-02  1.480e-02  1.318e+03
## GenotypeG_31:DaysF65                     -3.860e-02  1.764e-02  1.318e+03
## GenotypeG_08:DaysF65                     -1.060e-02  2.494e-02  1.318e+03
## GenotypeG_07:DaysF65                     -2.838e-02  1.480e-02  1.318e+03
## GenotypeG_50:DaysF65                     -2.135e-02  1.905e-02  1.318e+03
## GenotypeG_62:DaysF71                     -2.156e-03  1.480e-02  1.318e+03
## GenotypeG_31:DaysF71                     -7.000e-03  1.764e-02  1.318e+03
## GenotypeG_08:DaysF71                     -6.100e-03  2.494e-02  1.318e+03
## GenotypeG_07:DaysF71                     -5.227e-02  1.480e-02  1.318e+03
## GenotypeG_50:DaysF71                     -1.360e-02  1.905e-02  1.318e+03
## GenotypeG_62:DaysF76                     -3.856e-03  1.480e-02  1.318e+03
## GenotypeG_31:DaysF76                     -1.500e-03  1.764e-02  1.318e+03
## GenotypeG_08:DaysF76                      1.370e-02  2.494e-02  1.318e+03
## GenotypeG_07:DaysF76                     -5.497e-02  1.480e-02  1.318e+03
## GenotypeG_50:DaysF76                     -5.500e-04  1.905e-02  1.318e+03
## GenotypeG_62:DaysF84                     -2.371e-04  1.582e-02  1.331e+03
## GenotypeG_31:DaysF84                      3.147e-04  1.877e-02  1.330e+03
## GenotypeG_08:DaysF84                     -5.749e-03  2.522e-02  1.320e+03
## GenotypeG_07:DaysF84                     -5.780e-02  1.582e-02  1.331e+03
## GenotypeG_50:DaysF84                      3.001e-03  1.941e-02  1.322e+03
## GenotypeG_62:DaysF89                     -1.015e-02  1.582e-02  1.331e+03
## GenotypeG_31:DaysF89                      8.190e-03  1.877e-02  1.330e+03
## GenotypeG_08:DaysF89                      7.626e-03  2.522e-02  1.320e+03
## GenotypeG_07:DaysF89                     -3.685e-02  1.582e-02  1.331e+03
## GenotypeG_50:DaysF89                      9.876e-03  1.941e-02  1.322e+03
## GenotypeG_62:DaysF92                      4.102e-03  1.582e-02  1.331e+03
## GenotypeG_31:DaysF92                     -7.560e-03  1.877e-02  1.330e+03
## GenotypeG_08:DaysF92                     -1.112e-02  2.522e-02  1.320e+03
## GenotypeG_07:DaysF92                     -4.646e-02  1.582e-02  1.331e+03
## GenotypeG_50:DaysF92                     -2.874e-03  1.941e-02  1.322e+03
## GenotypeG_62:DaysF96                      1.424e-03  1.582e-02  1.331e+03
## GenotypeG_31:DaysF96                      6.190e-03  1.877e-02  1.330e+03
## GenotypeG_08:DaysF96                      4.626e-03  2.522e-02  1.320e+03
## GenotypeG_07:DaysF96                     -1.657e-02  1.582e-02  1.331e+03
## GenotypeG_50:DaysF96                     -3.741e-04  1.941e-02  1.322e+03
## GenotypeG_62:DaysF99                     -1.452e-02  1.582e-02  1.331e+03
## GenotypeG_31:DaysF99                     -2.444e-02  1.877e-02  1.330e+03
## GenotypeG_08:DaysF99                      1.251e-03  2.522e-02  1.320e+03
## GenotypeG_07:DaysF99                     -1.566e-02  1.582e-02  1.331e+03
## GenotypeG_50:DaysF99                      1.750e-02  1.941e-02  1.322e+03
## GenotypeG_62:DaysF103                    -1.438e-02  1.582e-02  1.331e+03
## GenotypeG_31:DaysF103                    -9.435e-03  1.877e-02  1.330e+03
## GenotypeG_08:DaysF103                     1.825e-02  2.522e-02  1.320e+03
## GenotypeG_07:DaysF103                    -1.323e-02  1.582e-02  1.331e+03
## GenotypeG_50:DaysF103                     1.875e-02  1.941e-02  1.322e+03
## GenotypeG_62:DaysF106                     7.120e-03  1.582e-02  1.331e+03
## GenotypeG_31:DaysF106                    -4.794e-02  1.877e-02  1.330e+03
## GenotypeG_08:DaysF106                     1.775e-02  2.522e-02  1.320e+03
## GenotypeG_07:DaysF106                    -4.158e-02  1.582e-02  1.331e+03
## GenotypeG_50:DaysF106                    -1.375e-02  1.941e-02  1.322e+03
## GenotypeG_62:DaysF110                     1.262e-02  1.582e-02  1.331e+03
## GenotypeG_31:DaysF110                    -1.869e-02  1.877e-02  1.330e+03
## GenotypeG_08:DaysF110                    -3.249e-03  2.522e-02  1.320e+03
## GenotypeG_07:DaysF110                    -4.066e-02  1.582e-02  1.331e+03
## GenotypeG_50:DaysF110                     1.450e-02  1.941e-02  1.322e+03
## NutrientsNutrients:DaysF8                 2.321e-02  1.270e-02  1.318e+03
## NutrientsNutrients:DaysF14                1.268e-02  1.270e-02  1.318e+03
## NutrientsNutrients:DaysF21                3.277e-02  1.270e-02  1.318e+03
## NutrientsNutrients:DaysF28                3.532e-02  1.270e-02  1.318e+03
## NutrientsNutrients:DaysF49                5.500e-02  1.270e-02  1.318e+03
## NutrientsNutrients:DaysF65                4.084e-02  1.270e-02  1.318e+03
## NutrientsNutrients:DaysF71                2.746e-02  1.270e-02  1.318e+03
## NutrientsNutrients:DaysF76                3.953e-02  1.270e-02  1.318e+03
## NutrientsNutrients:DaysF84                3.048e-02  1.356e-02  1.331e+03
## NutrientsNutrients:DaysF89                2.328e-02  1.356e-02  1.331e+03
## NutrientsNutrients:DaysF92               -6.470e-03  1.356e-02  1.331e+03
## NutrientsNutrients:DaysF96               -3.679e-02  1.356e-02  1.331e+03
## NutrientsNutrients:DaysF99               -8.431e-02  1.356e-02  1.331e+03
## NutrientsNutrients:DaysF103              -1.011e-01  1.356e-02  1.331e+03
## NutrientsNutrients:DaysF106              -1.580e-01  1.396e-02  1.335e+03
## NutrientsNutrients:DaysF110              -1.238e-01  2.040e-02  1.350e+03
## GenotypeG_62:NutrientsNutrients:DaysF8   -8.333e-05  1.812e-02  1.318e+03
## GenotypeG_31:NutrientsNutrients:DaysF8    7.134e-03  2.152e-02  1.318e+03
## GenotypeG_08:NutrientsNutrients:DaysF8   -1.688e-02  2.920e-02  1.318e+03
## GenotypeG_07:NutrientsNutrients:DaysF8    6.593e-03  1.837e-02  1.318e+03
## GenotypeG_50:NutrientsNutrients:DaysF8   -1.267e-03  2.315e-02  1.318e+03
## GenotypeG_62:NutrientsNutrients:DaysF14  -2.556e-03  1.812e-02  1.318e+03
## GenotypeG_31:NutrientsNutrients:DaysF14  -1.441e-03  2.152e-02  1.318e+03
## GenotypeG_08:NutrientsNutrients:DaysF14   7.989e-03  2.920e-02  1.318e+03
## GenotypeG_07:NutrientsNutrients:DaysF14  -4.279e-03  1.837e-02  1.318e+03
## GenotypeG_50:NutrientsNutrients:DaysF14   3.100e-03  2.315e-02  1.318e+03
## GenotypeG_62:NutrientsNutrients:DaysF21   2.617e-03  1.812e-02  1.318e+03
## GenotypeG_31:NutrientsNutrients:DaysF21   1.163e-02  2.152e-02  1.318e+03
## GenotypeG_08:NutrientsNutrients:DaysF21  -1.767e-03  2.920e-02  1.318e+03
## GenotypeG_07:NutrientsNutrients:DaysF21   1.297e-02  1.837e-02  1.318e+03
## GenotypeG_50:NutrientsNutrients:DaysF21  -1.888e-02  2.315e-02  1.318e+03
## GenotypeG_62:NutrientsNutrients:DaysF28   6.961e-03  1.812e-02  1.318e+03
## GenotypeG_31:NutrientsNutrients:DaysF28   8.914e-03  2.152e-02  1.318e+03
## GenotypeG_08:NutrientsNutrients:DaysF28  -6.156e-03  2.920e-02  1.318e+03
## GenotypeG_07:NutrientsNutrients:DaysF28   2.463e-02  1.837e-02  1.318e+03
## GenotypeG_50:NutrientsNutrients:DaysF28  -1.343e-02  2.315e-02  1.318e+03
## GenotypeG_62:NutrientsNutrients:DaysF49  -4.350e-03  1.812e-02  1.318e+03
## GenotypeG_31:NutrientsNutrients:DaysF49   8.418e-03  2.152e-02  1.318e+03
## GenotypeG_08:NutrientsNutrients:DaysF49   2.333e-03  2.920e-02  1.318e+03
## GenotypeG_07:NutrientsNutrients:DaysF49   4.344e-02  1.837e-02  1.318e+03
## GenotypeG_50:NutrientsNutrients:DaysF49  -4.750e-03  2.315e-02  1.318e+03
## GenotypeG_62:NutrientsNutrients:DaysF65   2.187e-02  1.812e-02  1.318e+03
## GenotypeG_31:NutrientsNutrients:DaysF65   3.788e-02  2.152e-02  1.318e+03
## GenotypeG_08:NutrientsNutrients:DaysF65  -1.184e-02  2.920e-02  1.318e+03
## GenotypeG_07:NutrientsNutrients:DaysF65   2.240e-02  1.837e-02  1.318e+03
## GenotypeG_50:NutrientsNutrients:DaysF65  -5.862e-02  2.331e-02  1.320e+03
## GenotypeG_62:NutrientsNutrients:DaysF71   8.800e-03  1.812e-02  1.318e+03
## GenotypeG_31:NutrientsNutrients:DaysF71   6.581e-03  2.152e-02  1.318e+03
## GenotypeG_08:NutrientsNutrients:DaysF71  -4.556e-04  2.920e-02  1.318e+03
## GenotypeG_07:NutrientsNutrients:DaysF71   4.746e-02  1.843e-02  1.319e+03
## GenotypeG_50:NutrientsNutrients:DaysF71  -1.240e-02  2.381e-02  1.326e+03
## GenotypeG_62:NutrientsNutrients:DaysF76   6.222e-04  1.812e-02  1.318e+03
## GenotypeG_31:NutrientsNutrients:DaysF76  -1.024e-02  2.152e-02  1.318e+03
## GenotypeG_08:NutrientsNutrients:DaysF76  -1.553e-02  2.920e-02  1.318e+03
## GenotypeG_07:NutrientsNutrients:DaysF76   3.888e-02  1.843e-02  1.319e+03
## GenotypeG_50:NutrientsNutrients:DaysF76  -1.463e-02  2.419e-02  1.329e+03
## GenotypeG_62:NutrientsNutrients:DaysF84   3.583e-03  1.943e-02  1.331e+03
## GenotypeG_31:NutrientsNutrients:DaysF84  -6.755e-03  2.306e-02  1.331e+03
## GenotypeG_08:NutrientsNutrients:DaysF84  -2.114e-03  2.989e-02  1.323e+03
## GenotypeG_07:NutrientsNutrients:DaysF84   4.452e-02  1.978e-02  1.332e+03
## GenotypeG_50:NutrientsNutrients:DaysF84  -1.429e-02  2.521e-02  1.336e+03
## GenotypeG_62:NutrientsNutrients:DaysF89   2.046e-02  1.943e-02  1.331e+03
## GenotypeG_31:NutrientsNutrients:DaysF89   3.566e-03  2.306e-02  1.331e+03
## GenotypeG_08:NutrientsNutrients:DaysF89  -2.472e-02  2.989e-02  1.323e+03
## GenotypeG_07:NutrientsNutrients:DaysF89   4.272e-02  1.988e-02  1.333e+03
## GenotypeG_50:NutrientsNutrients:DaysF89  -1.010e-02  2.521e-02  1.336e+03
## GenotypeG_62:NutrientsNutrients:DaysF92   5.281e-03  1.943e-02  1.331e+03
## GenotypeG_31:NutrientsNutrients:DaysF92   5.441e-03  2.306e-02  1.331e+03
## GenotypeG_08:NutrientsNutrients:DaysF92   3.427e-02  3.253e-02  1.335e+03
## GenotypeG_07:NutrientsNutrients:DaysF92   5.899e-02  2.035e-02  1.336e+03
## GenotypeG_50:NutrientsNutrients:DaysF92   2.908e-02  2.610e-02  1.340e+03
## GenotypeG_62:NutrientsNutrients:DaysF96   2.298e-03  1.943e-02  1.331e+03
## GenotypeG_31:NutrientsNutrients:DaysF96  -1.071e-02  2.327e-02  1.332e+03
## GenotypeG_08:NutrientsNutrients:DaysF96   6.148e-02  3.649e-02  1.345e+03
## GenotypeG_07:NutrientsNutrients:DaysF96   4.923e-02  2.987e-02  1.362e+03
## GenotypeG_62:NutrientsNutrients:DaysF99   1.785e-02  1.943e-02  1.331e+03
## GenotypeG_31:NutrientsNutrients:DaysF99   2.103e-02  2.393e-02  1.335e+03
## GenotypeG_62:NutrientsNutrients:DaysF103  6.911e-03  1.950e-02  1.332e+03
## GenotypeG_31:NutrientsNutrients:DaysF103  1.748e-04  2.713e-02  1.344e+03
## GenotypeG_62:NutrientsNutrients:DaysF106 -3.397e-02  2.017e-02  1.335e+03
## GenotypeG_31:NutrientsNutrients:DaysF106  5.189e-02  3.191e-02  1.351e+03
## GenotypeG_62:NutrientsNutrients:DaysF110  2.256e-02  2.906e-02  1.350e+03
## GenotypeG_31:NutrientsNutrients:DaysF110 -1.120e-01  3.520e-02  1.353e+03
##                                          t value Pr(>|t|)    
## (Intercept)                               78.270  < 2e-16 ***
## GenotypeG_62                              -0.691 0.489590    
## GenotypeG_31                              -0.566 0.571827    
