1. Carregando pacotes e a base de dados

library(kableExtra)

Attaching package: ‘kableExtra’

The following object is masked from ‘package:dplyr’:

    group_rows

2. Pré-processamento

#pre-processamento
dados$measure_name <- as.factor(dados$measure_name) #transformando em fator
dados$sex_name <- as.factor(dados$sex_name) #transformando em fator
dados$age_name <- as.factor(dados$age_name) #transformando em fator
dados$cause_name <- as.factor(dados$cause_name) #transformando em fator
dados$metric_name <- as.factor(dados$metric_name) #transformando em fator
dados$location_name <- as.factor(dados$location_name) #transformando em fator
dados$year <- as.Date(as.character(dados$year), format = "%Y") #transformando em data

3. Gerando visualizações gráficas (YLLs (Years of Life Lost))

3.1 YLLs (Years of Life Lost), rate, Self-harm, All ages

#YLLs (Years of Life Lost), rate, Self-harm, All ages
dados %>% 
  filter(measure_name == "YLLs (Years of Life Lost)") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "YLLs (Years of Life Lost), rate, Self-harm, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

3.2 YLLs (Years of Life Lost), rate, Self-harm by firearm, All ages

#YLLs (Years of Life Lost), rate, Self-harm by firearm, All ages
dados %>% 
  filter(measure_name == "YLLs (Years of Life Lost)") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm by firearm") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "YLLs (Years of Life Lost), rate, Self-harm by firearm, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

3.3 YLLs (Years of Life Lost), rate, Self-harm by other specified means, All ages

#YLLs (Years of Life Lost), rate, Self-harm by firearm, All ages
dados %>% 
  filter(measure_name == "YLLs (Years of Life Lost)") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm by other specified means") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "YLLs (Years of Life Lost), rate, Self-harm by other specified means, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

4. Gerando visualizações gráficas (Deaths)

4.1 Deaths, rate, Self-harm, All ages

#Deaths, rate, Self-harm, All ages
dados %>% 
  filter(measure_name == "Deaths") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "Deaths, rate, Self-harm, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

4.2 Deaths, rate, Self-harm, All ages

#Deaths, rate, Self-harm by firearm, All ages
dados %>% 
  filter(measure_name == "Deaths") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm by firearm") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "Deaths, rate, Self-harm by firearm, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

4.3 Deaths, rate, Self-harm, All ages

#Deaths, rate, Self-harm by other specified means, All ages
dados %>% 
  filter(measure_name == "Deaths") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm by other specified means") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "Deaths, rate, Self-harm by other specified means, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

5. Gerando visualizações gráficas (DALYs (Disability-Adjusted Life Years))

5.1 Deaths, rate, Self-harm, All ages

#Deaths, rate, Self-harm, All ages
dados %>% 
  filter(measure_name == "DALYs (Disability-Adjusted Life Years)") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "Deaths, rate, Self-harm, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

5.2 Deaths, rate, Self-harm, All ages

#Deaths, rate, Self-harm by firearm, All ages
dados %>% 
  filter(measure_name == "DALYs (Disability-Adjusted Life Years)") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm by firearm") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "Deaths, rate, Self-harm by firearm, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

5.3 Deaths, rate, Self-harm, All ages

#Deaths, rate, Self-harm by other specified means, All ages
dados %>% 
  filter(measure_name == "DALYs (Disability-Adjusted Life Years)") %>% 
  filter(age_name == "All ages") %>% 
  filter(cause_name == "Self-harm by other specified means") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_wrap(~sex_name) +
  labs(title = "Deaths, rate, Self-harm by other specified means, All ages",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

6. Gerando visualizações gráficas (Deaths)

#importando a base
dados2 <- read_csv("data/IHME-GBD_2019_DATA-dcd1c86b-1idades.csv")
Rows: 576 Columns: 16
── Column specification ───────────────────────────────────────────────────────────────────
Delimiter: ","
chr  (6): measure_name, location_name, sex_name, age_name, cause_name, metric_name
dbl (10): measure_id, location_id, sex_id, age_id, cause_id, metric_id, year, val, uppe...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
#plotando a base de dados
paged_table(dados2)

6.1 Deaths, Rate, Self-harm by firearm

#Deaths, Rate, Self-harm by firearm
dados2 %>% 
  filter(cause_name == "Self-harm by firearm") %>%   
  filter(metric_name == "Rate") %>% 
  ggplot(aes(year, val, fill=location_name, color=location_name)) + 
  geom_line() +
  facet_grid(sex_name~age_name) +
  labs(title = "Deaths, Rate, Self-harm by firearm",
       fill="Location", color="Location", y="Rate", x="") +
  theme_bw()

7. Tabelas

7.1. Tabela Deaths, Rate, Self-harm, Location, Sex by year

 
deaths_cause_location_sex <- dados %>% 
  rename(year_deaths = year) %>% 
  filter(measure_name == "Deaths") %>%
  filter(location_name != "Global") %>% 
  filter(age_name != "All ages") %>%
  select(sex_name, age_name, cause_name, location_name,year_deaths, val) 

