Download monthly equity market capitalization of 7 countries Compute monthly equity market returns (in simple returns) based on market capitalization data.
{r. include = FALSE, message = FALSE} install.packages('SIT', repos = NULL, type='source')
Betting_Against_Beta_Equity_Factors_Monthly_1_ <- read_excel("Betting Against Beta Equity Factors Monthly (1).xlsx",
sheet = "ME(t-1)", range = "A19:AD1165")
data <- Betting_Against_Beta_Equity_Factors_Monthly_1_ ########
date <- as.Date(data$DATE, "%m/%d/%Y")
Betting_Against_Beta_Equity_Factors_Monthly_1_ <- xts(coredata(Betting_Against_Beta_Equity_Factors_Monthly_1_[, -1]), order.by = date)
stockpr = subset(Betting_Against_Beta_Equity_Factors_Monthly_1_, select = c(AUS,CAN,FRA,DEU,JPN,GBR,USA) )
stockpr2 <- with(stockpr, stockpr[(date >= "1989-12-31" & date <= "2021-12-31")])
monthly.return <- na.omit(Return.calculate(stockpr2, method = "discrete"))
head(monthly.return)
## AUS CAN FRA DEU JPN
## 1990-01-31 0.03066617 0.0242062712 0.106772375 0.175900236 0.02123232
## 1990-02-28 0.01574424 -0.0631233515 -0.039850578 0.022063077 -0.04670123
## 1990-03-31 -0.06035407 0.0006305838 -0.028605990 0.002080930 -0.08398405
## 1990-04-30 -0.02950981 -0.0104092150 0.067718048 0.095673570 -0.17803619
## 1990-05-31 -0.08247848 -0.0819545270 0.041442220 -0.061484068 -0.01682893
## 1990-06-30 0.09444762 0.0728235944 0.002914819 0.005735468 0.15212730
## GBR USA
## 1990-01-31 0.09773906 0.01799629
## 1990-02-28 0.01176512 -0.07791268
## 1990-03-31 -0.03207884 0.01297222
## 1990-04-30 -0.03012199 0.02484288
## 1990-05-31 -0.06753591 -0.02987430
## 1990-06-30 0.13266871 0.08571573
tail(monthly.return)
## AUS CAN FRA DEU JPN
## 2021-07-31 -0.007808452 -0.004923728 -0.0159977640 -0.005650794 6.743379e-05
## 2021-08-31 -0.006427044 -0.005186644 0.0148548942 0.012951049 -1.218586e-02
## 2021-09-30 0.019011675 0.001517633 -0.0004440893 0.015669145 2.783157e-02
## 2021-10-31 -0.024477429 -0.023212521 -0.0501314877 -0.052374557 1.671376e-02
## 2021-11-30 0.041072770 0.068697882 0.0495422303 0.022591338 -3.342947e-02
## 2021-12-31 -0.058206115 -0.046620684 -0.0319030400 -0.047759221 -3.347900e-02
## GBR USA
## 2021-07-31 -0.033224039 0.026827519
## 2021-08-31 0.025475826 0.009958025
## 2021-09-30 0.006104884 0.026998156
## 2021-10-31 -0.036415768 -0.040433011
## 2021-11-30 0.023093370 0.066567980
## 2021-12-31 -0.054600574 -0.016133549
Compute the equal-weighted portfolio returns EACH month starting from 1993/01 to 2021/12. Denote this strategy as the Benchmark portfolio and create its backtesting report using SIT package.