## GenotypeG_08                              -1.136 0.256291    
## GenotypeG_07                              -2.601 0.009417 ** 
## GenotypeG_50                              -1.124 0.261270    
## NutrientsNutrients                        -0.961 0.336851    
## DaysF8                                    -0.452 0.651550    
## DaysF14                                    0.746 0.455614    
## DaysF21                                   -0.059 0.953025    
## DaysF28                                   -0.452 0.651550    
## DaysF49                                   -2.897 0.003831 ** 
## DaysF65                                   -2.396 0.016712 *  
## DaysF71                                   -2.691 0.007222 ** 
## DaysF76                                   -3.800 0.000151 ***
## DaysF84                                   -3.068 0.002202 ** 
## DaysF89                                   -5.224 2.03e-07 ***
## DaysF92                                   -3.863 0.000117 ***
## DaysF96                                   -4.670 3.31e-06 ***
## DaysF99                                   -6.573 7.05e-11 ***
## DaysF103                                  -8.695  < 2e-16 ***
## DaysF106                                  -9.295  < 2e-16 ***
## DaysF110                                 -18.935  < 2e-16 ***
## GenotypeG_62:NutrientsNutrients           -0.096 0.923142    
## GenotypeG_31:NutrientsNutrients           -0.071 0.943643    
## GenotypeG_08:NutrientsNutrients           -0.096 0.923775    
## GenotypeG_07:NutrientsNutrients            0.553 0.580345    
## GenotypeG_50:NutrientsNutrients           -0.375 0.707900    
## GenotypeG_62:DaysF8                        0.258 0.796197    
## GenotypeG_31:DaysF8                        0.556 0.578571    
## GenotypeG_08:DaysF8                        0.746 0.456004    
## GenotypeG_07:DaysF8                        0.018 0.985624    
## GenotypeG_50:DaysF8                       -0.100 0.920574    
## GenotypeG_62:DaysF14                       0.282 0.777716    
## GenotypeG_31:DaysF14                       0.045 0.963830    
## GenotypeG_08:DaysF14                      -0.325 0.745441    
## GenotypeG_07:DaysF14                      -0.596 0.551111    
## GenotypeG_50:DaysF14                       0.126 0.899771    
## GenotypeG_62:DaysF21                       0.153 0.878270    
## GenotypeG_31:DaysF21                      -0.612 0.540441    
## GenotypeG_08:DaysF21                       0.044 0.964833    
## GenotypeG_07:DaysF21                      -1.612 0.107305    
## GenotypeG_50:DaysF21                       0.346 0.729075    
## GenotypeG_62:DaysF28                      -0.050 0.960479    
## GenotypeG_31:DaysF28                      -0.057 0.954797    
## GenotypeG_08:DaysF28                       0.465 0.641982    
## GenotypeG_07:DaysF28                      -2.047 0.040849 *  
## GenotypeG_50:DaysF28                      -0.073 0.941431    
## GenotypeG_62:DaysF49                       0.507 0.612319    
## GenotypeG_31:DaysF49                      -0.006 0.995477    
## GenotypeG_08:DaysF49                       0.722 0.470663    
## GenotypeG_07:DaysF49                      -2.227 0.026146 *  
## GenotypeG_50:DaysF49                       0.643 0.520340    
## GenotypeG_62:DaysF65                      -1.505 0.132592    
## GenotypeG_31:DaysF65                      -2.188 0.028814 *  
## GenotypeG_08:DaysF65                      -0.425 0.670944    
## GenotypeG_07:DaysF65                      -1.918 0.055338 .  
## GenotypeG_50:DaysF65                      -1.121 0.262642    
## GenotypeG_62:DaysF71                      -0.146 0.884194    
## GenotypeG_31:DaysF71                      -0.397 0.691531    
## GenotypeG_08:DaysF71                      -0.245 0.806847    
## GenotypeG_07:DaysF71                      -3.532 0.000426 ***
## GenotypeG_50:DaysF71                      -0.714 0.475443    
## GenotypeG_62:DaysF76                      -0.261 0.794459    
## GenotypeG_31:DaysF76                      -0.085 0.932241    
## GenotypeG_08:DaysF76                       0.549 0.582944    
## GenotypeG_07:DaysF76                      -3.715 0.000212 ***
## GenotypeG_50:DaysF76                      -0.029 0.976973    
## GenotypeG_62:DaysF84                      -0.015 0.988045    
## GenotypeG_31:DaysF84                       0.017 0.986630    
## GenotypeG_08:DaysF84                      -0.228 0.819710    
## GenotypeG_07:DaysF84                      -3.654 0.000269 ***
## GenotypeG_50:DaysF84                       0.155 0.877155    
## GenotypeG_62:DaysF89                      -0.641 0.521311    
## GenotypeG_31:DaysF89                       0.436 0.662760    
## GenotypeG_08:DaysF89                       0.302 0.762406    
## GenotypeG_07:DaysF89                      -2.330 0.019977 *  
## GenotypeG_50:DaysF89                       0.509 0.610975    
## GenotypeG_62:DaysF92                       0.259 0.795426    
## GenotypeG_31:DaysF92                      -0.403 0.687247    
## GenotypeG_08:DaysF92                      -0.441 0.659217    
## GenotypeG_07:DaysF92                      -2.937 0.003372 ** 
## GenotypeG_50:DaysF92                      -0.148 0.882310    
## GenotypeG_62:DaysF96                       0.090 0.928304    
## GenotypeG_31:DaysF96                       0.330 0.741695    
## GenotypeG_08:DaysF96                       0.183 0.854490    
## GenotypeG_07:DaysF96                      -1.047 0.295190    
## GenotypeG_50:DaysF96                      -0.019 0.984627    
## GenotypeG_62:DaysF99                      -0.918 0.358753    
## GenotypeG_31:DaysF99                      -1.301 0.193317    
## GenotypeG_08:DaysF99                       0.050 0.960447    
## GenotypeG_07:DaysF99                      -0.990 0.322528    
## GenotypeG_50:DaysF99                       0.902 0.367413    
## GenotypeG_62:DaysF103                     -0.909 0.363498    
## GenotypeG_31:DaysF103                     -0.503 0.615365    
## GenotypeG_08:DaysF103                      0.724 0.469384    
## GenotypeG_07:DaysF103                     -0.836 0.403236    
## GenotypeG_50:DaysF103                      0.966 0.334202    
## GenotypeG_62:DaysF106                      0.450 0.652714    
## GenotypeG_31:DaysF106                     -2.553 0.010786 *  
## GenotypeG_08:DaysF106                      0.704 0.481641    
## GenotypeG_07:DaysF106                     -2.629 0.008669 ** 
## GenotypeG_50:DaysF106                     -0.708 0.478856    
## GenotypeG_62:DaysF110                      0.798 0.425140    
## GenotypeG_31:DaysF110                     -0.995 0.319807    
## GenotypeG_08:DaysF110                     -0.129 0.897510    
## GenotypeG_07:DaysF110                     -2.570 0.010277 *  
## GenotypeG_50:DaysF110                      0.747 0.455148    
## NutrientsNutrients:DaysF8                  1.828 0.067850 .  
## NutrientsNutrients:DaysF14                 0.998 0.318379    
## NutrientsNutrients:DaysF21                 2.580 0.009992 ** 
## NutrientsNutrients:DaysF28                 2.781 0.005495 ** 
## NutrientsNutrients:DaysF49                 4.330 1.60e-05 ***
## NutrientsNutrients:DaysF65                 3.216 0.001332 ** 
## NutrientsNutrients:DaysF71                 2.162 0.030822 *  
## NutrientsNutrients:DaysF76                 3.113 0.001894 ** 
## NutrientsNutrients:DaysF84                 2.248 0.024767 *  
## NutrientsNutrients:DaysF89                 1.717 0.086238 .  
## NutrientsNutrients:DaysF92                -0.477 0.633349    
## NutrientsNutrients:DaysF96                -2.713 0.006749 ** 
## NutrientsNutrients:DaysF99                -6.218 6.75e-10 ***
## NutrientsNutrients:DaysF103               -7.455 1.61e-13 ***
## NutrientsNutrients:DaysF106              -11.321  < 2e-16 ***
## NutrientsNutrients:DaysF110               -6.071 1.64e-09 ***
## GenotypeG_62:NutrientsNutrients:DaysF8    -0.005 0.996332    
## GenotypeG_31:NutrientsNutrients:DaysF8     0.332 0.740272    
## GenotypeG_08:NutrientsNutrients:DaysF8    -0.578 0.563365    
## GenotypeG_07:NutrientsNutrients:DaysF8     0.359 0.719769    
## GenotypeG_50:NutrientsNutrients:DaysF8    -0.055 0.956368    
## GenotypeG_62:NutrientsNutrients:DaysF14   -0.141 0.887874    
## GenotypeG_31:NutrientsNutrients:DaysF14   -0.067 0.946601    
## GenotypeG_08:NutrientsNutrients:DaysF14    0.274 0.784444    
## GenotypeG_07:NutrientsNutrients:DaysF14   -0.233 0.815868    
## GenotypeG_50:NutrientsNutrients:DaysF14    0.134 0.893482    
## GenotypeG_62:NutrientsNutrients:DaysF21    0.144 0.885211    
## GenotypeG_31:NutrientsNutrients:DaysF21    0.541 0.588841    
## GenotypeG_08:NutrientsNutrients:DaysF21   -0.061 0.951766    
## GenotypeG_07:NutrientsNutrients:DaysF21    0.706 0.480278    
## GenotypeG_50:NutrientsNutrients:DaysF21   -0.816 0.414905    
## GenotypeG_62:NutrientsNutrients:DaysF28    0.384 0.700941    
## GenotypeG_31:NutrientsNutrients:DaysF28    0.414 0.678738    
## GenotypeG_08:NutrientsNutrients:DaysF28   -0.211 0.833073    
## GenotypeG_07:NutrientsNutrients:DaysF28    1.340 0.180360    
## GenotypeG_50:NutrientsNutrients:DaysF28   -0.580 0.561784    
## GenotypeG_62:NutrientsNutrients:DaysF49   -0.240 0.810332    
## GenotypeG_31:NutrientsNutrients:DaysF49    0.391 0.695692    
## GenotypeG_08:NutrientsNutrients:DaysF49    0.080 0.936323    
## GenotypeG_07:NutrientsNutrients:DaysF49    2.365 0.018190 *  
## GenotypeG_50:NutrientsNutrients:DaysF49   -0.205 0.837442    
## GenotypeG_62:NutrientsNutrients:DaysF65    1.207 0.227660    
## GenotypeG_31:NutrientsNutrients:DaysF65    1.761 0.078543 .  
## GenotypeG_08:NutrientsNutrients:DaysF65   -0.406 0.685084    
## GenotypeG_07:NutrientsNutrients:DaysF65    1.219 0.222896    
## GenotypeG_50:NutrientsNutrients:DaysF65   -2.514 0.012043 *  
## GenotypeG_62:NutrientsNutrients:DaysF71    0.486 0.627325    
## GenotypeG_31:NutrientsNutrients:DaysF71    0.306 0.759777    
## GenotypeG_08:NutrientsNutrients:DaysF71   -0.016 0.987555    
## GenotypeG_07:NutrientsNutrients:DaysF71    2.575 0.010124 *  
## GenotypeG_50:NutrientsNutrients:DaysF71   -0.521 0.602465    
## GenotypeG_62:NutrientsNutrients:DaysF76    0.034 0.972614    
## GenotypeG_31:NutrientsNutrients:DaysF76   -0.476 0.634148    
## GenotypeG_08:NutrientsNutrients:DaysF76   -0.532 0.594847    
## GenotypeG_07:NutrientsNutrients:DaysF76    2.110 0.035064 *  
## GenotypeG_50:NutrientsNutrients:DaysF76   -0.605 0.545575    
## GenotypeG_62:NutrientsNutrients:DaysF84    0.184 0.853768    
## GenotypeG_31:NutrientsNutrients:DaysF84   -0.293 0.769655    
## GenotypeG_08:NutrientsNutrients:DaysF84   -0.071 0.943627    
## GenotypeG_07:NutrientsNutrients:DaysF84    2.251 0.024561 *  
## GenotypeG_50:NutrientsNutrients:DaysF84   -0.567 0.570806    
## GenotypeG_62:NutrientsNutrients:DaysF89    1.053 0.292502    
## GenotypeG_31:NutrientsNutrients:DaysF89    0.155 0.877139    
## GenotypeG_08:NutrientsNutrients:DaysF89   -0.827 0.408462    
## GenotypeG_07:NutrientsNutrients:DaysF89    2.148 0.031860 *  
## GenotypeG_50:NutrientsNutrients:DaysF89   -0.401 0.688833    
## GenotypeG_62:NutrientsNutrients:DaysF92    0.272 0.785844    
## GenotypeG_31:NutrientsNutrients:DaysF92    0.236 0.813530    
## GenotypeG_08:NutrientsNutrients:DaysF92    1.054 0.292274    
## GenotypeG_07:NutrientsNutrients:DaysF92    2.899 0.003803 ** 
## GenotypeG_50:NutrientsNutrients:DaysF92    1.114 0.265270    
## GenotypeG_62:NutrientsNutrients:DaysF96    0.118 0.905887    
## GenotypeG_31:NutrientsNutrients:DaysF96   -0.460 0.645565    
## GenotypeG_08:NutrientsNutrients:DaysF96    1.685 0.092213 .  
## GenotypeG_07:NutrientsNutrients:DaysF96    1.648 0.099530 .  
## GenotypeG_62:NutrientsNutrients:DaysF99    0.919 0.358406    
## GenotypeG_31:NutrientsNutrients:DaysF99    0.879 0.379792    
## GenotypeG_62:NutrientsNutrients:DaysF103   0.354 0.723070    
## GenotypeG_31:NutrientsNutrients:DaysF103   0.006 0.994859    
## GenotypeG_62:NutrientsNutrients:DaysF106  -1.684 0.092324 .  
## GenotypeG_31:NutrientsNutrients:DaysF106   1.626 0.104140    
## GenotypeG_62:NutrientsNutrients:DaysF110   0.776 0.437594    
## GenotypeG_31:NutrientsNutrients:DaysF110  -3.183 0.001492 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## fit warnings:
## fixed-effect model matrix is rank deficient so dropping 13 columns / coefficients
#2. Extract EMMs