tab_deaths_cause_location_sex <- deaths_cause_location_sex %>% 
  pivot_wider(names_from = year_deaths, values_from = val) %>% kableone()
Warning: Values are not uniquely identified; output will contain list-cols.
* Use `values_fn = list` to suppress this warning.
* Use `values_fn = length` to identify where the duplicates arise
* Use `values_fn = {summary_fun}` to summarise duplicates
tab_deaths_cause_location_sex
sex_name age_name cause_name location_name 2010-07-14 2011-07-14 2012-07-14 2014-07-14 2015-07-14 2013-07-14 2018-07-14 2016-07-14 2019-07-14 2017-07-14
Male 10-24 years Self-harm Brazil 1.823072e+03, 4.168327e-02, 6.833762e+00 1.850419e+03, 4.171838e-02, 6.976069e+00 1862.3529135, 0.0413128, 7.0668456 1.880269e+03, 4.093537e-02, 7.229838e+00 1.880405e+03, 4.152646e-02, 7.271799e+00 1867.2767871, 0.0408986, 7.1333859 1.736261e+03, 4.243443e-02, 6.802830e+00 1.911646e+03, 4.192641e-02, 7.427473e+00 1.672484e+03, 4.248923e-02, 6.579903e+00 1.845607e+03, 4.211355e-02, 7.201344e+00
Female 10-24 years Self-harm Brazil 550.47418201, 0.04540198, 2.10030334 558.16094025, 0.04605378, 2.14237378 553.73174001, 0.04715465, 2.14020413 548.08779474, 0.04922919, 2.15001522 548.65487578, 0.05038983, 2.16667449 550.15002791, 0.04761935, 2.14224847 525.5628655, 0.0514191, 2.1080283 555.51517919, 0.05136827, 2.20627757 502.90213988, 0.05084519, 2.02659313 548.05022787, 0.05243137, 2.18773407
Both 10-24 years Self-harm Brazil 2.373546e+03, 4.249052e-02, 4.487983e+00 2.408580e+03, 4.264866e-02, 4.580910e+00 2.416085e+03, 4.251992e-02, 4.626190e+00 2.428357e+03, 4.255347e-02, 4.715316e+00 2.429060e+03, 4.324457e-02, 4.745990e+00 2.417427e+03, 4.225579e-02, 4.661668e+00 2261.8238329, 0.0442303, 4.4829320 2.467161e+03, 4.373644e-02, 4.845519e+00 2.175387e+03, 4.416747e-02, 4.330573e+00 2393.6571313, 0.0441003, 4.7231093
Male 10-24 years Self-harm by firearm Brazil 2.431828e+02, 5.560029e-03, 9.115675e-01 2.340837e+02, 5.277243e-03, 8.824942e-01 2.316884e+02, 5.139353e-03, 8.791599e-01 2.239084e+02, 4.874604e-03, 8.609522e-01 2.210938e+02, 4.882548e-03, 8.550016e-01 2.253506e+02, 4.935754e-03, 8.608860e-01 1.932055e+02, 4.722053e-03, 7.569970e-01 2.291278e+02, 5.024769e-03, 8.902487e-01 183.82850588, 0.00467002, 0.72321974 2.079410e+02, 4.744699e-03, 8.113616e-01
Female 10-24 years Self-harm by firearm Brazil 40.998270875, 0.003381443, 0.156426601 37.867745933, 0.003124463, 0.145346727 36.570085896, 0.003114193, 0.141345426 33.308000897, 0.002991753, 0.130659193 32.429549217, 0.002978413, 0.128066440 34.720689112, 0.003005277, 0.135200108 32.071390213, 0.003137822, 0.128638078 32.849832306, 0.003037681, 0.130466009 31.082546446, 0.003142641, 0.125256327 32.648187236, 0.003123414, 0.130326652
Both 10-24 years Self-harm by firearm Brazil 2.841811e+02, 5.087164e-03, 5.373394e-01 2.719514e+02, 4.815224e-03, 5.172281e-01 2.682585e+02, 4.720844e-03, 5.136470e-01 2.572164e+02, 4.507258e-03, 4.994557e-01 2.535233e+02, 4.513426e-03, 4.953436e-01 260.07124002, 0.00454588, 0.50151088 2.252769e+02, 4.405362e-03, 4.464986e-01 2.619776e+02, 4.643795e-03, 5.145256e-01 2.149111e+02, 4.363305e-03, 4.278265e-01 2.405892e+02, 4.432444e-03, 4.747250e-01
Male 10-24 years Self-harm by other specified means Brazil 1.579889e+03, 3.612324e-02, 5.922194e+00 1.616335e+03, 3.644114e-02, 6.093575e+00 1.630665e+03, 3.617345e-02, 6.187686e+00 1.656360e+03, 3.606077e-02, 6.368886e+00 1.659312e+03, 3.664391e-02, 6.416797e+00 1.641926e+03, 3.596285e-02, 6.272500e+00 1.543055e+03, 3.771238e-02, 6.045833e+00 1.682518e+03, 3.690164e-02, 6.537225e+00 1.488656e+03, 3.781921e-02, 5.856683e+00 1.637666e+03, 3.736885e-02, 6.389982e+00
Female 10-24 years Self-harm by other specified means Brazil 509.47591114, 0.04202053, 1.94387674 520.29319432, 0.04292932, 1.99702705 517.16165411, 0.04404046, 1.99885870 514.77979384, 0.04623744, 2.01935603 516.22532657, 0.04741141, 2.03860805 515.42933880, 0.04461408, 2.00704836 493.49147531, 0.04828128, 1.97939019 522.66534688, 0.04833059, 2.07581156 471.81959343, 0.04770254, 1.90133680 515.40204064, 0.04930795, 2.05740742