stockpr3 <- with(stockpr, stockpr[(date >= "1993-01-31" & date <= "2021-12-31")])
#convert returns into price (data market value of equity)
#stockpr3 <- cumprod(stockpr3 + 1)*100
#head(stockpr3)
data <- new.env()
#create 4 required input elements in data
data$prices <- stockpr3
data$weight <- stockpr3
data$execution.price <- stockpr3
data$execution.price[] <- NA
data$symbolnames <- colnames(data$prices)
prices <- data$prices
n = ncol(prices)
data$weight = ntop(prices, n)
model <-list()
model$equal.weight <- bt.run(data, trade.summary=T)
## Latest weights :
## AUS CAN FRA DEU JPN GBR USA
## 2021-12-31 14.29 14.29 14.29 14.29 14.29 14.29 14.29
##
## Performance summary :
## CAGR Best Worst
## 8.2 14.1 -21.7
capital = 100000
data$weight[] = (capital / prices) * data$weight
equal.weight = bt.run(data, type='share')
## Latest weights :
## AUS CAN FRA DEU JPN GBR USA
## 2021-12-31 14.29 14.29 14.29 14.29 14.29 14.29 14.29
##
## Performance summary :
## CAGR Best Worst
## 8.2 14.1 -21.7
head(equal.weight$ret)
## AUS
## 1993-01-31 0.000000000
## 1993-02-28 0.003976969
## 1993-03-31 0.044861517
## 1993-04-30 0.065207441
## 1993-05-31 0.035969320
## 1993-06-30 0.024251503
bt.detail.summary(model$equal.weight)
plotbt.monthly.table(model$equal.weight$equity)
strategy.performance.snapshoot(model, T)
## NULL
Compute MVP portfolio returns by rebalancing EACH month starting from 1993/01 to 2021/12.
Use in-sample data range of previous 36 months to compute covariance matrix. Denote this strategy as the MVP portfolio and create its backtesting report using SIT.
data$prices <- stockpr3
data$weight <- stockpr3
data$execution.price <- stockpr3
data$execution.price[] <- NA
prices <- data$prices
constraints = new.constraints(n, lb = -Inf, ub = +Inf)
# SUM x.i = 1
constraints = add.constraints(rep(1, n), 1, type = '=', constraints)
ret = prices / mlag(prices) - 1
weight = coredata(prices)
weight[] = NA
i = 36
for (i in 36:dim(weight)[1]) {
hist = ret[ (i- 36 +1):i, ]
hist = na.omit(hist)
ia = create.historical.ia(hist, 12)
ia$cov = cov(coredata(hist))
weight[i,] = min.risk.portfolio(ia, constraints)
}
data$weight[] = weight
capital = 100000
data$weight[] = (capital / prices) * data$weight
min.var = bt.run(data, type='share', capital=capital)
## Latest weights :
## AUS CAN FRA DEU JPN GBR USA
## 2021-12-31 -33.98 21.66 -8.95 15.53 107.47 -4.46 2.72
##
## Performance summary :
## CAGR Best Worst
## 4.5 11.4 -15.9
model$min.var.monthly <- bt.run(data, trade.summary = T)
## Latest weights :
## AUS CAN FRA DEU JPN GBR USA
## 2021-12-31 -1.8 0.72 -0.26 0.53 1.56 -0.12 0.01
##
## Performance summary :
## CAGR Best Worst
## -0.1 1.1 -1.5
sum(as.numeric(weight[36,])*as.numeric(ret[37,]))
## [1] 0.0318602
model$min.var.monthly$ret[37, ]
## AUS
## 1996-01-31 0.005077245
Plot both strategies side by side and compare their performance and comment.