      Acer.YII.emm2<-emmeans(Model2, ~ Genotype| Nutrients | DaysF)
      contrast(Acer.YII.emm2, "tukey")
## Nutrients = Ambient, DaysF = 1:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  7.76e-03 0.01123 1165   0.691  0.9830
##  G_48 - G_31  7.57e-03 0.01339 1164   0.565  0.9932
##  G_48 - G_08  2.15e-02 0.01893 1165   1.136  0.8664
##  G_48 - G_07  2.92e-02 0.01123 1165   2.601  0.0978
##  G_48 - G_50  1.63e-02 0.01446 1165   1.124  0.8715
##  G_62 - G_31 -1.91e-04 0.01363 1165  -0.014  1.0000
##  G_62 - G_08  1.37e-02 0.01910 1165   0.719  0.9796
##  G_62 - G_07  2.14e-02 0.01152 1165   1.861  0.4267
##  G_62 - G_50  8.49e-03 0.01469 1165   0.578  0.9925
##  G_31 - G_08  1.39e-02 0.02045 1165   0.681  0.9840
##  G_31 - G_07  2.16e-02 0.01363 1165   1.587  0.6072
##  G_31 - G_50  8.68e-03 0.01640 1164   0.529  0.9950
##  G_08 - G_07  7.71e-03 0.01910 1165   0.403  0.9986
##  G_08 - G_50 -5.25e-03 0.02116 1165  -0.248  0.9999
##  G_07 - G_50 -1.30e-02 0.01469 1165  -0.882  0.9508
## 
## Nutrients = Nutrients, DaysF = 1:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  9.09e-03 0.00794 1164   1.144  0.8626
##  G_48 - G_31  8.73e-03 0.00935 1165   0.933  0.9380
##  G_48 - G_08  2.36e-02 0.01153 1163   2.048  0.3159
##  G_48 - G_07  2.15e-02 0.00827 1165   2.601  0.0979
##  G_48 - G_50  2.28e-02 0.00998 1165   2.289  0.1994
##  G_62 - G_31 -3.63e-04 0.00917 1165  -0.040  1.0000
##  G_62 - G_08  1.45e-02 0.01138 1164   1.277  0.7978
##  G_62 - G_07  1.24e-02 0.00806 1165   1.539  0.6391
##  G_62 - G_50  1.37e-02 0.00981 1164   1.401  0.7265
##  G_31 - G_08  1.49e-02 0.01241 1163   1.200  0.8370
##  G_31 - G_07  1.28e-02 0.00946 1165   1.350  0.7566
##  G_31 - G_50  1.41e-02 0.01098 1165   1.284  0.7937
##  G_08 - G_07 -2.13e-03 0.01162 1163  -0.183  1.0000
##  G_08 - G_50 -7.88e-04 0.01289 1163  -0.061  1.0000
##  G_07 - G_50  1.34e-03 0.01007 1165   0.133  1.0000
## 
## Nutrients = Ambient, DaysF = 8:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  3.94e-03 0.01123 1165   0.351  0.9993
##  G_48 - G_31 -2.23e-03 0.01339 1164  -0.167  1.0000
##  G_48 - G_08  2.90e-03 0.01893 1165   0.153  1.0000
##  G_48 - G_07  2.89e-02 0.01123 1165   2.577  0.1037
##  G_48 - G_50  1.81e-02 0.01446 1165   1.255  0.8091
##  G_62 - G_31 -6.17e-03 0.01363 1165  -0.453  0.9976
##  G_62 - G_08 -1.04e-03 0.01910 1165  -0.054  1.0000
##  G_62 - G_07  2.50e-02 0.01152 1165   2.170  0.2526
##  G_62 - G_50  1.42e-02 0.01469 1165   0.968  0.9281
##  G_31 - G_08  5.13e-03 0.02045 1165   0.251  0.9999
##  G_31 - G_07  3.12e-02 0.01363 1165   2.286  0.2003
##  G_31 - G_50  2.04e-02 0.01640 1164   1.243  0.8155
##  G_08 - G_07  2.60e-02 0.01910 1165   1.363  0.7492
##  G_08 - G_50  1.52e-02 0.02116 1165   0.721  0.9795
##  G_07 - G_50 -1.08e-02 0.01469 1165  -0.735  0.9776
## 
## Nutrients = Nutrients, DaysF = 8:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  5.35e-03 0.00794 1164   0.674  0.9848
##  G_48 - G_31 -8.21e-03 0.00935 1165  -0.878  0.9518
##  G_48 - G_08  2.19e-02 0.01153 1163   1.899  0.4034
##  G_48 - G_07  1.46e-02 0.00827 1165   1.771  0.4853
##  G_48 - G_50  2.60e-02 0.00998 1165   2.606  0.0966
##  G_62 - G_31 -1.36e-02 0.00917 1165  -1.478  0.6785
##  G_62 - G_08  1.65e-02 0.01138 1164   1.454  0.6938
##  G_62 - G_07  9.29e-03 0.00806 1165   1.152  0.8594
##  G_62 - G_50  2.07e-02 0.00981 1164   2.105  0.2853
##  G_31 - G_08  3.01e-02 0.01241 1163   2.425  0.1484
##  G_31 - G_07  2.28e-02 0.00946 1165   2.416  0.1516
##  G_31 - G_50  3.42e-02 0.01098 1165   3.114  0.0232
##  G_08 - G_07 -7.26e-03 0.01162 1163  -0.625  0.9892
##  G_08 - G_50  4.10e-03 0.01289 1163   0.318  0.9996
##  G_07 - G_50  1.14e-02 0.01007 1165   1.128  0.8698
## 
## Nutrients = Ambient, DaysF = 14:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  3.58e-03 0.01123 1165   0.319  0.9996
##  G_48 - G_31  6.77e-03 0.01339 1164   0.506  0.9960
##  G_48 - G_08  2.96e-02 0.01893 1165   1.564  0.6228
##  G_48 - G_07  3.80e-02 0.01123 1165   3.386  0.0095
##  G_48 - G_50  1.38e-02 0.01446 1165   0.958  0.9310
##  G_62 - G_31  3.19e-03 0.01363 1165   0.234  0.9999
##  G_62 - G_08  2.60e-02 0.01910 1165   1.362  0.7499
##  G_62 - G_07  3.44e-02 0.01152 1165   2.990  0.0338
##  G_62 - G_50  1.03e-02 0.01469 1165   0.699  0.9821
##  G_31 - G_08  2.28e-02 0.02045 1165   1.116  0.8747
##  G_31 - G_07  3.13e-02 0.01363 1165   2.293  0.1976
##  G_31 - G_50  7.08e-03 0.01640 1164   0.432  0.9981
##  G_08 - G_07  8.43e-03 0.01910 1165   0.441  0.9979
##  G_08 - G_50 -1.58e-02 0.02116 1165  -0.744  0.9763
##  G_07 - G_50 -2.42e-02 0.01469 1165  -1.646  0.5679
## 
## Nutrients = Nutrients, DaysF = 14:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  7.47e-03 0.00794 1164   0.940  0.9360
##  G_48 - G_31  9.37e-03 0.00935 1165   1.001  0.9175
##  G_48 - G_08  2.37e-02 0.01153 1163   2.058  0.3106
##  G_48 - G_07  3.46e-02 0.00827 1165   4.186  0.0004
##  G_48 - G_50  1.73e-02 0.00998 1165   1.737  0.5072
##  G_62 - G_31  1.90e-03 0.00917 1165   0.207  0.9999
##  G_62 - G_08  1.63e-02 0.01138 1164   1.429  0.7094
##  G_62 - G_07  2.71e-02 0.00806 1165   3.365  0.0102
##  G_62 - G_50  9.87e-03 0.00981 1164   1.006  0.9161
##  G_31 - G_08  1.44e-02 0.01241 1163   1.157  0.8570
##  G_31 - G_07  2.52e-02 0.00946 1165   2.668  0.0826
##  G_31 - G_50  7.97e-03 0.01098 1165   0.725  0.9789
##  G_08 - G_07  1.09e-02 0.01162 1163   0.935  0.9374
##  G_08 - G_50 -6.40e-03 0.01289 1163  -0.496  0.9963
##  G_07 - G_50 -1.73e-02 0.01007 1165  -1.713  0.5230
## 
## Nutrients = Ambient, DaysF = 21:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  5.49e-03 0.01123 1165   0.489  0.9965
##  G_48 - G_31  1.84e-02 0.01339 1164   1.372  0.7438
##  G_48 - G_08  2.04e-02 0.01893 1165   1.078  0.8903
##  G_48 - G_07  5.31e-02 0.01123 1165   4.724  <.0001
##  G_48 - G_50  9.65e-03 0.01446 1165   0.667  0.9854
##  G_62 - G_31  1.29e-02 0.01363 1165   0.945  0.9348
##  G_62 - G_08  1.49e-02 0.01910 1165   0.780  0.9709
##  G_62 - G_07  4.76e-02 0.01152 1165   4.128  0.0006
##  G_62 - G_50  4.16e-03 0.01469 1165   0.283  0.9998
##  G_31 - G_08  2.03e-03 0.02045 1165   0.099  1.0000
##  G_31 - G_07  3.47e-02 0.01363 1165   2.544  0.1124
##  G_31 - G_50 -8.72e-03 0.01640 1164  -0.532  0.9949
##  G_08 - G_07  3.27e-02 0.01910 1165   1.709  0.5260
##  G_08 - G_50 -1.07e-02 0.02116 1165  -0.508  0.9959
##  G_07 - G_50 -4.34e-02 0.01469 1165  -2.955  0.0375
## 
## Nutrients = Nutrients, DaysF = 21:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  4.21e-03 0.00794 1164   0.530  0.9950
##  G_48 - G_31  7.89e-03 0.00935 1165   0.844  0.9592
##  G_48 - G_08  2.43e-02 0.01153 1163   2.106  0.2849
##  G_48 - G_07  3.24e-02 0.00827 1165   3.916  0.0013
##  G_48 - G_50  3.51e-02 0.00998 1165   3.519  0.0060
##  G_62 - G_31  3.69e-03 0.00917 1165   0.402  0.9987
##  G_62 - G_08  2.01e-02 0.01138 1164   1.764  0.4895
##  G_62 - G_07  2.82e-02 0.00806 1165   3.493  0.0066
##  G_62 - G_50  3.09e-02 0.00981 1164   3.150  0.0207
##  G_31 - G_08  1.64e-02 0.01241 1163   1.321  0.7736
##  G_31 - G_07  2.45e-02 0.00946 1165   2.588  0.1009
##  G_31 - G_50  2.72e-02 0.01098 1165   2.478  0.1314
##  G_08 - G_07  8.08e-03 0.01162 1163   0.696  0.9825
##  G_08 - G_50  1.08e-02 0.01289 1163   0.840  0.9601
##  G_07 - G_50  2.74e-03 0.01007 1165   0.272  0.9998
## 
## Nutrients = Ambient, DaysF = 28:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  8.49e-03 0.01123 1165   0.756  0.9746
##  G_48 - G_31  8.57e-03 0.01339 1164   0.640  0.9879
##  G_48 - G_08  9.90e-03 0.01893 1165   0.523  0.9953
##  G_48 - G_07  5.95e-02 0.01123 1165   5.298  <.0001
##  G_48 - G_50  1.76e-02 0.01446 1165   1.221  0.8268
##  G_62 - G_31  7.58e-05 0.01363 1165   0.006  1.0000
##  G_62 - G_08  1.41e-03 0.01910 1165   0.074  1.0000
##  G_62 - G_07  5.10e-02 0.01152 1165   4.427  0.0002
##  G_62 - G_50  9.16e-03 0.01469 1165   0.623  0.9893
##  G_31 - G_08  1.33e-03 0.02045 1165   0.065  1.0000
##  G_31 - G_07  5.09e-02 0.01363 1165   3.736  0.0027
##  G_31 - G_50  9.08e-03 0.01640 1164   0.554  0.9938
##  G_08 - G_07  4.96e-02 0.01910 1165   2.596  0.0990
##  G_08 - G_50  7.75e-03 0.02116 1165   0.366  0.9991
##  G_07 - G_50 -4.18e-02 0.01469 1165  -2.849  0.0507
## 
## Nutrients = Nutrients, DaysF = 28:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  2.86e-03 0.00794 1164   0.360  0.9992
##  G_48 - G_31  8.11e-04 0.00935 1165   0.087  1.0000
##  G_48 - G_08  1.82e-02 0.01153 1163   1.576  0.6147
##  G_48 - G_07  2.72e-02 0.00827 1165   3.286  0.0134
##  G_48 - G_50  3.77e-02 0.00998 1165   3.775  0.0023
##  G_62 - G_31 -2.05e-03 0.00917 1165  -0.223  0.9999
##  G_62 - G_08  1.53e-02 0.01138 1164   1.345  0.7594
##  G_62 - G_07  2.43e-02 0.00806 1165   3.014  0.0315
##  G_62 - G_50  3.48e-02 0.00981 1164   3.548  0.0054
##  G_31 - G_08  1.74e-02 0.01241 1163   1.399  0.7278
##  G_31 - G_07  2.63e-02 0.00946 1165   2.786  0.0604
##  G_31 - G_50  3.69e-02 0.01098 1165   3.355  0.0106
##  G_08 - G_07  8.98e-03 0.01162 1163   0.773  0.9720
##  G_08 - G_50  1.95e-02 0.01289 1163   1.512  0.6568
##  G_07 - G_50  1.05e-02 0.01007 1165   1.043  0.9032
## 
## Nutrients = Ambient, DaysF = 49:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  2.61e-04 0.01123 1165   0.023  1.0000
##  G_48 - G_31  7.67e-03 0.01339 1164   0.573  0.9928
##  G_48 - G_08  3.50e-03 0.01893 1165   0.185  1.0000
##  G_48 - G_07  6.22e-02 0.01123 1165   5.535  <.0001
##  G_48 - G_50  4.00e-03 0.01446 1165   0.277  0.9998
##  G_62 - G_31  7.41e-03 0.01363 1165   0.544  0.9943
##  G_62 - G_08  3.24e-03 0.01910 1165   0.170  1.0000
##  G_62 - G_07  6.19e-02 0.01152 1165   5.372  <.0001
##  G_62 - G_50  3.74e-03 0.01469 1165   0.255  0.9999
##  G_31 - G_08 -4.17e-03 0.02045 1165  -0.204  1.0000
##  G_31 - G_07  5.45e-02 0.01363 1165   3.997  0.0010
##  G_31 - G_50 -3.67e-03 0.01640 1164  -0.224  0.9999
##  G_08 - G_07  5.87e-02 0.01910 1165   3.070  0.0266
##  G_08 - G_50  5.00e-04 0.02116 1165   0.024  1.0000
##  G_07 - G_50 -5.82e-02 0.01469 1165  -3.959  0.0011
## 
## Nutrients = Nutrients, DaysF = 49:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  5.94e-03 0.00794 1164   0.748  0.9758
##  G_48 - G_31  4.07e-04 0.00935 1165   0.044  1.0000
##  G_48 - G_08  3.29e-03 0.01153 1163   0.285  0.9997
##  G_48 - G_07  1.10e-02 0.00827 1165   1.330  0.7682
##  G_48 - G_50  1.53e-02 0.00998 1165   1.537  0.6404
##  G_62 - G_31 -5.53e-03 0.00917 1165  -0.603  0.9908
##  G_62 - G_08 -2.65e-03 0.01138 1164  -0.233  0.9999
##  G_62 - G_07  5.06e-03 0.00806 1165   0.627  0.9890
##  G_62 - G_50  9.39e-03 0.00981 1164   0.958  0.9310
##  G_31 - G_08  2.88e-03 0.01241 1163   0.232  0.9999
##  G_31 - G_07  1.06e-02 0.00946 1165   1.120  0.8734
##  G_31 - G_50  1.49e-02 0.01098 1165   1.359  0.7516
##  G_08 - G_07  7.71e-03 0.01162 1163   0.664  0.9858
##  G_08 - G_50  1.20e-02 0.01289 1163   0.934  0.9376
##  G_07 - G_50  4.34e-03 0.01007 1165   0.431  0.9981
## 
## Nutrients = Ambient, DaysF = 65:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  3.00e-02 0.01123 1165   2.674  0.0813
##  G_48 - G_31  4.62e-02 0.01339 1164   3.449  0.0077
##  G_48 - G_08  3.21e-02 0.01893 1165   1.696  0.5349
##  G_48 - G_07  5.76e-02 0.01123 1165   5.128  <.0001
##  G_48 - G_50  3.76e-02 0.01446 1165   2.601  0.0979
##  G_62 - G_31  1.61e-02 0.01363 1165   1.184  0.8445
##  G_62 - G_08  2.07e-03 0.01910 1165   0.108  1.0000
##  G_62 - G_07  2.76e-02 0.01152 1165   2.392  0.1598
##  G_62 - G_50  7.57e-03 0.01469 1165   0.516  0.9956
##  G_31 - G_08 -1.41e-02 0.02045 1165  -0.688  0.9833
##  G_31 - G_07  1.14e-02 0.01363 1165   0.837  0.9605
##  G_31 - G_50 -8.57e-03 0.01640 1164  -0.523  0.9953
##  G_08 - G_07  2.55e-02 0.01910 1165   1.334  0.7661
##  G_08 - G_50  5.50e-03 0.02116 1165   0.260  0.9998
##  G_07 - G_50 -2.00e-02 0.01469 1165  -1.361  0.7506
## 
## Nutrients = Nutrients, DaysF = 65:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  9.48e-03 0.00794 1164   1.194  0.8398
##  G_48 - G_31  9.44e-03 0.00935 1165   1.010  0.9148
##  G_48 - G_08  4.61e-02 0.01153 1163   3.994  0.0010
##  G_48 - G_07  2.75e-02 0.00827 1165   3.323  0.0118
##  G_48 - G_50  1.03e-01 0.01036 1199   9.923  <.0001
##  G_62 - G_31 -4.07e-05 0.00917 1165  -0.004  1.0000
##  G_62 - G_08  3.66e-02 0.01138 1164   3.214  0.0169
##  G_62 - G_07  1.80e-02 0.00806 1165   2.231  0.2243
##  G_62 - G_50  9.33e-02 0.01020 1200   9.150  <.0001
##  G_31 - G_08  3.66e-02 0.01241 1163   2.950  0.0380
##  G_31 - G_07  1.80e-02 0.00946 1165   1.906  0.3988
##  G_31 - G_50  9.34e-02 0.01133 1194   8.238  <.0001
##  G_08 - G_07 -1.86e-02 0.01162 1163  -1.601  0.5980
##  G_08 - G_50  5.67e-02 0.01319 1185   4.302  0.0003
##  G_07 - G_50  7.53e-02 0.01045 1199   7.207  <.0001
## 
## Nutrients = Ambient, DaysF = 71:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  9.92e-03 0.01123 1165   0.883  0.9506
##  G_48 - G_31  1.46e-02 0.01339 1164   1.088  0.8861
##  G_48 - G_08  2.76e-02 0.01893 1165   1.458  0.6912
##  G_48 - G_07  8.15e-02 0.01123 1165   7.255  <.0001
##  G_48 - G_50  2.99e-02 0.01446 1165   2.065  0.3068
##  G_62 - G_31  4.65e-03 0.01363 1165   0.341  0.9994
##  G_62 - G_08  1.77e-02 0.01910 1165   0.926  0.9400
##  G_62 - G_07  7.16e-02 0.01152 1165   6.211  <.0001
##  G_62 - G_50  1.99e-02 0.01469 1165   1.357  0.7526
##  G_31 - G_08  1.30e-02 0.02045 1165   0.637  0.9882
##  G_31 - G_07  6.69e-02 0.01363 1165   4.908  <.0001
##  G_31 - G_50  1.53e-02 0.01640 1164   0.932  0.9383
##  G_08 - G_07  5.39e-02 0.01910 1165   2.820  0.0551
##  G_08 - G_50  2.25e-03 0.02116 1165   0.106  1.0000
##  G_07 - G_50 -5.16e-02 0.01469 1165  -3.515  0.0061
## 
## Nutrients = Nutrients, DaysF = 71:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  2.44e-03 0.00794 1164   0.308  0.9996
##  G_48 - G_31  9.14e-03 0.00935 1165   0.978  0.9250
##  G_48 - G_08  3.02e-02 0.01153 1163   2.616  0.0941
##  G_48 - G_07  2.63e-02 0.00839 1179   3.136  0.0217
##  G_48 - G_50  4.88e-02 0.01143 1278   4.274  0.0003
##  G_62 - G_31  6.70e-03 0.00917 1165   0.730  0.9782
##  G_62 - G_08  2.77e-02 0.01138 1164   2.436  0.1447
##  G_62 - G_07  2.39e-02 0.00819 1180   2.914  0.0422
##  G_62 - G_50  4.64e-02 0.01128 1281   4.112  0.0006
##  G_31 - G_08  2.10e-02 0.01241 1163   1.694  0.5359
##  G_31 - G_07  1.72e-02 0.00956 1176   1.794  0.4699
##  G_31 - G_50  3.97e-02 0.01232 1263   3.223  0.0164
##  G_08 - G_07 -3.87e-03 0.01171 1171  -0.331  0.9995
##  G_08 - G_50  1.87e-02 0.01405 1241   1.328  0.7694
##  G_07 - G_50  2.25e-02 0.01160 1282   1.942  0.3768
## 
## Nutrients = Ambient, DaysF = 76:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  1.16e-02 0.01123 1165   1.034  0.9063
##  G_48 - G_31  9.07e-03 0.01339 1164   0.678  0.9844
##  G_48 - G_08  7.80e-03 0.01893 1165   0.412  0.9985
##  G_48 - G_07  8.42e-02 0.01123 1165   7.496  <.0001
##  G_48 - G_50  1.68e-02 0.01446 1165   1.162  0.8548
##  G_62 - G_31 -2.55e-03 0.01363 1165  -0.187  1.0000
##  G_62 - G_08 -3.82e-03 0.01910 1165  -0.200  1.0000
##  G_62 - G_07  7.26e-02 0.01152 1165   6.298  <.0001
##  G_62 - G_50  5.18e-03 0.01469 1165   0.353  0.9993
##  G_31 - G_08 -1.27e-03 0.02045 1165  -0.062  1.0000
##  G_31 - G_07  7.51e-02 0.01363 1165   5.509  <.0001
##  G_31 - G_50  7.73e-03 0.01640 1164   0.471  0.9971
##  G_08 - G_07  7.64e-02 0.01910 1165   3.998  0.0010
##  G_08 - G_50  9.00e-03 0.02116 1165   0.425  0.9982
##  G_07 - G_50 -6.74e-02 0.01469 1165  -4.587  0.0001
## 
## Nutrients = Nutrients, DaysF = 76:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  1.23e-02 0.00794 1164   1.552  0.6307
##  G_48 - G_31  2.05e-02 0.00935 1165   2.188  0.2439
##  G_48 - G_08  2.55e-02 0.01153 1163   2.207  0.2352
##  G_48 - G_07  3.76e-02 0.00839 1179   4.480  0.0001
##  G_48 - G_50  3.80e-02 0.01221 1320   3.113  0.0232
##  G_62 - G_31  8.15e-03 0.00917 1165   0.888  0.9495
##  G_62 - G_08  1.31e-02 0.01138 1164   1.154  0.8585
##  G_62 - G_07  2.53e-02 0.00819 1180   3.085  0.0254
##  G_62 - G_50  2.57e-02 0.01207 1323   2.127  0.2736
##  G_31 - G_08  4.99e-03 0.01241 1163   0.402  0.9987
##  G_31 - G_07  1.71e-02 0.00956 1176   1.789  0.4730
##  G_31 - G_50  1.75e-02 0.01305 1303   1.345  0.7599
##  G_08 - G_07  1.21e-02 0.01171 1171   1.036  0.9057
##  G_08 - G_50  1.26e-02 0.01469 1276   0.855  0.9570
##  G_07 - G_50  4.27e-04 0.01237 1322   0.034  1.0000
## 
## Nutrients = Ambient, DaysF = 84:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  8.00e-03 0.01255 1269   0.637  0.9882
##  G_48 - G_31  7.26e-03 0.01485 1263   0.488  0.9966
##  G_48 - G_08  2.72e-02 0.01929 1185   1.412  0.7195
##  G_48 - G_07  8.70e-02 0.01255 1269   6.933  <.0001
##  G_48 - G_50  1.32e-02 0.01493 1198   0.888  0.9495
##  G_62 - G_31 -7.43e-04 0.01520 1267  -0.049  1.0000
##  G_62 - G_08  1.93e-02 0.01956 1190   0.984  0.9230
##  G_62 - G_07  7.90e-02 0.01295 1274   6.099  <.0001
##  G_62 - G_50  5.25e-03 0.01527 1206   0.344  0.9994
##  G_31 - G_08  2.00e-02 0.02111 1198   0.947  0.9341
##  G_31 - G_07  7.97e-02 0.01520 1267   5.247  <.0001
##  G_31 - G_50  5.99e-03 0.01722 1215   0.348  0.9993
##  G_08 - G_07  5.98e-02 0.01956 1190   3.055  0.0278
##  G_08 - G_50 -1.40e-02 0.02116 1165  -0.661  0.9860
##  G_07 - G_50 -7.38e-02 0.01527 1206  -4.829  <.0001
## 
## Nutrients = Nutrients, DaysF = 84:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  5.74e-03 0.00900 1280   0.638  0.9881
##  G_48 - G_31  1.52e-02 0.01073 1289   1.414  0.7188
##  G_48 - G_08  3.15e-02 0.01266 1253   2.488  0.1284
##  G_48 - G_07  3.48e-02 0.00952 1291   3.653  0.0037
##  G_48 - G_50  3.41e-02 0.01362 1372   2.506  0.1231
##  G_62 - G_31  9.42e-03 0.01059 1293   0.890  0.9491
##  G_62 - G_08  2.57e-02 0.01254 1257   2.053  0.3129
##  G_62 - G_07  2.90e-02 0.00937 1297   3.099  0.0243
##  G_62 - G_50  2.84e-02 0.01352 1375   2.100  0.2878
##  G_31 - G_08  1.63e-02 0.01383 1266   1.180  0.8465
##  G_31 - G_07  1.96e-02 0.01104 1300   1.777  0.4812
##  G_31 - G_50  1.90e-02 0.01472 1366   1.288  0.7918
##  G_08 - G_07  3.29e-03 0.01292 1264   0.255  0.9999
##  G_08 - G_50  2.64e-03 0.01619 1338   0.163  1.0000
##  G_07 - G_50 -6.52e-04 0.01387 1374  -0.047  1.0000
## 
## Nutrients = Ambient, DaysF = 89:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  1.79e-02 0.01255 1269   1.427  0.7104
##  G_48 - G_31 -6.19e-04 0.01485 1263  -0.042  1.0000
##  G_48 - G_08  1.39e-02 0.01929 1185   0.719  0.9796
##  G_48 - G_07  6.61e-02 0.01255 1269   5.264  <.0001
##  G_48 - G_50  6.37e-03 0.01493 1198   0.427  0.9982
##  G_62 - G_31 -1.85e-02 0.01520 1267  -1.219  0.8276
##  G_62 - G_08 -4.04e-03 0.01956 1190  -0.206  0.9999
##  G_62 - G_07  4.81e-02 0.01295 1274   3.717  0.0029
##  G_62 - G_50 -1.15e-02 0.01527 1206  -0.755  0.9747
##  G_31 - G_08  1.45e-02 0.02111 1198   0.686  0.9835
##  G_31 - G_07  6.67e-02 0.01520 1267   4.387  0.0002
##  G_31 - G_50  6.99e-03 0.01722 1215   0.406  0.9986
##  G_08 - G_07  5.22e-02 0.01956 1190   2.668  0.0825
##  G_08 - G_50 -7.50e-03 0.02116 1165  -0.354  0.9993
##  G_07 - G_50 -5.97e-02 0.01527 1206  -3.908  0.0014
## 
## Nutrients = Nutrients, DaysF = 89:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62 -1.23e-03 0.00900 1280  -0.136  1.0000
##  G_48 - G_31 -3.03e-03 0.01073 1289  -0.283  0.9998
##  G_48 - G_08  4.07e-02 0.01266 1253   3.217  0.0167
##  G_48 - G_07  1.56e-02 0.00974 1307   1.605  0.5953
##  G_48 - G_50  2.31e-02 0.01362 1372   1.693  0.5368
##  G_62 - G_31 -1.80e-03 0.01059 1293  -0.170  1.0000
##  G_62 - G_08  4.19e-02 0.01254 1257   3.345  0.0109
##  G_62 - G_07  1.69e-02 0.00959 1312   1.758  0.4934
##  G_62 - G_50  2.43e-02 0.01352 1375   1.797  0.4683
##  G_31 - G_08  4.37e-02 0.01383 1266   3.163  0.0199
##  G_31 - G_07  1.87e-02 0.01122 1311   1.662  0.5570
##  G_31 - G_50  2.61e-02 0.01472 1366   1.772  0.4844
##  G_08 - G_07 -2.51e-02 0.01308 1274  -1.918  0.3915
##  G_08 - G_50 -1.77e-02 0.01619 1338  -1.091  0.8851
##  G_07 - G_50  7.42e-03 0.01402 1378   0.530  0.9950
## 
## Nutrients = Ambient, DaysF = 92:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  3.66e-03 0.01255 1269   0.292  0.9997
##  G_48 - G_31  1.51e-02 0.01485 1263   1.019  0.9118
##  G_48 - G_08  3.26e-02 