Both 10-24 years Self-harm by other specified means Brazil 2.089365e+03, 3.740336e-02, 3.950644e+00 2.136628e+03, 3.783344e-02, 4.063682e+00 2.147826e+03, 3.779908e-02, 4.112543e+00 2.171140e+03, 3.804621e-02, 4.215860e+00 2.175537e+03, 3.873115e-02, 4.250647e+00 2.157356e+03, 3.770991e-02, 4.160157e+00 2.036547e+03, 3.982494e-02, 4.036433e+00 2.205184e+03, 3.909264e-02, 4.330994e+00 1.960476e+03, 3.980417e-02, 3.902747e+00 2.153068e+03, 3.966786e-02, 4.248384e+00
Male 10-24 years Self-harm United States of America 4212.8011657, 0.1766346, 12.7246352 4339.3983271, 0.1823523, 13.0713433 4337.8092907, 0.1861862, 13.0400342 4480.6063309, 0.1934223, 13.4648750 4649.4353906, 0.1921291, 14.0070077 4366.9057423, 0.1905217, 13.1157396 4461.8905758, 0.1817873, 13.4907701 4842.4602389, 0.1908789, 14.6164506 4359.4601487, 0.1785376, 13.2048202 4694.2453515, 0.1857998, 14.1802308
Female 10-24 years Self-harm United States of America 1005.9477838, 0.1107997, 3.1854933 1037.192026, 0.115231, 3.273472 1070.6950002, 0.1201195, 3.3704167 1139.3927686, 0.1267619, 3.5820397 1201.7436428, 0.1284404, 3.7860556 1103.1131745, 0.1239934, 3.4675291 1189.1248681, 0.1239834, 3.7555908 1245.2315674, 0.1279339, 3.9295065 1131.2928648, 0.1206512, 3.5776743 1219.4087488, 0.1257732, 3.8497639
Both 10-24 years Self-harm United States of America 5218.7489496, 0.1584833, 8.0677598 5376.5903534, 0.1639315, 8.2866488 5408.5042910, 0.1679044, 8.3165844 5619.9990995, 0.1747876, 8.6348942 5851.1790334, 0.1743707, 9.0108320 5470.0189168, 0.1719196, 8.4014786 5651.015444, 0.165546, 8.729264 6087.6918063, 0.1734253, 9.3917646 5490.7530135, 0.1624758, 8.4950073 5913.6541003, 0.1691531, 9.1289608
Male 10-24 years Self-harm by firearm United States of America 2.046615e+03, 8.581075e-02, 6.181737e+00 2119.4649272, 0.0890651, 6.3843537 2.117602e+03, 9.089099e-02, 6.365793e+00 2.198418e+03, 9.490301e-02, 6.606567e+00 2.332415e+03, 9.638264e-02, 7.026692e+00 2.125406e+03, 9.272806e-02, 6.383530e+00 2.291467e+03, 9.335995e-02, 6.928375e+00 2.492794e+03, 9.826026e-02, 7.524233e+00 2.230392e+03, 9.134297e-02, 6.755867e+00 2.417909e+03, 9.570171e-02, 7.303944e+00
Female 10-24 years Self-harm by firearm United States of America 258.38029904, 0.02845917, 0.81820221 265.94955394, 0.02954678, 0.83936095 276.74025696, 0.03104702, 0.87114442 299.43202339, 0.03331298, 0.94135878 316.02653316, 0.03377638, 0.99563168 287.89572483, 0.03236038, 0.90497223 309.46829404, 0.03226656, 0.97738791 328.8867682, 0.0337895, 1.0378493 296.47003477, 0.03161828, 0.93757616 318.24369901, 0.03282459, 1.00471897
Both 10-24 years Self-harm by firearm United States of America 2.304995e+03, 6.999831e-02, 3.563334e+00 2.385414e+03, 7.273085e-02, 3.676511e+00 2.394342e+03, 7.433122e-02, 3.681747e+00 2.497850e+03, 7.768556e-02, 3.837842e+00 2.648441e+03, 7.892604e-02, 4.078607e+00 2.413302e+03, 7.584869e-02, 3.706624e+00 2.600935e+03, 7.619453e-02, 4.017729e+00 2821.6808019, 0.0803836, 4.3531379 2526.8624993, 0.0747715, 3.9094302 2.736152e+03, 7.826452e-02, 4.223823e+00
Male 10-24 years Self-harm by other specified means United States of America 2166.1862775, 0.0908239, 6.5428984 2.219933e+03, 9.328719e-02, 6.686990e+00 2.220208e+03, 9.529519e-02, 6.674241e+00 2.282188e+03, 9.851933e-02, 6.858308e+00 2.317021e+03, 9.574651e-02, 6.980316e+00 2.241500e+03, 9.779363e-02, 6.732210e+00 2.170424e+03, 8.842736e-02, 6.562395e+00 2.349666e+03, 9.261867e-02, 7.092217e+00 2.129068e+03, 8.719462e-02, 6.448954e+00 2.276337e+03, 9.009811e-02, 6.876287e+00
Female 10-24 years Self-harm by other specified means United States of America 747.56748477, 0.08234051, 2.36729106 771.24247236, 0.08568419, 2.43411130 793.95474325, 0.08907244, 2.49927224 839.96074518, 0.09344897, 2.64068089 885.71710959, 0.09466402, 2.79042396 815.21744968, 0.09163305, 2.56255683 879.6565741, 0.0917168, 2.7782029 916.34479922, 0.09414439, 2.89165720 834.82282998, 0.08903292, 2.64009814 901.16504978, 0.09294859, 2.84504492
Both 10-24 years Self-harm by other specified means United States of America 2.913754e+03, 8.848495e-02, 4.504425e+00 2.991176e+03, 9.120069e-02, 4.610138e+00 3.014163e+03, 9.357322e-02, 4.634837e+00 3.122149e+03, 9.710203e-02, 4.797052e+00 3.202738e+03, 9.544465e-02, 4.932225e+00 3.056717e+03, 9.607091e-02, 4.694855e+00 3.050080e+03, 8.935152e-02, 4.711535e+00 3.266011e+03, 9.304174e-02, 5.038627e+00 2.963891e+03, 8.770428e-02, 4.585577e+00 3.177502e+03, 9.088862e-02, 4.905138e+00
NA