plotbt.custom.report.part1(model$min.var.monthly, model$equal.weight)
layout(1:2)
plotbt.transition.map(model$min.var.monthly$weight)
legend('topright', legend = 'min.var.monthly', bty = 'n')
plotbt.transition.map(model$equal.weight$weight)
legend('topright', legend = 'equal weight', bty = 'n')
strategy.performance.snapshoot(model, T)
## NULL
model <- rev(model)
plotbt.custom.report(model)
Visualize Market Capitalization History: ### a. Plot Transition of Market Cap Weights in time ### b. Plot History for each Country’s Market Cap
stockpr4 <- with(stockpr, stockpr[(date >= "1988-01-31" & date <= "2021-12-31")])
hist.caps = stockpr4
hist.caps.weight = hist.caps/rowSums(hist.caps)
# Plot Transition of Market Cap Weights in time
plot.transition.map(hist.caps.weight, index(hist.caps.weight), xlab='', name='Market Capitalization Weight History')
# Plot History for each Country's Market Cap
layout( matrix(1:9, nrow = 3, byrow=T) )
Compute Risk Aversion, prepare Black-Litterman input assumptions ### a. compute Risk Aversion ### b. comoute implied equilibrium returns
col = plota.colors(ncol(hist.caps))
for(i in 1:ncol(hist.caps)) {
plota(hist.caps[,i], type='l', lwd=5, col=col[i], main=colnames(hist.caps)[i])
}
aa.test.create.ia.country <- function(dates = '1990::2021')
{
# load.packages('quantmod,quadprog')
symbols = spl('EWA,EWC,EWQ,EWG,EWJ,EWU,SPY')
symbol.names = spl('Australia, Canada, France, Germany, Japan, UK, USA')
getSymbols(symbols, from = '1991-01-01', auto.assign = TRUE)
hist.prices = merge(EWA,EWC,EWQ,EWG,EWJ,EWU,SPY)
period.ends = endpoints(hist.prices, 'months')
hist.prices = Ad(hist.prices)[period.ends, ]
colnames(hist.prices) = symbol.names
annual.factor = 12
hist.prices = na.omit(hist.prices[dates])
hist.returns = na.omit( ROC(hist.prices, type = 'discrete') )
ia = create.historical.ia(hist.returns, annual.factor)
return(ia)
}
# 3. Load up efficient frontier plotting function:
plot.ef <- function(
ia,
efs,
portfolio.risk.fn = portfolio.risk,
transition.map = TRUE,
layout = NULL
)
{
risk.label = as.character(substitute(portfolio.risk.fn))
n = ia$n
x = match.fun(portfolio.risk.fn)(diag(n), ia)
y = ia$expected.return
xlim = range(c(0, x,
max( sapply(efs, function(x) max(match.fun(portfolio.risk.fn)(x$weight,ia))) )
), na.rm = T)
ylim = range(c(0, y,
min( sapply(efs, function(x) min(portfolio.return(x$weight,ia))) ),
max( sapply(efs, function(x) max(portfolio.return(x$weight,ia))) )
), na.rm = T)
x = 100 * x
y = 100 * y
xlim = 100 * xlim
ylim = 100 * ylim
if( !transition.map ) layout = T
if( is.null(layout) ) layout(1:2)
par(mar = c(4,3,2,1), cex = 0.8)
plot(x, y, xlim = xlim, ylim = ylim,
xlab='', ylab='', main=paste(risk.label, 'vs Return'), col='black')
mtext('Return', side = 2,line = 2, cex = par('cex'))
mtext(risk.label, side = 1,line = 2, cex = par('cex'))
grid();
text(x, y, ia$symbols, col = 'blue', adj = c(1,1), cex = 0.8)
for(i in len(efs):1) {
ef = efs[[ i ]]
x = 100 * match.fun(portfolio.risk.fn)(ef$weight, ia)
y = 100 * ef$return
lines(x, y, col=i)
}
plota.legend(sapply(efs, function(x) x$name), 1:len(efs))
if(transition.map) {
plot.transition.map(efs[[i]]$weight, x, risk.label, efs[[i]]$name)
}
}
# Use reverse optimization to compute the vector of equilibrium returns
bl.compute.eqret <- function(
risk.aversion, # Risk Aversion
cov, # Covariance matrix
cap.weight, # Market Capitalization Weights
risk.free = 0 # Rsik Free Interest Rate
)
{
return( risk.aversion * cov %*% cap.weight + risk.free)
}
#--------------------------------------------------------------------------
# Compute Risk Aversion, prepare Black-Litterman input assumptions
#--------------------------------------------------------------------------
ia = aa.test.create.ia.country()
# compute Risk Aversion
risk.aversion = bl.compute.risk.aversion( ia$hist.returns$` USA` )
# the latest market capitalization weights
cap.weight = last(hist.caps.weight)
# create Black-Litterman input assumptions
ia.bl = ia
ia.bl$expected.return = bl.compute.eqret( risk.aversion, ia$cov, as.vector(cap.weight) )
# Plot market capitalization weights and implied equilibrium returns
par(mfrow = c(3, 3))
layout( matrix(1:8, nrow = 2) )
pie(coredata(cap.weight), paste(colnames(cap.weight), round(100*cap.weight), '%'),
main = paste('Country Market Capitalization Weights for', format(index(cap.weight),'%b %Y'))
, col=plota.colors(ia$n))
plot.ia(ia.bl, T)
Plot the Efficient Frontiers for traditional Markowitz and Black-Litterman model.