0.01929 1185   1.691  0.5379
##  G_48 - G_07  7.57e-02 0.01255 1269   6.030  <.0001
##  G_48 - G_50  1.91e-02 0.01493 1198   1.281  0.7955
##  G_62 - G_31  1.15e-02 0.01520 1267   0.755  0.9748
##  G_62 - G_08  2.90e-02 0.01956 1190   1.481  0.6766
##  G_62 - G_07  7.20e-02 0.01295 1274   5.559  <.0001
##  G_62 - G_50  1.55e-02 0.01527 1206   1.013  0.9138
##  G_31 - G_08  1.75e-02 0.02111 1198   0.829  0.9622
##  G_31 - G_07  6.05e-02 0.01520 1267   3.983  0.0010
##  G_31 - G_50  3.99e-03 0.01722 1215   0.232  0.9999
##  G_08 - G_07  4.30e-02 0.01956 1190   2.201  0.2381
##  G_08 - G_50 -1.35e-02 0.02116 1165  -0.638  0.9881
##  G_07 - G_50 -5.65e-02 0.01527 1206  -3.702  0.0031
## 
## Nutrients = Nutrients, DaysF = 92:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62 -2.95e-04 0.00900 1280  -0.033  1.0000
##  G_48 - G_31  1.08e-02 0.01073 1289   1.011  0.9144
##  G_48 - G_08  4.76e-04 0.01802 1414   0.026  1.0000
##  G_48 - G_07  8.96e-03 0.01065 1358   0.841  0.9597
##  G_48 - G_50 -3.38e-03 0.01520 1404  -0.222  0.9999
##  G_62 - G_31  1.11e-02 0.01059 1293   1.052  0.9002
##  G_62 - G_08  7.71e-04 0.01794 1415   0.043  1.0000
##  G_62 - G_07  9.26e-03 0.01052 1363   0.880  0.9513
##  G_62 - G_50 -3.08e-03 0.01511 1406  -0.204  1.0000
##  G_31 - G_08 -1.04e-02 0.01886 1409  -0.550  0.9940
##  G_31 - G_07 -1.88e-03 0.01203 1352  -0.156  1.0000
##  G_31 - G_50 -1.42e-02 0.01620 1398  -0.878  0.9518
##  G_08 - G_07  8.49e-03 0.01882 1419   0.451  0.9977
##  G_08 - G_50 -3.85e-03 0.02173 1421  -0.177  1.0000
##  G_07 - G_50 -1.23e-02 0.01615 1413  -0.764  0.9734
## 
## Nutrients = Ambient, DaysF = 96:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  6.34e-03 0.01255 1269   0.505  0.9960
##  G_48 - G_31  1.38e-03 0.01485 1263   0.093  1.0000
##  G_48 - G_08  1.69e-02 0.01929 1185   0.875  0.9525
##  G_48 - G_07  4.58e-02 0.01255 1269   3.648  0.0037
##  G_48 - G_50  1.66e-02 0.01493 1198   1.114  0.8759
##  G_62 - G_31 -4.96e-03 0.01520 1267  -0.326  0.9995
##  G_62 - G_08  1.05e-02 0.01956 1190   0.539  0.9946
##  G_62 - G_07  3.94e-02 0.01295 1274   3.044  0.0287
##  G_62 - G_50  1.03e-02 0.01527 1206   0.674  0.9848
##  G_31 - G_08  1.55e-02 0.02111 1198   0.734  0.9777
##  G_31 - G_07  4.44e-02 0.01520 1267   2.921  0.0413
##  G_31 - G_50  1.52e-02 0.01722 1215   0.885  0.9500
##  G_08 - G_07  2.89e-02 0.01956 1190   1.477  0.6788
##  G_08 - G_50 -2.50e-04 0.02116 1165  -0.012  1.0000
##  G_07 - G_50 -2.91e-02 0.01527 1206  -1.909  0.3973
## 
## Nutrients = Nutrients, DaysF = 96:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  5.37e-03 0.00900 1280   0.596  0.9913
##  G_48 - G_31  1.32e-02 0.01117 1318   1.185  0.8441
##  G_48 - G_08 -4.25e-02 0.02447 1427  -1.736  0.5078
##  G_48 - G_07 -1.12e-02 0.02434 1413  -0.459  0.9975
##  G_48 - G_50    nonEst      NA   NA      NA      NA
##  G_62 - G_31  7.88e-03 0.01104 1323   0.713  0.9804
##  G_62 - G_08 -4.79e-02 0.02441 1427  -1.961  0.3657
##  G_62 - G_07 -1.65e-02 0.02428 1413  -0.681  0.9840
##  G_62 - G_50    nonEst      NA   NA      NA      NA
##  G_31 - G_08 -5.57e-02 0.02529 1428  -2.204  0.2365
##  G_31 - G_07 -2.44e-02 0.02517 1418  -0.970  0.9274
##  G_31 - G_50    nonEst      NA   NA      NA      NA
##  G_08 - G_07  3.13e-02 0.03328 1415   0.941  0.9358
##  G_08 - G_50    nonEst      NA   NA      NA      NA
##  G_07 - G_50    nonEst      NA   NA      NA      NA
## 
## Nutrients = Ambient, DaysF = 99:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  2.23e-02 0.01255 1269   1.776  0.4818
##  G_48 - G_31  3.20e-02 0.01485 1263   2.155  0.2601
##  G_48 - G_08  2.02e-02 0.01929 1185   1.050  0.9009
##  G_48 - G_07  4.49e-02 0.01255 1269   3.575  0.0049
##  G_48 - G_50 -1.25e-03 0.01493 1198  -0.084  1.0000
##  G_62 - G_31  9.72e-03 0.01520 1267   0.640  0.9880
##  G_62 - G_08 -2.04e-03 0.01956 1190  -0.104  1.0000
##  G_62 - G_07  2.26e-02 0.01295 1274   1.743  0.5035
##  G_62 - G_50 -2.35e-02 0.01527 1206  -1.541  0.6377
##  G_31 - G_08 -1.18e-02 0.02111 1198  -0.557  0.9937
##  G_31 - G_07  1.29e-02 0.01520 1267   0.846  0.9588
##  G_31 - G_50 -3.33e-02 0.01722 1215  -1.932  0.3832
##  G_08 - G_07  2.46e-02 0.01956 1190   1.258  0.8076
##  G_08 - G_50 -2.15e-02 0.02116 1165  -1.016  0.9127
##  G_07 - G_50 -4.61e-02 0.01527 1206  -3.019  0.0310
## 
## Nutrients = Nutrients, DaysF = 99:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  5.76e-03 0.00900 1280   0.640  0.9880
##  G_48 - G_31  1.21e-02 0.01249 1377   0.971  0.9270
##  G_48 - G_08    nonEst      NA   NA      NA      NA
##  G_48 - G_07    nonEst      NA   NA      NA      NA
##  G_48 - G_50    nonEst      NA   NA      NA      NA
##  G_62 - G_31  6.38e-03 0.01238 1380   0.515  0.9956
##  G_62 - G_08    nonEst      NA   NA      NA      NA
##  G_62 - G_07    nonEst      NA   NA      NA      NA
##  G_62 - G_50    nonEst      NA   NA      NA      NA
##  G_31 - G_08    nonEst      NA   NA      NA      NA
##  G_31 - G_07    nonEst      NA   NA      NA      NA
##  G_31 - G_50    nonEst      NA   NA      NA      NA
##  G_08 - G_07    nonEst      NA   NA      NA      NA
##  G_08 - G_50    nonEst      NA   NA      NA      NA
##  G_07 - G_50    nonEst      NA   NA      NA      NA
## 
## Nutrients = Ambient, DaysF = 103:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  2.21e-02 0.01255 1269   1.764  0.4893
##  G_48 - G_31  1.70e-02 0.01485 1263   1.145  0.8625
##  G_48 - G_08  3.25e-03 0.01929 1185   0.168  1.0000
##  G_48 - G_07  4.24e-02 0.01255 1269   3.381  0.0097
##  G_48 - G_50 -2.50e-03 0.01493 1198  -0.168  1.0000
##  G_62 - G_31 -5.14e-03 0.01520 1267  -0.338  0.9994
##  G_62 - G_08 -1.89e-02 0.01956 1190  -0.966  0.9286
##  G_62 - G_07  2.03e-02 0.01295 1274   1.566  0.6210
##  G_62 - G_50 -2.46e-02 0.01527 1206  -1.614  0.5897
##  G_31 - G_08 -1.38e-02 0.02111 1198  -0.652  0.9869
##  G_31 - G_07  2.54e-02 0.01520 1267   1.673  0.5500
##  G_31 - G_50 -1.95e-02 0.01722 1215  -1.133  0.8676
##  G_08 - G_07  3.92e-02 0.01956 1190   2.003  0.3409
##  G_08 - G_50 -5.75e-03 0.02116 1165  -0.272  0.9998
##  G_07 - G_50 -4.49e-02 0.01527 1206  -2.942  0.0389
## 
## Nutrients = Nutrients, DaysF = 103:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  1.66e-02 0.00914 1293   1.811  0.4592
##  G_48 - G_31  1.80e-02 0.01787 1428   1.007  0.9159
##  G_48 - G_08    nonEst      NA   NA      NA      NA
##  G_48 - G_07    nonEst      NA   NA      NA      NA
##  G_48 - G_50    nonEst      NA   NA      NA      NA
##  G_62 - G_31  1.43e-03 0.01786 1428   0.080  1.0000
##  G_62 - G_08    nonEst      NA   NA      NA      NA
##  G_62 - G_07    nonEst      NA   NA      NA      NA
##  G_62 - G_50    nonEst      NA   NA      NA      NA
##  G_31 - G_08    nonEst      NA   NA      NA      NA
##  G_31 - G_07    nonEst      NA   NA      NA      NA
##  G_31 - G_50    nonEst      NA   NA      NA      NA
##  G_08 - G_07    nonEst      NA   NA      NA      NA
##  G_08 - G_50    nonEst      NA   NA      NA      NA
##  G_07 - G_50    nonEst      NA   NA      NA      NA
## 
## Nutrients = Ambient, DaysF = 106:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  6.41e-04 0.01255 1269   0.051  1.0000
##  G_48 - G_31  5.55e-02 0.01485 1263   3.737  0.0027
##  G_48 - G_08  3.75e-03 0.01929 1185   0.194  1.0000
##  G_48 - G_07  7.08e-02 0.01255 1269   5.641  <.0001
##  G_48 - G_50  3.00e-02 0.01493 1198   2.010  0.3373
##  G_62 - G_31  5.49e-02 0.01520 1267   3.610  0.0043
##  G_62 - G_08  3.11e-03 0.01956 1190   0.159  1.0000
##  G_62 - G_07  7.01e-02 0.01295 1274   5.415  <.0001
##  G_62 - G_50  2.94e-02 0.01527 1206   1.922  0.3889
##  G_31 - G_08 -5.18e-02 0.02111 1198  -2.452  0.1397
##  G_31 - G_07  1.53e-02 0.01520 1267   1.006  0.9162
##  G_31 - G_50 -2.55e-02 0.01722 1215  -1.482  0.6762
##  G_08 - G_07  6.70e-02 0.01956 1190   3.428  0.0083
##  G_08 - G_50  2.62e-02 0.02116 1165   1.240  0.8169
##  G_07 - G_50 -4.08e-02 0.01527 1206  -2.671  0.0819
## 
## Nutrients = Nutrients, DaysF = 106:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62  3.59e-02 0.01049 1372   3.425  0.0083
##  G_48 - G_31  4.77e-03 0.02454 1414   0.194  1.0000
##  G_48 - G_08    nonEst      NA   NA      NA      NA
##  G_48 - G_07    nonEst      NA   NA      NA      NA
##  G_48 - G_50    nonEst      NA   NA      NA      NA
##  G_62 - G_31 -3.12e-02 0.02462 1412  -1.266  0.8035
##  G_62 - G_08    nonEst      NA   NA      NA      NA
##  G_62 - G_07    nonEst      NA   NA      NA      NA
##  G_62 - G_50    nonEst      NA   NA      NA      NA
##  G_31 - G_08    nonEst      NA   NA      NA      NA
##  G_31 - G_07    nonEst      NA   NA      NA      NA
##  G_31 - G_50    nonEst      NA   NA      NA      NA
##  G_08 - G_07    nonEst      NA   NA      NA      NA
##  G_08 - G_50    nonEst      NA   NA      NA      NA
##  G_07 - G_50    nonEst      NA   NA      NA      NA
## 
## Nutrients = Ambient, DaysF = 110:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62 -4.86e-03 0.01255 1269  -0.387  0.9989
##  G_48 - G_31  2.63e-02 0.01485 1263   1.768  0.4872
##  G_48 - G_08  2.47e-02 0.01929 1185   1.283  0.7945
##  G_48 - G_07  6.99e-02 0.01255 1269   5.567  <.0001
##  G_48 - G_50  1.75e-03 0.01493 1198   0.117  1.0000
##  G_62 - G_31  3.11e-02 0.01520 1267   2.047  0.3162
##  G_62 - G_08  2.96e-02 0.01956 1190   1.514  0.6554
##  G_62 - G_07  7.47e-02 0.01295 1274   5.768  <.0001
##  G_62 - G_50  6.61e-03 0.01527 1206   0.433  0.9981
##  G_31 - G_08 -1.51e-03 0.02111 1198  -0.071  1.0000
##  G_31 - G_07  4.36e-02 0.01520 1267   2.869  0.0479
##  G_31 - G_50 -2.45e-02 0.01722 1215  -1.423  0.7127
##  G_08 - G_07  4.51e-02 0.01956 1190   2.306  0.1921
##  G_08 - G_50 -2.30e-02 0.02116 1165  -1.087  0.8868
##  G_07 - G_50 -6.81e-02 0.01527 1206  -4.460  0.0001
## 
## Nutrients = Nutrients, DaysF = 110:
##  contrast     estimate      SE   df t.ratio p.value
##  G_48 - G_62 -2.61e-02 0.02341 1404  -1.115  0.8755
##  G_48 - G_31  1.39e-01 0.02869 1404   4.861  <.0001
##  G_48 - G_08    nonEst      NA   NA      NA      NA
##  G_48 - G_07    nonEst      NA   NA      NA      NA
##  G_48 - G_50    nonEst      NA   NA      NA      NA
##  G_62 - G_31  1.66e-01 0.02868 1403   5.771  <.0001
##  G_62 - G_08    nonEst      NA   NA      NA      NA
##  G_62 - G_07    nonEst      NA   NA      NA      NA
##  G_62 - G_50    nonEst      NA   NA      NA      NA
##  G_31 - G_08    nonEst      NA   NA      NA      NA
##  G_31 - G_07    nonEst      NA   NA      NA      NA
##  G_31 - G_50    nonEst      NA   NA      NA      NA
##  G_08 - G_07    nonEst      NA   NA      NA      NA
##  G_08 - G_50    nonEst      NA   NA      NA      NA
##  G_07 - G_50    nonEst      NA   NA      NA      NA
## 
## Degrees-of-freedom method: kenward-roger 
## P value adjustment: tukey method for comparing a family of 6 estimates
      Acer.YII.emm2<-emmeans(Model2, ~ Genotype*Nutrients * DaysF)
      