7.2. Tabela YLLs, Rate, Self-harm, Location, Sex by year

 
YLL_cause_location_sex <- dados %>% 
  rename(year_yll = year) %>% 
  filter(measure_name == "YLLs (Years of Life Lost)") %>%
  filter(location_name != "Global") %>% 
  filter(age_name != "All ages") %>%
  select(sex_name, age_name, cause_name, location_name,year_yll, val) 

tab_YLL_cause_location_sex <- YLL_cause_location_sex %>% 
  pivot_wider(names_from = year_yll, values_from = val) %>% kableone()
Warning: Values are not uniquely identified; output will contain list-cols.
* Use `values_fn = list` to suppress this warning.
* Use `values_fn = length` to identify where the duplicates arise
* Use `values_fn = {summary_fun}` to summarise duplicates
tab_YLL_cause_location_sex
sex_name age_name cause_name location_name 2010-07-14 2011-07-14 2012-07-14 2014-07-14 2015-07-14 2013-07-14 2016-07-14 2018-07-14 2019-07-14 2017-07-14
Male 10-24 years Self-harm Brazil 1.251172e+05, 4.127605e-02, 4.690000e+02 1.271400e+05, 4.132481e-02, 4.793171e+02 1.281604e+05, 4.097463e-02, 4.863149e+02 1.295498e+05, 4.067426e-02, 4.981332e+02 1.295407e+05, 4.128576e-02, 5.009527e+02 1.286188e+05, 4.060340e-02, 4.913505e+02 1.316537e+05, 4.170243e-02, 5.115247e+02 1.194272e+05, 4.220803e-02, 4.679266e+02 1.149752e+05, 4.226442e-02, 4.523365e+02 1.270747e+05, 4.189858e-02, 4.958306e+02
Female 10-24 years Self-harm Brazil 3.848037e+04, 4.503252e-02, 1.468197e+02 3.902852e+04, 4.569208e-02, 1.498021e+02 3.875036e+04, 4.683715e-02, 1.497723e+02 3.837770e+04, 4.898362e-02, 1.505464e+02 3.839502e+04, 5.016163e-02, 1.516245e+02 3.852356e+04, 4.734495e-02, 1.500082e+02 3.886976e+04, 5.117191e-02, 1.543747e+02 3.676135e+04, 5.123521e-02, 1.474495e+02 3.517366e+04, 5.065784e-02, 1.417427e+02 3.835153e+04, 5.225001e-02, 1.530936e+02
Both 10-24 years Self-harm Brazil 1.635975e+05, 4.210223e-02, 3.093358e+02 1.661685e+05, 4.227371e-02, 3.160381e+02 1.669108e+05, 4.220081e-02, 3.195919e+02 1.679275e+05, 4.231471e-02, 3.260770e+02 1.679357e+05, 4.302640e-02, 3.281192e+02 1.671423e+05, 4.198115e-02, 3.223105e+02 1.705234e+05, 4.353888e-02, 3.349090e+02 1.561885e+05, 4.403414e-02, 3.095655e+02 1.501489e+05, 4.397135e-02, 2.989035e+02 1.654262e+05, 4.391535e-02, 3.264152e+02
Male 10-24 years Self-harm by firearm Brazil 1.667671e+04, 5.501449e-03, 6.251242e+01 1.608391e+04, 5.227552e-03, 6.063626e+01 1.594866e+04, 5.098786e-03, 6.051844e+01 1.543677e+04, 4.846509e-03, 5.935607e+01 1.524104e+04, 4.857411e-03, 5.893932e+01 1.553172e+04, 4.903116e-03, 5.933441e+01 1.578798e+04, 5.000492e-03, 6.134231e+01 1.329405e+04, 4.698468e-03, 5.208729e+01 1.264341e+04, 4.647545e-03, 4.974182e+01 1.432416e+04, 4.722750e-03, 5.589121e+01
Female 10-24 years Self-harm by firearm Brazil 2.861997e+03, 3.349307e-03, 1.091979e+01 2.643446e+03, 3.094778e-03, 1.014626e+01 2.556809e+03, 3.090348e-03, 9.882211e+00 2.328831e+03, 2.972452e-03, 9.135438e+00 2.264196e+03, 2.958093e-03, 8.941460e+00 2.428187e+03, 2.984170e-03, 9.455202e+00 2.292404e+03, 3.018012e-03, 9.104484e+00 2.236651e+03, 3.117355e-03, 8.971189e+00 2.166972e+03, 3.121003e-03, 8.732456e+00 2.277919e+03, 3.103432e-03, 9.093110e+00
Both 10-24 years Self-harm by firearm Brazil 1.953870e+04, 5.028170e-03, 3.694446e+01 1.872736e+04, 4.764076e-03, 3.561781e+01 1.850547e+04, 4.678671e-03, 3.543328e+01 1.776561e+04, 4.476519e-03, 3.449676e+01 1.750524e+04, 4.484919e-03, 3.420240e+01 1.795991e+04, 4.510913e-03, 3.463317e+01 1.808038e+04, 4.615977e-03, 3.550998e+01 1.553070e+04, 4.378594e-03, 3.078182e+01 1.481038e+04, 4.337149e-03, 2.948324e+01 1.660208e+04, 4.407191e-03, 3.275884e+01
Male 10-24 years Self-harm by other specified means Brazil 1.084404e+05, 3.577460e-02, 4.064876e+02 1.110561e+05, 3.609726e-02, 4.186808e+02 1.122118e+05, 3.587585e-02, 4.257964e+02 1.141131e+05, 3.582775e-02, 4.387771e+02 1.142997e+05, 3.642835e-02, 4.420134e+02 1.130871e+05, 3.570028e-02, 4.320161e+02 1.158657e+05, 3.670193e-02, 4.501824e+02 1.061331e+05, 3.750956e-02, 4.158393e+02 1.023318e+05, 3.761687e-02, 4.025947e+02 1.127505e+05, 3.717583e-02, 4.399394e+02
Female 10-24 years Self-harm by other specified means Brazil 3.561837e+04, 4.168321e-02, 1.358999e+02 3.638507e+04, 4.259730e-02, 1.396558e+02 3.619355e+04, 4.374680e-02, 1.398901e+02 3.604886e+04, 4.601117e-02, 1.414109e+02 3.613083e+04, 4.720354e-02, 1.426830e+02 3.609537e+04, 4.436078e-02, 1.405530e+02 3.657736e+04, 4.815390e-02, 1.452702e+02 3.452470e+04, 4.811786e-02, 1.384783e+02 3.300669e+04, 4.753684e-02, 1.330102e+02 3.607362e+04, 4.914658e-02, 1.440004e+02