#--------------------------------------------------------------------------
# Create Efficient Frontier(s)
#--------------------------------------------------------------------------
n = ia$n
# -1 <= x.i <= 1
constraints = new.constraints(n, lb = 0, ub = 1)
# SUM x.i = 1
constraints = add.constraints(rep(1, n), 1, type = '=', constraints)
# Create efficient frontier(s)
ef.risk = portopt(ia, constraints, 50, 'Historical', equally.spaced.risk = T)
##
## Attaching package: 'corpcor'
## The following object is masked from 'package:SIT':
##
## cov.shrink
##
## Attaching package: 'kernlab'
## The following object is masked from 'package:purrr':
##
## cross
## The following object is masked from 'package:ggplot2':
##
## alpha
## The following object is masked from 'package:SIT':
##
## cross
ef.risk.bl = portopt(ia.bl, constraints, 50, 'Black-Litterman', equally.spaced.risk = T)
# Plot multiple Efficient Frontiers and Transition Maps
layout( matrix(1:4, nrow = 2) )
plot.ef(ia, list(ef.risk), portfolio.risk, T, T)
plot.ef(ia.bl, list(ef.risk.bl), portfolio.risk, T, T)
##
bl.compute.posterior <- function(
mu, # Equilibrium returns
cov, # Covariance matrix
pmat=NULL, # Views pick matrix
qmat=NULL, # Views mean vector
tau=0.025 # Measure of uncertainty of the prior estimate of the mean returns
)
{
out = list()
omega = diag(c(1,diag(tau * pmat %*% cov %*% t(pmat))))[-1,-1]
temp = solve(solve(tau * cov) + t(pmat) %*% solve(omega) %*% pmat)
out$cov = cov + temp
out$expected.return = temp %*% (solve(tau * cov) %*% mu + t(pmat) %*% solve(omega) %*% qmat)
return(out)
}
#--------------------------------------------------------------------------
# Create Views
#--------------------------------------------------------------------------
temp = matrix(rep(0, n), nrow = 1)
colnames(temp) = ia$symbols
# Relative View
# Japan will outperform UK by 2%
temp[,' Japan'] = 1
temp[,' UK'] = -1
pmat = temp
qmat = c(0.02)
# Absolute View
# Australia's expected return is 12%
temp[] = 0
# temp[,'Australia'] = 1
temp[,1] = 1
pmat = rbind(pmat, temp)
qmat = c(qmat, 0.12)
# Compute posterior distribution parameters
post = bl.compute.posterior(ia.bl$expected.return, ia$cov, pmat, qmat, tau = 0.025 )
# Create Black-Litterman input assumptions with Views
ia.bl.view = ia.bl
ia.bl.view$expected.return = post$expected.return
ia.bl.view$cov = post$cov
ia.bl.view$risk = sqrt(diag(ia.bl.view$cov))
# Create efficient frontier(s)
ef.risk.bl.view = portopt(ia.bl.view, constraints, 50, 'Black-Litterman + View(s)', equally.spaced.risk = T)
Based on the same assumptions of file, i.e., tau and views, compute the Black-Litterman posterior expected returns across 7 countries.
# Plot multiple Efficient Frontiers and Transition Maps
layout( matrix(1:4, nrow = 2) )
plot.ef(ia.bl, list(ef.risk.bl), portfolio.risk, T, T)
plot.ef(ia.bl.view, list(ef.risk.bl.view), portfolio.risk, T, T)