      Acer.YII_groups<-cld(Acer.YII.emm2, by=NULL) # compact-letter display
      Acer.YII_groups<-Acer.YII_groups[order(
                        Acer.YII_groups$Day, 
                        Acer.YII_groups$Nutrients, 
                        Acer.YII_groups$Genotype),]
      Acer.YII_groups
      #write.csv(Acer.YII_groups, "Outputs/Multicomp_AcerYII.csv", row.names = F)

Supporting plots

FigureS3_genotype<-YII_Treat_BW<- ggplot(data=YII.Acer, aes (Days, YII, colour=factor(Nutrients), shape=factor(Nutrients))) +
        ggthe_bw + Fill.colour+
        stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 5,
                     position = position_dodge(1) )+
        stat_summary(fun.y=mean, geom="line", position = position_dodge(1), 
                     linetype=1, alpha=1) + 
         stat_summary(fun.y=mean, geom="point", size =1,
                   position=position_dodge(width=1), alpha=0.5)  +
        theme(axis.title.y=element_text(size=12), 
          legend.position="bottom",
          legend.title = element_blank()) + ggtitle("b") +
      
    scale_y_continuous(limits = c(0.0, 0.7),
                           breaks = seq(0.0, 0.6, 0.1),  
                           expand = c(0, 0),
                           name=expression(~italic("Fv / Fm"))) +
        scale_x_continuous(name="Days in the experiment",
                           limits = c(-1,113),
                           breaks = seq(0, 113, 30),  
                           expand = c(0, 0))+
        annotate("segment", x = 2, xend = 91, y = 0.12, yend = 0.12,
                  colour = "gray90", linetype=1)+
        annotate("segment", x = 79, xend = 91, y = 0.12, yend = 0.20,
                  colour = "gray90", linetype=1)+
        annotate("segment", x = 91, xend = 110, y = 0.20, yend = 0.20,
                  colour = "gray90", linetype=1)+
        annotate("text", x = 45, y = 0.05, label = "Nutrients", size=3)+
        annotate("text", x = 99, y = 0.05, label = "H", size=3) +
  facet_wrap(~Genotype)
FigureS3_genotype

#ggsave(file="Outputs/S3b_YII_Treat_Colo.svg", plot=Figure3_genotype, width=6.0, height=3.5)
YII.Acer$Nutrients2<-YII.Acer$Nutrients
YII.Acer$Nutrients2[YII.Acer$DaysF=="1"]<-"Ambient"
          
    YII.Summary <-YII.Acer %>%
          group_by(Genotype, Nutrients2, DaysF) %>%
          get_summary_stats(YII, type = "mean_sd")
    YII.Summary
   YII.Summary<-subset(YII.Summary, Nutrients2=="Ambient" )
    YII.Summary<-YII.Summary[, -3]
    YII.Summary<-YII.Summary[, -3]
    YII.Summary<-YII.Summary[, -3]
    
    YII.Acer<-merge(YII.Acer, YII.Summary,  by=c("Genotype", "DaysF"), all.x = T)
    YII.Acer$Difference<-YII.Acer$YII-YII.Acer$mean

FigureS4_genotype<-YII_Treat_BW<- ggplot(data=YII.Acer, aes (Days, Difference, colour=factor(Nutrients), shape=factor(Nutrients))) +
        geom_smooth()+
        ggthe_bw + Fill.colour+
          stat_summary(fun.y=mean, geom="point", size =2,
                   position=position_dodge(width=1), alpha=0.5)  +
          stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 5,
                     position = position_dodge(1) )+
       
          theme(axis.title.y=element_text(size=12), 
            legend.position="bottom",
            legend.title = element_blank(),
            strip.background =element_rect(fill=NA)) +
  ggtitle("b)") +
      
    scale_y_continuous(limits = c(-0.3, 0.1),
                           breaks = seq(-0.4, 0.1, 0.1),  
                           expand = c(0, 0),
                           name=expression(~italic("Fv / Fm"))) +
        scale_x_continuous(name="Days in the experiment",
                           limits = c(-1,113),
                           breaks = seq(0, 113, 30),  
                           expand = c(0, 0))+
        annotate("segment", x = 2, xend = 91, y = 0.12, yend = 0.12,
                  colour = "gray90", linetype=1)+
        annotate("segment", x = 79, xend = 91, y = 0.12, yend = 0.65,
                  colour = "gray90", linetype=1)+
        annotate("segment", x = 91, xend = 110, y = 0.65, yend = 0.65,
                  colour = "gray90", linetype=1)+
        annotate("text", x = 45, y = 0.05, label = "Nutrients", size=3)+
        annotate("text", x = 99, y = 0.05, label = "H", size=3) +
  facet_wrap(~Genotype)
FigureS4_genotype

#ggsave(file="Outputs/S3b_YII_Treat_Colo.svg", plot=Figure3_genotype, width=6.0, height=3.5)
    YII.Summary <-YII.Acer %>%
          group_by(Genotype, Treatment, DaysF) %>%
          get_summary_stats(YII, type = "mean_sd")
    YII.Summary
   YII.Summary<-subset(YII.Summary, Treatment=="Ambient" )
    YII.Summary<-YII.Summary[, -3]
    YII.Summary<-YII.Summary[, -3]
    YII.Summary<-YII.Summary[, -3]
    
    #YII.Acer<-merge(YII.Acer, YII.Summary,  by=c("Genotype", "DaysF"), all.x = T)
    YII.Acer$Difference2<-YII.Acer$YII-YII.Acer$mean

YII.Acer$Percentaje2 <- (YII.Acer$Difference2/YII.Acer$mean)*100
#Colour.colour<-scale_colour_manual(values = c("black", "gray70"))
#Fill.colour<-scale_fill_manual(values = c("black", "gray70"))


FigureS4b_genotype<-YII_Treat_BW<- ggplot(data=YII.Acer, aes (Days, Percentaje2, 
                    colour=factor(Treatment), fill=factor(Treatment), shape=factor(Treatment))) +
        annotate("segment", x = 2, xend = 91, y = -35, yend = -35,
                  colour = "gray90", linetype=1)+
        annotate("segment", x = 79, xend = 91, y = -34, yend = 10,
                  colour = "gray90", linetype=1)+
        annotate("segment", x = 91, xend = 110, y = 10, yend = 10,
                  colour = "gray90", linetype=1)+
        annotate("text", x = 45, y = -40, label = "Nutrients", size=3)+
        annotate("text", x = 101, y = 13, label = "H", size=3) +
        
        geom_smooth()+      
  
        #stat_summary(fun.y=mean, geom="point", size =2,
        #           position=position_dodge(width=1), alpha=0.5)  +
        stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 5,
                      position = position_dodge(1) )+
       
  #ggtitle("b)") +
  #scale_shape_manual(values=c(21, 14),
  #                   labels=c("A", "N and N+P"))+
  ggthe_bw + #Fill.colour+ Colour.colour +
      
    scale_y_continuous(limits = c(-45, 25),
                           breaks = seq(-40, 25, 10),  
                           expand = c(0, 0),
                           name="Fv/Fm  change respect to A (%)") +
        scale_x_continuous(name="Days in the experiment",
                           limits = c(-1,113),
                           breaks = seq(0, 113, 30),  
                           expand = c(0, 0))+

   theme(axis.title.y=element_text(size=12), 
          legend.position="bottom",
          legend.title = element_blank(),
           strip.background =element_rect(fill=NA)) +
  facet_wrap(~Genotype)
FigureS4b_genotype

#ggsave(file="Outputs/S4_YII_Treat_Colo.svg", plot=FigureS4_genotype, width=5.0, height=5.5)
YII.Acer$Percentaje<- (YII.Acer$Difference/YII.Acer$mean)*100
Colour.colour<-scale_colour_manual(values = c("black", "gray70"))
Fill.colour<-scale_fill_manual(values = c("black", "gray70"))
YII.Acer$Nutrients2<factor(YII.Acer$Nutrients2, levels = c("Nutrients", "Ambient"))
##    [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##   [25] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##   [49] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##   [73] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##   [97] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [121] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [145] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [169] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [193] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [217] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [241] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [265] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [289] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [313] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [337] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [361] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [385] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [409] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [433] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [457] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [481] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [505] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [529] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [553] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [577] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [601] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [625] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [649] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [673] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [697] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [721] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [745] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [769] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [793] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [817] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [841] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [865] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [889] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [913] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [937] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [961] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
##  [985] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1009] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1033] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1057] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1081] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1105] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1129] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1153] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1177] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1201] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1225] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1249] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1273] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1297] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1321] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1345] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1369] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1393] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1417] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1441] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1465] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1489] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1513] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1537] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1561] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1585] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
## [1609] NA NA NA NA NA NA NA NA NA NA NA NA
FigureS4_genotype<-YII_Treat_BW<- ggplot(data=YII.Acer, aes (Days, Percentaje, 
                    colour=factor(Nutrients2), fill=factor(Nutrients2), shape=factor(Nutrients2))) +
        annotate("segment", x = 2, xend = 91, y = -35, yend = -35,
                  colour = "gray90", linetype=1)+
        annotate("segment", x = 79, xend = 91, y = -34, yend = 10,
                  colour = "gray90", linetype=1)+
        annotate("segment", x = 91, xend = 110, y = 10, yend = 10,
                  colour = "gray90", linetype=1)+
        annotate("text", x = 45, y = -40, label = "Nutrients", size=3)+
        annotate("text", x = 101, y = 13, label = "H", size=3) +
        
        geom_smooth()+      
  
        #stat_summary(fun.y=mean, geom="point", size =2,
        #           position=position_dodge(width=1), alpha=0.5)  +
        stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 5,
                      position = position_dodge(1) )+
       
  #ggtitle("b)") +
  scale_shape_manual(values=c(21, 14),
                     labels=c("A", "N and N+P"))+
  ggthe_bw + Fill.colour+ Colour.colour +
      
    scale_y_continuous(limits = c(-45, 25),
                           breaks = seq(-40, 25, 10),  
                           expand = c(0, 0),
                           name="Fv/Fm  change respect to A (%)") +
        scale_x_continuous(name="Days in the experiment",
                           limits = c(-1,113),
                           breaks = seq(0, 113, 30),  
                           expand = c(0, 0))+

   theme(axis.title.y=element_text(size=12), 
          legend.position="bottom",
          legend.title = element_blank(),
           strip.background =element_rect(fill=NA)) +
  facet_wrap(~Genotype)
FigureS4_genotype

#ggsave(file="Outputs/S4_YII_Treat_Colo.svg", plot=FigureS4_genotype, width=5.0, height=5.5)

Subset timepoints

summary(YII.Acer$DaysF)
##   1   8  14  21  28  49  65  71  76  84  89  92  96  99 103 106 110 
## 120 120 120 120 120 120 119 116 115  90  89  82  70  66  62  54  37
YII.Acer1<-subset(YII.Acer, DaysF=="1")
YII.Acer76<-subset(YII.Acer, DaysF=="76")
YII.Acer92<-subset(YII.Acer, DaysF=="92")
YII.Acer110<-subset(YII.Acer, DaysF=="110")

YII.AcerTimePoints<-rbind(YII.Acer1, YII.Acer76, YII.Acer92, YII.Acer110)

YII_Timepoints<- ggplot(YII.AcerTimePoints, aes (DaysF, YII, fill=Genotype, shape=Nutrients2)) +
  #ggtitle("(a) Baseline")+
  ggthe_bw +
  scale_shape_manual(values=c(21, 14),
                     labels=c("A", "N and N+P"))+
  
  stat_summary(fun.y=mean, geom="point", size =2, alpha=0.9) + 
  stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 0.2) +
  scale_y_continuous(name=("Fv/Fm"),
                     limits = c(0.1, 0.65),
                     breaks = seq(0, 0.7, by=0.1))+
  theme(legend.position="right",
        legend.title = element_blank(), 
        strip.background =element_rect(fill=NA))+ 
  facet_grid(~Genotype)
YII_Timepoints

YII_Timepoints<- ggplot(YII.AcerTimePoints, aes (Genotype, YII, fill=Genotype, shape=Nutrients2)) +
  #ggtitle("(a) Baseline")+
  scale_shape_manual(values=c(21, 14),
                     labels=c("A", "N and N+P"))+
  stat_summary(fun.y=mean, geom="point", size =2, alpha=1) + 
    stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 0.2) +
  ggthe_bw +
  scale_y_continuous(name=("Fv/Fm"),
                     limits = c(0.1, 0.65),
                     breaks = seq(0, 0.7, by=0.1))+
  theme(legend.position="right",
        legend.title = element_blank(), 
        strip.background =element_rect(fill=NA))+ 
  facet_grid(~DaysF)
YII_Timepoints

#ggsave(file="Outputs/S4_YII_Treat_Colo.svg", plot=YII_Timepoints, width=5.5, height=3.0)