Both 10-24 years Self-harm by other specified means Brazil 1.440588e+05, 3.707406e-02, 2.723914e+02 1.474411e+05, 3.750964e-02, 2.804203e+02 1.484053e+05, 3.752214e-02, 2.841586e+02 1.501619e+05, 3.783819e-02, 2.915803e+02 1.504305e+05, 3.854148e-02, 2.939168e+02 1.491824e+05, 3.747023e-02, 2.876774e+02 1.524431e+05, 3.892290e-02, 2.993991e+02 1.406578e+05, 3.965555e-02, 2.787836e+02 1.353385e+05, 3.963420e-02, 2.694203e+02 1.488241e+05, 3.950816e-02, 2.936563e+02
Male 10-24 years Self-harm United States of America 2.889196e+05, 1.760341e-01, 8.726727e+02 2.974943e+05, 1.817872e-01, 8.961264e+02 2.972632e+05, 1.857202e-01, 8.936128e+02 3.070725e+05, 1.931196e-01, 9.227976e+02 3.186582e+05, 1.919136e-01, 9.599979e+02 2.992183e+05, 1.901435e-01, 8.986842e+02 3.318955e+05, 1.907459e-01, 1.001791e+03 3.064004e+05, 1.817784e-01, 9.264184e+02 2.995300e+05, 1.785830e-01, 9.072775e+02 3.218735e+05, 1.857311e-01, 9.723055e+02
Female 10-24 years Self-harm United States of America 6.965809e+04, 1.103914e-01, 2.205834e+02 7.179229e+04, 1.148854e-01, 2.265830e+02 7.409889e+04, 1.198575e-01, 2.332542e+02 7.893667e+04, 1.267205e-01, 2.481622e+02 8.333512e+04, 1.284874e-01, 2.625447e+02 7.638782e+04, 1.238382e-01, 2.401177e+02 8.649717e+04, 1.280715e-01, 2.729542e+02 82983.721866, 0.124177, 262.085933 78776.668284, 0.120824, 249.128471 84979.55014, 0.12595, 268.28674
Both 10-24 years Self-harm United States of America 3.585777e+05, 1.578052e-01, 5.543318e+02 3.692865e+05, 1.632999e-01, 5.691614e+02 3.713621e+05, 1.673691e-01, 5.710385e+02 3.860092e+05, 1.744294e-01, 5.930870e+02 4.019933e+05, 1.740975e-01, 6.190709e+02 3.756061e+05, 1.714721e-01, 5.768987e+02 4.183927e+05, 1.732210e-01, 6.454738e+02 3.893841e+05, 1.654248e-01, 6.014914e+02 3.783067e+05, 1.624147e-01, 5.852964e+02 4.068531e+05, 1.689789e-01, 6.280627e+02
Male 10-24 years Self-harm by firearm United States of America 1.400924e+05, 8.535620e-02, 4.231447e+02 1.450345e+05, 8.862490e-02, 4.368799e+02 1.448504e+05, 9.049765e-02, 4.354396e+02 1.504414e+05, 9.461343e-02, 4.520985e+02 1.596116e+05, 9.612691e-02, 4.808499e+02 1.453859e+05, 9.238771e-02, 4.366577e+02 1.706205e+05, 9.805837e-02, 5.150000e+02 1.572614e+05, 9.329914e-02, 4.754885e+02 1.530641e+05, 9.125778e-02, 4.636318e+02 1.656664e+05, 9.559481e-02, 5.004401e+02
Female 10-24 years Self-harm by firearm United States of America 1.776759e+04, 2.815736e-02, 5.626390e+01 1.828387e+04, 2.925877e-02, 5.770555e+01 1.902486e+04, 3.077336e-02, 5.988793e+01 2.060171e+04, 3.307281e-02, 6.476796e+01 2.177042e+04, 3.356597e-02, 6.858703e+01 1.979415e+04, 3.208982e-02, 6.222099e+01 2.270057e+04, 3.361144e-02, 7.163490e+01 2.146255e+04, 3.211664e-02, 6.778475e+01 2.051513e+04, 3.146523e-02, 6.487840e+01 2.203994e+04, 3.266593e-02, 6.958173e+01
Both 10-24 years Self-harm by firearm United States of America 1.578600e+05, 6.947214e-02, 2.440386e+02 1.633184e+05, 7.221987e-02, 2.517138e+02 1.638753e+05, 7.385694e-02, 2.519888e+02 1.710432e+05, 7.729074e-02, 2.628007e+02 1.813820e+05, 7.855390e-02, 2.793288e+02 1.651800e+05, 7.540816e-02, 2.537023e+02 1.933211e+05, 8.003784e-02, 2.982455e+02 1.787240e+05, 7.592892e-02, 2.760794e+02 1.735793e+05, 7.452069e-02, 2.685528e+02 1.877064e+05, 7.796045e-02, 2.897640e+02
Male 10-24 years Self-harm by other specified means United States of America 1.488272e+05, 9.067795e-02, 4.495280e+02 1.524598e+05, 9.316235e-02, 4.592466e+02 1.524128e+05, 9.522254e-02, 4.581732e+02 1.566311e+05, 9.850618e-02, 4.706991e+02 1.590466e+05, 9.578667e-02, 4.791479e+02 1.538324e+05, 9.775580e-02, 4.620265e+02 1.612750e+05, 9.268751e-02, 4.867913e+02 1.491390e+05, 8.847930e-02, 4.509298e+02 1.464659e+05, 8.732519e-02, 4.436457e+02 1.562071e+05, 9.013630e-02, 4.718654e+02
Female 10-24 years Self-harm by other specified means United States of America 5.189050e+04, 8.223401e-02, 1.643195e+02 5.350842e+04, 8.562666e-02, 1.688774e+02 5.507403e+04, 8.908413e-02, 1.733663e+02 5.833496e+04, 9.364767e-02, 1.833943e+02 6.156470e+04, 9.492147e-02, 1.939576e+02 5.659367e+04, 9.174840e-02, 1.778967e+02 6.379660e+04, 9.446001e-02, 2.013193e+02 6.152118e+04, 9.206035e-02, 1.943012e+02 5.826153e+04, 8.935877e-02, 1.842501e+02 6.293961e+04, 9.328409e-02, 1.987050e+02
Both 10-24 years Self-harm by other specified means United States of America 2.007177e+05, 8.833309e-02, 3.102932e+02 2.059682e+05, 9.108003e-02, 3.174476e+02 2.074868e+05, 9.351219e-02, 3.190497e+02 2.149660e+05, 9.713870e-02, 3.302863e+02 2.206113e+05, 9.554361e-02, 3.397421e+02 2.104261e+05, 9.606398e-02, 3.231964e+02 2.250716e+05, 9.318315e-02, 3.472283e+02 2.106601e+05, 8.949591e-02, 3.254120e+02 2.047274e+05, 8.789402e-02, 3.167436e+02 2.191467e+05, 9.101841e-02, 3.382987e+02
NA

7.3. Tabela DALYs, Rate, Self-harm, Location, Sex by year

 
DALY_cause_location_sex <- dados %>% 
  rename(year_DALY = year) %>% 
  filter(measure_name == "DALYs (Disability-Adjusted Life Years)") %>%
  filter(location_name != "Global") %>% 
  filter(age_name != "All ages") %>%
  select(sex_name, age_name, cause_name, location_name,year_DALY, val) 

tab_DALY_cause_location_sex <- DALY_cause_location_sex %>% 
  pivot_wider(names_from = year_DALY, values_from = val) %>% kableone()
Warning: Values are not uniquely identified; output will contain list-cols.
* Use `values_fn = list` to suppress this warning.
* Use `values_fn = length` to identify where the duplicates arise
* Use `values_fn = {summary_fun}` to summarise duplicates
tab_DALY_cause_location_sex
sex_name age_name cause_name location_name 2010-07-14 2011-07-14 2012-07-14 2014-07-14 2015-07-14 2013-07-14 2018-07-14 2019-07-14 2016-07-14 2017-07-14
Male 10-24 years Self-harm United States of America 2.903364e+05, 6.938665e-02, 8.769520e+02 2.989262e+05, 7.124378e-02, 9.004399e+02 2.987142e+05, 7.155483e-02, 8.979747e+02 3.085510e+05, 7.387550e-02, 9.272406e+02 3.201354e+05, 7.548142e-02, 9.644480e+02 3.006865e+05, 7.232710e-02, 9.030939e+02 3.078213e+05, 7.171842e-02, 9.307144e+02 3.009542e+05, 6.939134e-02, 9.115914e+02 3.333483e+05, 7.717775e-02, 1.006176e+03 3.233013e+05, 7.491866e-02, 9.766186e+02
Female 10-24 years Self-harm United States of America 7.169852e+04, 1.941546e-02, 2.270447e+02 7.384866e+04, 1.992263e-02, 2.330731e+02 76168.54215, 0.02047, 239.76924 8.101850e+04, 2.157926e-02, 2.547071e+02 8.541565e+04, 2.257838e-02, 2.690993e+02 7.846431e+04, 2.099785e-02, 2.466449e+02 8.513316e+04, 2.217151e-02, 2.688745e+02 8.081867e+04, 2.092755e-02, 2.555862e+02 8.863800e+04, 2.320082e-02, 2.797099e+02 8.717284e+04, 2.276754e-02, 2.752111e+02
Both 10-24 years Self-harm United States of America 3.620349e+05, 4.594699e-02, 5.596764e+02 3.727749e+05, 4.715731e-02, 5.745379e+02 3.748827e+05, 4.746557e-02, 5.764521e+02 3.895695e+05, 4.910363e-02, 5.985572e+02 4.055510e+05, 5.052195e-02, 6.245497e+02 3.791508e+05, 4.801565e-02, 5.823430e+02 3.929544e+05, 4.830483e-02, 6.070065e+02 3.817729e+05, 4.654728e-02, 5.906592e+02 4.219863e+05, 5.182239e-02, 6.510178e+02 4.104742e+05, 5.038139e-02, 6.336527e+02
Male 10-24 years Self-harm by firearm United States of America 1.401134e+05, 3.349086e-02, 4.232082e+02 1.450557e+05, 3.457714e-02, 4.369439e+02 1.448720e+05, 3.470898e-02, 4.355045e+02 1.504637e+05, 3.603201e-02, 4.521654e+02 1.596341e+05, 3.764555e-02, 4.809179e+02 1.454078e+05, 3.498266e-02, 4.367236e+02 1.572862e+05, 3.665104e-02, 4.755634e+02 1.530898e+05, 3.530322e-02, 4.637096e+02 1.706438e+05, 3.951511e-02, 5.150700e+02 1.656905e+05, 3.840231e-02, 5.005127e+02
Female 10-24 years Self-harm by firearm United States of America 1.777206e+04, 4.814846e-03, 5.627806e+01 1.828840e+04, 4.936121e-03, 5.771984e+01 1.902945e+04, 5.116358e-03, 5.990239e+01 2.060647e+04, 5.490826e-03, 6.478293e+01 2.177527e+04, 5.758237e-03, 6.860230e+01 1.979883e+04, 5.300645e-03, 6.223570e+01 2.146823e+04, 5.593617e-03, 6.780269e+01 2.052073e+04, 5.315586e-03, 6.489608e+01 2.270583e+04, 5.945660e-03, 7.165150e+01 2.204560e+04, 5.760439e-03, 6.959959e+01
Both 10-24 years Self-harm by firearm United States of America 1.578855e+05, 2.004287e-02, 2.440781e+02 1.633441e+05, 2.066879e-02, 2.517535e+02 1.639014e+05, 2.075755e-02, 2.520290e+02 1.710702e+05, 2.156847e-02, 2.628422e+02 1.814094e+05, 2.260501e-02, 2.793710e+02 1.652066e+05, 2.092734e-02, 2.537432e+02 1.787544e+05, 2.197840e-02, 2.761264e+02 1.736105e+05, 2.117160e-02, 2.686012e+02 1.933496e+05, 2.375014e-02, 2.982894e+02 1.877361e+05, 2.304818e-02, 2.898099e+02
Male 10-24 years Self-harm by other specified means United States of America 1.502230e+05, 3.589579e-02, 4.537438e+02 1.538705e+05, 3.666664e-02, 4.634961e+02 1.538422e+05, 3.684585e-02, 4.624702e+02 1.580873e+05, 3.784349e-02, 4.750752e+02 1.605012e+05, 3.783587e-02, 4.835301e+02 1.552787e+05, 3.734444e-02, 4.663703e+02 1.505351e+05, 3.506737e-02, 4.551510e+02 1.478644e+05, 3.408811e-02, 4.478819e+02 1.627045e+05, 3.766265e-02, 4.911063e+02 1.576108e+05, 3.651635e-02, 4.761059e+02