Supporting GLMs

Genotypic differences with subset

 ## Data subsets  
summary(YII.Acer)
##  Genotype       DaysF            Sample          Date            Spp      
##  G_48:413   1      :120   Ac_288_T21:   2   Min.   :2017-11-16   Ac:1620  
##  G_62:418   8      :120   Ac_101_T10:   1   1st Qu.:2017-12-06            
##  G_31:216   14     :120   Ac_101_T11:   1   Median :2018-01-19            
##  G_08:101   21     :120   Ac_101_T12:   1   Mean   :2018-01-10            
##  G_07:320   28     :120   Ac_101_T13:   1   3rd Qu.:2018-02-12            
##  G_50:152   49     :120   Ac_101_T15:   1   Max.   :2018-03-05            
##             (Other):900   (Other)   :1613                                 
##     Fragment    Treatment Replicate      YII              Days      
##  Ac_102 :  17   A  :607   R1:858    Min.   :0.1540   Min.   :  1.0  
##  Ac_105 :  17   N  :500   R2:762    1st Qu.:0.5640   1st Qu.: 21.0  
##  Ac_108 :  17   N+P:513             Median :0.5990   Median : 65.0  
##  Ac_116 :  17                       Mean   :0.5805   Mean   : 56.6  
##  Ac_119 :  17                       3rd Qu.:0.6242   3rd Qu.: 89.0  
##  Ac_122 :  17                       Max.   :0.6810   Max.   :110.0  
##  (Other):1518                                                       
##    Time_Point        Phase        TotalSH           logSH             D.Prp  
##  T10    :120   Baseline :120   Min.   :0.0012   Min.   :-2.9313   Min.   :0  
##  T5     :120   Heat     :371   1st Qu.:0.0485   1st Qu.:-1.3141   1st Qu.:0  
##  T6     :120   Nutrients:950   Median :0.1133   Median :-0.9459   Median :0  
##  T7     :120   Ramping  :179   Mean   :0.1581   Mean   :-0.9831   Mean   :0  
##  T8     :120   Recovery :  0   3rd Qu.:0.2259   3rd Qu.:-0.6461   3rd Qu.:0  
##  T9     :120                   Max.   :0.8947   Max.   :-0.0483   Max.   :0  
##  (Other):900                   NA's   :1160     NA's   :1160                 
##  Community InitialCommunity  Nutrients          Nutrients2       
##  A:1620    A:1620           Length:1620        Length:1620       
##                             Class :character   Class :character  
##                             Mode  :character   Mode  :character  
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##       mean              sd            Difference         Difference2       
##  Min.   :0.3500   Min.   :0.00100   Min.   :-0.340000   Min.   :-0.340000  
##  1st Qu.:0.5560   1st Qu.:0.00900   1st Qu.:-0.006000   1st Qu.:-0.006000  
##  Median :0.5840   Median :0.01200   Median : 0.008000   Median : 0.008000  
##  Mean   :0.5744   Mean   :0.01479   Mean   : 0.006111   Mean   : 0.006111  
##  3rd Qu.:0.6070   3rd Qu.:0.01900   3rd Qu.: 0.028000   3rd Qu.: 0.028000  
##  Max.   :0.6340   Max.   :0.06900   Max.   : 0.178000   Max.   : 0.178000  
##                                                                            
##   Percentaje2         Percentaje      
##  Min.   :-61.2595   Min.   :-61.2595  
##  1st Qu.: -1.1124   1st Qu.: -1.1124  
##  Median :  1.3913   Median :  1.3913  
##  Mean   :  0.9771   Mean   :  0.9771  
##  3rd Qu.:  4.8719   3rd Qu.:  4.8719  
##  Max.   : 35.3877   Max.   : 35.3877  
## 
    YII.0<-subset(YII.Acer, DaysF=="1") # Only baseline
    YII.0<-droplevels(YII.0)
   
    YII.Control<-subset(YII.Acer, Treatment=="A") # Only Ambient
    YII.Control<-subset(YII.Control, Days<77)
    YII.Control<-droplevels(YII.Control)
    summary(YII.Control)
##  Genotype      DaysF            Sample         Date            Spp     
##  G_48:90   1      : 39   Ac_102_T10:  1   Min.   :2017-11-16   Ac:351  
##  G_62:81   8      : 39   Ac_102_T11:  1   1st Qu.:2017-11-29           
##  G_31:45   14     : 39   Ac_102_T12:  1   Median :2017-12-13           
##  G_08:18   21     : 39   Ac_102_T13:  1   Mean   :2017-12-22           
##  G_07:81   28     : 39   Ac_102_T5 :  1   3rd Qu.:2018-01-19           
##  G_50:36   49     : 39   Ac_102_T6 :  1   Max.   :2018-01-30           
##            (Other):117   (Other)   :345                                
##     Fragment   Treatment Replicate      YII              Days      Time_Point 
##  Ac_102 :  9   A:351     R1:189    Min.   :0.4420   Min.   : 1   T10    : 39  
##  Ac_105 :  9             R2:162    1st Qu.:0.5780   1st Qu.:14   T11    : 39  
##  Ac_108 :  9                       Median :0.6000   Median :28   T12    : 39  
##  Ac_116 :  9                       Mean   :0.5934   Mean   :37   T13    : 39  
##  Ac_119 :  9                       3rd Qu.:0.6170   3rd Qu.:65   T5     : 39  
##  Ac_122 :  9                       Max.   :0.6570   Max.   :76   T6     : 39  
##  (Other):297                                                     (Other):117  
##        Phase        TotalSH            logSH             D.Prp   Community
##  Baseline : 39   Min.   :0.00117   Min.   :-2.9313   Min.   :0   A:351    
##  Nutrients:312   1st Qu.:0.08806   1st Qu.:-1.0553   1st Qu.:0            
##                  Median :0.17393   Median :-0.7596   Median :0            
##                  Mean   :0.20915   Mean   :-0.8027   Mean   :0            
##                  3rd Qu.:0.31554   3rd Qu.:-0.5010   3rd Qu.:0            
##                  Max.   :0.71229   Max.   :-0.1473   Max.   :0            
##                  NA's   :236       NA's   :236                            
##  InitialCommunity  Nutrients          Nutrients2             mean       
##  A:351            Length:351         Length:351         Min.   :0.5030  
##                   Class :character   Class :character   1st Qu.:0.5760  
##                   Mode  :character   Mode  :character   Median :0.5960  
##                                                         Mean   :0.5927  
##                                                         3rd Qu.:0.6180  
##                                                         Max.   :0.6340  
##                                                                         
##        sd            Difference          Difference2          Percentaje2      
##  Min.   :0.00100   Min.   :-0.1020000   Min.   :-0.1020000   Min.   :-18.7500  
##  1st Qu.:0.00900   1st Qu.:-0.0080000   1st Qu.:-0.0080000   1st Qu.: -1.3356  
##  Median :0.01200   Median : 0.0010000   Median : 0.0010000   Median :  0.1613  
##  Mean   :0.01465   Mean   : 0.0007151   Mean   : 0.0007151   Mean   :  0.1177  
##  3rd Qu.:0.01600   3rd Qu.: 0.0100000   3rd Qu.: 0.0100000   3rd Qu.:  1.6779  
##  Max.   :0.06900   Max.   : 0.0640000   Max.   : 0.0640000   Max.   : 11.7647  
##                                                                                
##    Percentaje      
##  Min.   :-18.7500  
##  1st Qu.: -1.3356  
##  Median :  0.1613  
##  Mean   :  0.1177  
##  3rd Qu.:  1.6779  
##  Max.   : 11.7647  
## 
    YII.FinalAC<-subset(YII.Control, DaysF=="76")
    YII.FinalAC<-droplevels(YII.FinalAC)
    
    #BW.nutrients<-subset(BW.Tall, Days>-10) # Remove baseline
    #BW.nutrients<-subset(BW.nutrients, Days<76)
    YII.nutrients<-subset(YII.Acer, Days<76) # with baseline
    YII.nutrients<-droplevels(YII.nutrients)
    summary(YII.nutrients)
##  Genotype       DaysF            Sample         Date            Spp     
##  G_48:224   1      :120   Ac_101_T10:  1   Min.   :2017-11-16   Ac:955  
##  G_62:232   8      :120   Ac_101_T11:  1   1st Qu.:2017-11-23           
##  G_31:128   14     :120   Ac_101_T12:  1   Median :2017-12-06           
##  G_08: 64   21     :120   Ac_101_T5 :  1   Mean   :2017-12-16           
##  G_07:207   28     :120   Ac_101_T6 :  1   3rd Qu.:2018-01-03           
##  G_50:100   49     :120   Ac_101_T7 :  1   Max.   :2018-01-25           
##             (Other):235   (Other)   :949                                
##     Fragment   Treatment Replicate      YII             Days      
##  Ac_101 :  8   A  :312   R1:502    Min.   :0.224   Min.   : 1.00  
##  Ac_102 :  8   N  :325   R2:453    1st Qu.:0.599   1st Qu.: 8.00  
##  Ac_104 :  8   N+P:318             Median :0.619   Median :21.00  
##  Ac_105 :  8                       Mean   :0.614   Mean   :31.93  
##  Ac_106 :  8                       3rd Qu.:0.634   3rd Qu.:49.00  
##  Ac_107 :  8                       Max.   :0.670   Max.   :71.00  
##  (Other):907                                                      
##    Time_Point        Phase        TotalSH           logSH             D.Prp  
##  T10    :120   Baseline :120   Min.   :0.0042   Min.   :-2.3816   Min.   :0  
##  T5     :120   Nutrients:835   1st Qu.:0.0449   1st Qu.:-1.3475   1st Qu.:0  
##  T6     :120                   Median :0.1028   Median :-0.9881   Median :0  
##  T7     :120                   Mean   :0.1639   Mean   :-0.9907   Mean   :0  
##  T8     :120                   3rd Qu.:0.2397   3rd Qu.:-0.6203   3rd Qu.:0  
##  T9     :120                   Max.   :0.8947   Max.   :-0.0483   Max.   :0  
##  (Other):235                   NA's   :722      NA's   :722                  
##  Community InitialCommunity  Nutrients          Nutrients2       
##  A:955     A:955            Length:955         Length:955        
##                             Class :character   Class :character  
##                             Mode  :character   Mode  :character  
##                                                                  
##                                                                  
##                                                                  
##                                                                  
##       mean              sd            Difference       Difference2     
##  Min.   :0.5170   Min.   :0.00100   Min.   :-0.3400   Min.   :-0.3400  
##  1st Qu.:0.5890   1st Qu.:0.00900   1st Qu.:-0.0020   1st Qu.:-0.0020  
##  Median :0.5990   Median :0.01200   Median : 0.0110   Median : 0.0110  
##  Mean   :0.5969   Mean   :0.01448   Mean   : 0.0171   Mean   : 0.0171  
##  3rd Qu.:0.6200   3rd Qu.:0.01500   3rd Qu.: 0.0335   3rd Qu.: 0.0335  
##  Max.   :0.6340   Max.   :0.06900   Max.   : 0.1180   Max.   : 0.1180  
##                                                                        
##   Percentaje2         Percentaje      
##  Min.   :-60.2837   Min.   :-60.2837  
##  1st Qu.: -0.3223   1st Qu.: -0.3223  
##  Median :  1.9324   Median :  1.9324  
##  Mean   :  2.9629   Mean   :  2.9629  
##  3rd Qu.:  5.5986   3rd Qu.:  5.5986  
##  Max.   : 22.8240   Max.   : 22.8240  
## 

Baseline

YII_Init<- ggplot(YII.0, aes (Genotype, YII, colour=Genotype)) +
   ggtitle("(a) Baseline")+
  stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 0.2) +
  stat_summary(fun.y=mean, geom="point", size =3, alpha=0.5) + ggthe_bw +
  scale_y_continuous(name=("Fv/Fm"),
                     limits = c(0.46, 0.62),
                     breaks = seq(0.46, 0.62, by=0.02))+
   theme(legend.position="none",
        legend.title = element_blank(), 
        strip.background =element_rect(fill=NA))
YII_Init

# ANOVA
  LM_bl <- lm(YII ~ Genotype, data= YII.0)
  anova(LM_bl)
# Pairwise comparisons
  BW_bl.emmc<-emmeans(LM_bl, ~ Genotype)
  contrast(BW_bl.emmc, "tukey")
##  contrast     estimate      SE  df t.ratio p.value
##  G_48 - G_62  0.009179 0.00330 114   2.777  0.0685
##  G_48 - G_31  0.008679 0.00391 114   2.220  0.2367
##  G_48 - G_08  0.024679 0.00500 114   4.935  <.0001
##  G_48 - G_07  0.024255 0.00340 114   7.140  <.0001
##  G_48 - G_50  0.021255 0.00419 114   5.077  <.0001
##  G_62 - G_31 -0.000500 0.00388 114  -0.129  1.0000
##  G_62 - G_08  0.015500 0.00498 114   3.112  0.0278
##  G_62 - G_07  0.015077 0.00337 114   4.475  0.0003
##  G_62 - G_50  0.012077 0.00416 114   2.901  0.0497
##  G_31 - G_08  0.016000 0.00540 114   2.962  0.0421
##  G_31 - G_07  0.015577 0.00396 114   3.930  0.0020
##  G_31 - G_50  0.012577 0.00466 114   2.700  0.0830
##  G_08 - G_07 -0.000423 0.00504 114  -0.084  1.0000
##  G_08 - G_50 -0.003423 0.00561 114  -0.611  0.9901
##  G_07 - G_50 -0.003000 0.00424 114  -0.708  0.9806
## 
## P value adjustment: tukey method for comparing a family of 6 estimates
#Tukey groups
  BW_bl_groups<-cld(BW_bl.emmc)
  BW_bl_groups
  #write.csv(BW_bl_groups, "Outputs/BW_baseline_groups.csv", row.names = F)