Female 10-24 years Self-harm by other specified means United States of America 5.392645e+04, 1.460061e-02, 1.707667e+02 5.556027e+04, 1.498651e-02, 1.753532e+02 5.713909e+04, 1.535364e-02, 1.798669e+02 6.041203e+04, 1.608843e-02, 1.899242e+02 6.364039e+04, 1.682014e-02, 2.004970e+02 5.866548e+04, 1.569720e-02, 1.844093e+02 6.366493e+04, 1.657790e-02, 2.010718e+02 6.029795e+04, 1.561197e-02, 1.906902e+02 6.593217e+04, 1.725516e-02, 2.080584e+02 6.512724e+04, 1.700710e-02, 2.056115e+02
Both 10-24 years Self-harm by other specified means United States of America 2.041494e+05, 2.590412e-02, 3.155984e+02 2.094308e+05, 2.648852e-02, 3.227843e+02 2.109813e+05, 2.670802e-02, 3.244231e+02 2.184993e+05, 2.753516e-02, 3.357150e+02 2.241416e+05, 2.791694e-02, 3.451787e+02 2.139442e+05, 2.708831e-02, 3.285999e+02 2.142000e+05, 2.632643e-02, 3.308801e+02 2.081624e+05, 2.537567e-02, 3.220580e+02 2.286367e+05, 2.807226e-02, 3.527284e+02 2.227381e+05, 2.733320e-02, 3.438428e+02
Male 10-24 years Self-harm Brazil 1.252964e+05, 2.623909e-02, 4.696717e+02 1.273203e+05, 2.646065e-02, 4.799969e+02 1.283421e+05, 2.644129e-02, 4.870043e+02 1.297370e+05, 2.649262e-02, 4.988528e+02 1.297288e+05, 2.678128e-02, 5.016799e+02 1.288036e+05, 2.635995e-02, 4.920566e+02 1.196112e+05, 2.642987e-02, 4.686477e+02 1.151706e+05, 2.620443e-02, 4.531051e+02 1.318368e+05, 2.709017e-02, 5.122361e+02 1.272536e+05, 2.683046e-02, 4.965287e+02
Female 10-24 years Self-harm Brazil 3.868999e+04, 1.204404e-02, 1.476195e+02 3.923709e+04, 1.229235e-02, 1.506027e+02 3.895728e+04, 1.240190e-02, 1.505720e+02 3.858452e+04, 1.264689e-02, 1.513577e+02 3.860162e+04, 1.279812e-02, 1.524404e+02 3.873097e+04, 1.247961e-02, 1.508159e+02 3.695411e+04, 1.256050e-02, 1.482226e+02 3.536866e+04, 1.218164e-02, 1.425285e+02 3.906880e+04, 1.300531e-02, 1.551652e+02 3.854400e+04, 1.296997e-02, 1.538619e+02
Both 10-24 years Self-harm Brazil 1.639863e+05, 2.050789e-02, 3.100710e+02 1.665574e+05, 2.078697e-02, 3.167778e+02 1.672994e+05, 2.090075e-02, 3.203359e+02 1.683215e+05, 2.115128e-02, 3.268420e+02 1.683304e+05, 2.138821e-02, 3.288903e+02 1.675346e+05, 2.094325e-02, 3.230669e+02 1.565653e+05, 2.094116e-02, 3.103123e+02 1.505392e+05, 2.060296e-02, 2.996806e+02 1.709056e+05, 2.168687e-02, 3.356596e+02 1.657976e+05, 2.146495e-02, 3.271480e+02
Male 10-24 years Self-harm by firearm Brazil 1.669203e+04, 3.495670e-03, 6.256985e+01 1.609967e+04, 3.346077e-03, 6.069567e+01 1.596500e+04, 3.289367e-03, 6.058047e+01 1.545415e+04, 3.156203e-03, 5.942290e+01 1.525860e+04, 3.150500e-03, 5.900719e+01 1.554866e+04, 3.182467e-03, 5.939912e+01 1.331047e+04, 2.941611e-03, 5.215165e+01 1.266089e+04, 2.881044e-03, 4.981059e+01 1.580476e+04, 3.247870e-03, 6.140751e+01 1.434020e+04, 3.023877e-03, 5.595378e+01
Female 10-24 years Self-harm by firearm Brazil 2.867273e+03, 8.930022e-04, 1.093992e+01 2.648725e+03, 8.301655e-04, 1.016653e+01 2.562143e+03, 8.159799e-04, 9.902824e+00 2.334304e+03, 7.653607e-04, 9.156907e+00 2.269673e+03, 7.526899e-04, 8.963088e+00 2.433603e+03, 7.843999e-04, 9.476291e+00 2.242020e+03, 7.623414e-04, 8.992722e+00 2.172786e+03, 7.486503e-04, 8.755885e+00 2.297731e+03, 7.650768e-04, 9.125640e+00 2.283113e+03, 7.685114e-04, 9.113842e+00
Both 10-24 years Self-harm by firearm Brazil 1.955930e+04, 2.446281e-03, 3.698340e+01 1.874839e+04, 2.340129e-03, 3.565783e+01 1.852715e+04, 2.314941e-03, 3.547479e+01 1.778846e+04, 2.235743e-03, 3.454114e+01 1.752827e+04, 2.227612e-03, 3.424740e+01 1.798226e+04, 2.248358e-03, 3.467627e+01 1.555249e+04, 2.080621e-03, 3.082502e+01 1.483368e+04, 2.030531e-03, 2.952961e+01 1.810249e+04, 2.297421e-03, 3.555339e+01 1.662331e+04, 2.152510e-03, 3.280073e+01
Male 10-24 years Self-harm by other specified means Brazil 1.086043e+05, 2.274342e-02, 4.071019e+02 1.112206e+05, 2.311457e-02, 4.193012e+02 1.123771e+05, 2.315192e-02, 4.264238e+02 1.142828e+05, 2.333642e-02, 4.394298e+02 1.144702e+05, 2.363078e-02, 4.426727e+02 1.132550e+05, 2.317749e-02, 4.326575e+02 1.063007e+05, 2.348826e-02, 4.164960e+02 1.025097e+05, 2.332339e-02, 4.032945e+02 1.160320e+05, 2.384230e-02, 4.508286e+02 1.129134e+05, 2.380658e-02, 4.405749e+02