# N fragments    
  N0.fragments<-YII.0 %>% 
     group_by(Genotype) %>% count(Genotype)
  N0.fragments

Ambient final day

YII_76<- ggplot(YII.FinalAC, aes (Genotype, YII, colour=Genotype)) +
   ggtitle("(b) Ambient (day 76)")+
  stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 0.2) +
  stat_summary(fun.y=mean, geom="point", size =3, alpha=0.5) + ggthe_bw +
  scale_y_continuous(name=("Fv/Fm"),
                     limits = c(0.46, 0.62),
                     breaks = seq(0.46, 0.62, by=0.02))+
   theme(legend.position="none",
        legend.title = element_blank(), 
        strip.background =element_rect(fill=NA))
YII_76

summary(YII.FinalAC)
##  Genotype  DaysF          Sample        Date            Spp        Fragment 
##  G_48:10   76:39   Ac_102_T13: 1   Min.   :2018-01-30   Ac:39   Ac_102 : 1  
##  G_62: 9           Ac_105_T13: 1   1st Qu.:2018-01-30           Ac_105 : 1  
##  G_31: 5           Ac_108_T13: 1   Median :2018-01-30           Ac_108 : 1  
##  G_08: 2           Ac_116_T13: 1   Mean   :2018-01-30           Ac_116 : 1  
##  G_07: 9           Ac_119_T13: 1   3rd Qu.:2018-01-30           Ac_119 : 1  
##  G_50: 4           Ac_122_T13: 1   Max.   :2018-01-30           Ac_122 : 1  
##                    (Other)   :33                                (Other):33  
##  Treatment Replicate      YII              Days    Time_Point       Phase   
##  A:39      R1:21     Min.   :0.4670   Min.   :76   T13:39     Nutrients:39  
##            R2:18     1st Qu.:0.5545   1st Qu.:76                            
##                      Median :0.5770   Median :76                            
##                      Mean   :0.5621   Mean   :76                            
##                      3rd Qu.:0.5880   3rd Qu.:76                            
##                      Max.   :0.6030   Max.   :76                            
##                                                                             
##     TotalSH             logSH             D.Prp   Community InitialCommunity
##  Min.   :0.001172   Min.   :-2.9313   Min.   :0   A:39      A:39            
##  1st Qu.:0.161137   1st Qu.:-0.7929   1st Qu.:0                             
##  Median :0.257041   Median :-0.5902   Median :0                             
##  Mean   :0.251061   Mean   :-0.7231   Mean   :0                             
##  3rd Qu.:0.358505   3rd Qu.:-0.4455   3rd Qu.:0                             
##  Max.   :0.465400   Max.   :-0.3322   Max.   :0                             
##  NA's   :1          NA's   :1                                               
##   Nutrients          Nutrients2             mean              sd        
##  Length:39          Length:39          Min.   :0.5030   Min.   :0.0040  
##  Class :character   Class :character   1st Qu.:0.5700   1st Qu.:0.0110  
##  Mode  :character   Mode  :character   Median :0.5760   Median :0.0150  
##                                        Mean   :0.5619   Mean   :0.0149  
##                                        3rd Qu.:0.5830   3rd Qu.:0.0160  
##                                        Max.   :0.5870   Max.   :0.0240  
##                                                                         
##    Difference          Difference2          Percentaje2      
##  Min.   :-0.0360000   Min.   :-0.0360000   Min.   :-7.15706  
##  1st Qu.:-0.0090000   1st Qu.:-0.0090000   1st Qu.:-1.53322  
##  Median :-0.0010000   Median :-0.0010000   Median :-0.17036  
##  Mean   : 0.0001538   Mean   : 0.0001538   Mean   : 0.02851  
##  3rd Qu.: 0.0135000   3rd Qu.: 0.0135000   3rd Qu.: 2.31513  
##  Max.   : 0.0280000   Max.   : 0.0280000   Max.   : 5.56660  
##                                                              
##    Percentaje      
##  Min.   :-7.15706  
##  1st Qu.:-1.53322  
##  Median :-0.17036  
##  Mean   : 0.02851  
##  3rd Qu.: 2.31513  
##  Max.   : 5.56660  
## 
# Model
  LM_A_C.75 <- lmer(YII ~ Genotype + (1|Replicate), data= YII.FinalAC)
  isSingular(LM_A_C.75)
## [1] TRUE
  anova(LM_A_C.75) # 
  ranova(LM_A_C.75) # Replicate is not significant
# Pairwise comparisons
  YII_A_C75.emmc<-emmeans(LM_A_C.75, ~Genotype)
  #contrast(BW_A_C.emmc, "tukey")
  
#Tukey groups
  YII_A_C75_groups<-cld(YII_A_C75.emmc)
  YII_A_C75_groups
  #write.csv(YII_A_C75_groups, "Outputs/YII_A_C75_groups.csv", row.names = F)

# N fragments    
  N.fragments_A_C75<-YII.FinalAC %>% 
     count(Genotype)
  N.fragments_A_C75
Captivityeffect<-grid.arrange(YII_Init,YII_76, nrow=1)

#ggsave(file="Outputs/S_Genotypes.svg", plot=Captivityeffect, width=6, height=3.5)
  • Ambient and Control evolution
summary(YII.Control)
##  Genotype      DaysF            Sample         Date            Spp     
##  G_48:90   1      : 39   Ac_102_T10:  1   Min.   :2017-11-16   Ac:351  
##  G_62:81   8      : 39   Ac_102_T11:  1   1st Qu.:2017-11-29           
##  G_31:45   14     : 39   Ac_102_T12:  1   Median :2017-12-13           
##  G_08:18   21     : 39   Ac_102_T13:  1   Mean   :2017-12-22           
##  G_07:81   28     : 39   Ac_102_T5 :  1   3rd Qu.:2018-01-19           
##  G_50:36   49     : 39   Ac_102_T6 :  1   Max.   :2018-01-30           
##            (Other):117   (Other)   :345                                
##     Fragment   Treatment Replicate      YII              Days      Time_Point 
##  Ac_102 :  9   A:351     R1:189    Min.   :0.4420   Min.   : 1   T10    : 39  
##  Ac_105 :  9             R2:162    1st Qu.:0.5780   1st Qu.:14   T11    : 39  
##  Ac_108 :  9                       Median :0.6000   Median :28   T12    : 39  
##  Ac_116 :  9                       Mean   :0.5934   Mean   :37   T13    : 39  
##  Ac_119 :  9                       3rd Qu.:0.6170   3rd Qu.:65   T5     : 39  
##  Ac_122 :  9                       Max.   :0.6570   Max.   :76   T6     : 39  
##  (Other):297                                                     (Other):117  
##        Phase        TotalSH            logSH             D.Prp   Community
##  Baseline : 39   Min.   :0.00117   Min.   :-2.9313   Min.   :0   A:351    
##  Nutrients:312   1st Qu.:0.08806   1st Qu.:-1.0553   1st Qu.:0            
##                  Median :0.17393   Median :-0.7596   Median :0            
##                  Mean   :0.20915   Mean   :-0.8027   Mean   :0            
##                  3rd Qu.:0.31554   3rd Qu.:-0.5010   3rd Qu.:0            
##                  Max.   :0.71229   Max.   :-0.1473   Max.   :0            
##                  NA's   :236       NA's   :236                            
##  InitialCommunity  Nutrients          Nutrients2             mean       
##  A:351            Length:351         Length:351         Min.   :0.5030  
##                   Class :character   Class :character   1st Qu.:0.5760  
##                   Mode  :character   Mode  :character   Median :0.5960  
##                                                         Mean   :0.5927  
##                                                         3rd Qu.:0.6180  
##                                                         Max.   :0.6340  
##                                                                         
##        sd            Difference          Difference2          Percentaje2      
##  Min.   :0.00100   Min.   :-0.1020000   Min.   :-0.1020000   Min.   :-18.7500  
##  1st Qu.:0.00900   1st Qu.:-0.0080000   1st Qu.:-0.0080000   1st Qu.: -1.3356  
##  Median :0.01200   Median : 0.0010000   Median : 0.0010000   Median :  0.1613  
##  Mean   :0.01465   Mean   : 0.0007151   Mean   : 0.0007151   Mean   :  0.1177  
##  3rd Qu.:0.01600   3rd Qu.: 0.0100000   3rd Qu.: 0.0100000   3rd Qu.:  1.6779  
##  Max.   :0.06900   Max.   : 0.0640000   Max.   : 0.0640000   Max.   : 11.7647  
##                                                                                
##    Percentaje      
##  Min.   :-18.7500  
##  1st Qu.: -1.3356  
##  Median :  0.1613  
##  Mean   :  0.1177  
##  3rd Qu.:  1.6779  
##  Max.   : 11.7647  
## 
# Model
  LM_A_C <- lmer(YII ~ Genotype * DaysF + 
                  (1|Fragment)+ (1|Replicate), data=YII.Control)
  anova(LM_A_C) # Day alone is not significant, but Day:Genet is 
  ranova(LM_A_C) # Replicate is not significant
  step(LM_A_C)
## Backward reduced random-effect table:
## 
##                 Eliminated npar logLik     AIC     LRT Df Pr(>Chisq)    
## <none>                       57 744.87 -1375.7                          
## (1 | Fragment)           0   56 731.71 -1351.4 26.3292  1  2.879e-07 ***
## (1 | Replicate)          0   56 742.13 -1372.3  5.4873  1    0.01916 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Backward reduced fixed-effect table:
## Degrees of freedom method: Satterthwaite 
## 
##                Eliminated   Sum Sq    Mean Sq NumDF DenDF F value    Pr(>F)    
## Genotype:DaysF          0 0.029929 0.00074823    40   264  3.0299 5.744e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Model found:
## YII ~ Genotype * DaysF + (1 | Fragment) + (1 | Replicate)
# Pairwise comparisons
  BW_A_C.emmc<-emmeans(LM_A_C, ~Genotype * DaysF)
  #contrast(BW_A_C.emmc, "tukey")
  
#Tukey groups
  BW_A_C_groups<-cld(BW_A_C.emmc)
  BW_A_C_groups<-BW_A_C_groups[order(BW_A_C_groups$Genotype,BW_A_C_groups$Day),]
  BW_A_C_groups
  #write.csv(BW_A_C_groups, "Outputs/BW_A_C_groups.csv", row.names = F)

# N fragments    
  N.fragments_A_C<-YII.Control %>% 
     group_by(Genotype) %>% count(DaysF)
  N.fragments_A_C
# 1. Model 
  LM_A_C <- lmer(YII ~ Genotype * Days + 
                  (1|Fragment)+ (1|Replicate), data=YII.Control)
  anova(LM_A_C) # Day alone is not significant, but Day:Genet is 
  ranova(LM_A_C) # Replicate is not significant
  step(LM_A_C)
## Backward reduced random-effect table:
## 
##                 Eliminated npar logLik     AIC     LRT Df Pr(>Chisq)    
## <none>                       15 840.16 -1650.3                          
## (1 | Fragment)           0   14 830.23 -1632.5 19.8590  1  8.337e-06 ***
## (1 | Replicate)          0   14 837.41 -1646.8  5.4873  1    0.01916 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Backward reduced fixed-effect table:
## Degrees of freedom method: Satterthwaite 
## 
##               Eliminated   Sum Sq   Mean Sq NumDF DenDF F value    Pr(>F)    
## Genotype:Days          0 0.014761 0.0029521     5   306  10.291 3.921e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Model found:
## YII ~ Genotype * Days + (1 | Fragment) + (1 | Replicate)
# 2. Predict values:
  pred_ambient <- predict(LM_A_C,re.form = NA)

#3. Bootstrap CI:
  ambient.boot1 <- bootMer(LM_A_C, predict, nsim = 1000, re.form = NULL) # include random effects, reduce CI lot!
    std.err <- apply(ambient.boot1$t, 2, sd)
    CI.lo_1 <- pred_ambient - std.err*1.96
    CI.hi_1 <- pred_ambient + std.err*1.96

  #Plot
  Model_ambients_plot<- ggplot(
    YII.Control, aes(x = Days, y = YII, colour =Genotype)) +
    geom_line(aes(y = pred_ambient),size=2) +
    #geom_point(aes(fill=factor(Treatment)),
    #         shape = 21, colour = "black", size = 2, stroke = 0.3, alpha=0.3) +
    geom_ribbon(aes(ymin = CI.lo_1, ymax = CI.hi_1),
                size=2, alpha = 0.1, linetype = 0) +
    #scale_color_manual(values=my_colours) +
    #scale_fill_manual(values=my_colours) +
    scale_y_continuous(name=expression(~italic("YII")),
                      limits = c(0.45,0.65), 
                      breaks = seq(0.45, 0.65, by=0.02), expand = c(0,0))+
    scale_x_continuous("Days in the experiment", limits = c(-0, 78),
                     breaks = seq(-30, 76, by=15), expand = c(0,0))+
    
    stat_summary(fun.data = "mean_cl_boot",geom = "errorbar", width = 1,
                   position = position_dodge(1) )+
    stat_summary(fun.y=mean, geom="line", position = position_dodge(1), 
                linetype=1, alpha=0.5) + ggthe_bw
  
  Model_ambients_plot

Arnold, Jeffrey B. 2019. Ggthemes: Extra Themes, Scales and Geoms for ’Ggplot2’. https://CRAN.R-project.org/package=ggthemes.

Bates, Douglas, and Martin Maechler. 2019. Matrix: Sparse and Dense Matrix Classes and Methods. https://CRAN.R-project.org/package=Matrix.

Bates, Douglas, Martin Maechler, Ben Bolker, and Steven Walker. 2019. Lme4: Linear Mixed-Effects Models Using ’Eigen’ and S4. https://CRAN.R-project.org/package=lme4.

Fox, John, Sanford Weisberg, and Brad Price. 2018. CarData: Companion to Applied Regression Data Sets. https://CRAN.R-project.org/package=carData.

Fox, John, Sanford Weisberg, Brad Price, Michael Friendly, and Jangman Hong. 2019. Effects: Effect Displays for Linear, Generalized Linear, and Other Models. https://CRAN.R-project.org/package=effects.

Genz, Alan, Frank Bretz, Tetsuhisa Miwa, Xuefei Mi, and Torsten Hothorn. 2019. Mvtnorm: Multivariate Normal and T Distributions. https://CRAN.R-project.org/package=mvtnorm.

Gohel, David, Hadley Wickham, Lionel Henry, and Jeroen Ooms. 2019. Gdtools: Utilities for Graphical Rendering. https://CRAN.R-project.org/package=gdtools.

Henry, Lionel, and Hadley Wickham. 2019. Purrr: Functional Programming Tools. https://CRAN.R-project.org/package=purrr.

Hothorn, Torsten. 2019. TH.data: TH’s Data Archive. https://CRAN.R-project.org/package=TH.data.

Hothorn, Torsten, Frank Bretz, and Peter Westfall. 2019. Multcomp: Simultaneous Inference in General Parametric Models. https://CRAN.R-project.org/package=multcomp.

Kuznetsova, Alexandra, Per Bruun Brockhoff, and Rune Haubo Bojesen Christensen. 2019. LmerTest: Tests in Linear Mixed Effects Models. https://CRAN.R-project.org/package=lmerTest.

Lenth, Russell. 2019. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans.

Müller, Kirill, and Hadley Wickham. 2019. Tibble: Simple Data Frames. https://CRAN.R-project.org/package=tibble.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Ripley, Brian. 2019. MASS: Support Functions and Datasets for Venables and Ripley’s Mass. https://CRAN.R-project.org/package=MASS.

Therneau, Terry M. 2019. Survival: Survival Analysis. https://CRAN.R-project.org/package=survival.

Wickham, Hadley. 2017. Tidyverse: Easily Install and Load the ’Tidyverse’. https://CRAN.R-project.org/package=tidyverse.

———. 2019a. Forcats: Tools for Working with Categorical Variables (Factors). https://CRAN.R-project.org/package=forcats.

———. 2019b. Stringr: Simple, Consistent Wrappers for Common String Operations. https://CRAN.R-project.org/package=stringr.

Wickham, Hadley, Winston Chang, Lionel Henry, Thomas Lin Pedersen, Kohske Takahashi, Claus Wilke, Kara Woo, and Hiroaki Yutani. 2019. Ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. https://CRAN.R-project.org/package=ggplot2.

Wickham, Hadley, Romain François, Lionel Henry, and Kirill Müller. 2019. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.

Wickham, Hadley, and Lionel Henry. 2020. Tidyr: Tidy Messy Data. https://CRAN.R-project.org/package=tidyr.

Wickham, Hadley, Jim Hester, and Romain Francois. 2018. Readr: Read Rectangular Text Data. https://CRAN.R-project.org/package=readr.