Female 10-24 years Self-harm by other specified means Brazil 3.582272e+04, 1.115104e-02, 1.366796e+02 3.658837e+04, 1.146218e-02, 1.404361e+02 3.639513e+04, 1.158592e-02, 1.406692e+02 3.625021e+04, 1.188153e-02, 1.422008e+02 3.633195e+04, 1.204543e-02, 1.434773e+02 3.629737e+04, 1.169521e-02, 1.413396e+02 3.471209e+04, 1.179816e-02, 1.392299e+02 3.319588e+04, 1.143299e-02, 1.337726e+02 3.677107e+04, 1.224024e-02, 1.460395e+02 3.626089e+04, 1.220146e-02, 1.447480e+02
Both 10-24 years Self-harm by other specified means Brazil 1.444270e+05, 1.806161e-02, 2.730876e+02 1.478090e+05, 1.844684e-02, 2.811200e+02 1.487722e+05, 1.858581e-02, 2.848611e+02 1.505330e+05, 1.891553e-02, 2.923009e+02 1.508021e+05, 1.916060e-02, 2.946429e+02 1.495523e+05, 1.869490e-02, 2.883907e+02 1.410128e+05, 1.886054e-02, 2.794872e+02 1.357056e+05, 1.857243e-02, 2.701510e+02 1.528031e+05, 1.938945e-02, 3.001062e+02 1.491743e+05, 1.931244e-02, 2.943472e+02
NA
LS0tCnRpdGxlOiAiUmVsYXTDs3JpbyBHQkQtIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgojIyAxLiBDYXJyZWdhbmRvIHBhY290ZXMgZSBhIGJhc2UgZGUgZGFkb3MKYGBge3J9CmxpYnJhcnkodGlkeXZlcnNlKSAjbWFuaXB1bGFyIGRhZG9zCmxpYnJhcnkoZ3RzdW1tYXJ5KSAjZ2VyYXIgdGFiZWxhcwpsaWJyYXJ5KGx1YnJpZGF0ZSkgI21hbmlwdWxhciBkYXRhcwpsaWJyYXJ5KHJtYXJrZG93bikgI3Bsb3RhciB0YWJlbGEgZ2VyYWwKbGlicmFyeSh0YWJsZW9uZSkgI2dlcmFyIHRhYmVsYSBkZSBkdXBsYSBlbnRyYWRhCgojaW1wb3J0YW5kbyBhIGJhc2UKZGFkb3MgPC0gcmVhZF9jc3YoImRhdGEvSUhNRS1HQkRfMjAxOV9EQVRBLTYyMWFiNGQzLTEuY3N2IikKCiNwbG90YW5kbyBhIGJhc2UgZGUgZGFkb3MKcGFnZWRfdGFibGUoZGFkb3MpCgpgYGAKCiMjIDIuIFByw6ktcHJvY2Vzc2FtZW50bwpgYGB7cn0KI3ByZS1wcm9jZXNzYW1lbnRvCmRhZG9zJG1lYXN1cmVfbmFtZSA8LSBhcy5mYWN0b3IoZGFkb3MkbWVhc3VyZV9uYW1lKSAjdHJhbnNmb3JtYW5kbyBlbSBmYXRvcgpkYWRvcyRzZXhfbmFtZSA8LSBhcy5mYWN0b3IoZGFkb3Mkc2V4X25hbWUpICN0cmFuc2Zvcm1hbmRvIGVtIGZhdG9yCmRhZG9zJGFnZV9uYW1lIDwtIGFzLmZhY3RvcihkYWRvcyRhZ2VfbmFtZSkgI3RyYW5zZm9ybWFuZG8gZW0gZmF0b3IKZGFkb3MkY2F1c2VfbmFtZSA8LSBhcy5mYWN0b3IoZGFkb3MkY2F1c2VfbmFtZSkgI3RyYW5zZm9ybWFuZG8gZW0gZmF0b3IKZGFkb3MkbWV0cmljX25hbWUgPC0gYXMuZmFjdG9yKGRhZG9zJG1ldHJpY19uYW1lKSAjdHJhbnNmb3JtYW5kbyBlbSBmYXRvcgpkYWRvcyRsb2NhdGlvbl9uYW1lIDwtIGFzLmZhY3RvcihkYWRvcyRsb2NhdGlvbl9uYW1lKSAjdHJhbnNmb3JtYW5kbyBlbSBmYXRvcgpkYWRvcyR5ZWFyIDwtIGFzLkRhdGUoYXMuY2hhcmFjdGVyKGRhZG9zJHllYXIpLCBmb3JtYXQgPSAiJVkiKSAjdHJhbnNmb3JtYW5kbyBlbSBkYXRhCmBgYAoKCiMjIDMuIEdlcmFuZG8gdmlzdWFsaXphw6fDtWVzIGdyw6FmaWNhcyAoWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSkKCiMjIyAzLjEgWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSwgcmF0ZSwgU2VsZi1oYXJtLCBBbGwgYWdlcwpgYGB7cn0KI1lMTHMgKFllYXJzIG9mIExpZmUgTG9zdCksIHJhdGUsIFNlbGYtaGFybSwgQWxsIGFnZXMKZGFkb3MgJT4lIAogIGZpbHRlcihtZWFzdXJlX25hbWUgPT0gIllMTHMgKFllYXJzIG9mIExpZmUgTG9zdCkiKSAlPiUgCiAgZmlsdGVyKGFnZV9uYW1lID09ICJBbGwgYWdlcyIpICU+JSAKICBmaWx0ZXIoY2F1c2VfbmFtZSA9PSAiU2VsZi1oYXJtIikgJT4lICAgCiAgZmlsdGVyKG1ldHJpY19uYW1lID09ICJSYXRlIikgJT4lIAogIGdncGxvdChhZXMoeWVhciwgdmFsLCBmaWxsPWxvY2F0aW9uX25hbWUsIGNvbG9yPWxvY2F0aW9uX25hbWUpKSArIAogIGdlb21fbGluZSgpICsKICBmYWNldF93cmFwKH5zZXhfbmFtZSkgKwogIGxhYnModGl0bGUgPSAiWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSwgcmF0ZSwgU2VsZi1oYXJtLCBBbGwgYWdlcyIsCiAgICAgICBmaWxsPSJMb2NhdGlvbiIsIGNvbG9yPSJMb2NhdGlvbiIsIHk9IlJhdGUiLCB4PSIiKSArCiAgdGhlbWVfYncoKQpgYGAKCiMjIyAzLjIgWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSwgcmF0ZSwgU2VsZi1oYXJtIGJ5IGZpcmVhcm0sIEFsbCBhZ2VzCmBgYHtyfQojWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSwgcmF0ZSwgU2VsZi1oYXJtIGJ5IGZpcmVhcm0sIEFsbCBhZ2VzCmRhZG9zICU+JSAKICBmaWx0ZXIobWVhc3VyZV9uYW1lID09ICJZTExzIChZZWFycyBvZiBMaWZlIExvc3QpIikgJT4lIAogIGZpbHRlcihhZ2VfbmFtZSA9PSAiQWxsIGFnZXMiKSAlPiUgCiAgZmlsdGVyKGNhdXNlX25hbWUgPT0gIlNlbGYtaGFybSBieSBmaXJlYXJtIikgJT4lICAgCiAgZmlsdGVyKG1ldHJpY19uYW1lID09ICJSYXRlIikgJT4lIAogIGdncGxvdChhZXMoeWVhciwgdmFsLCBmaWxsPWxvY2F0aW9uX25hbWUsIGNvbG9yPWxvY2F0aW9uX25hbWUpKSArIAogIGdlb21fbGluZSgpICsKICBmYWNldF93cmFwKH5zZXhfbmFtZSkgKwogIGxhYnModGl0bGUgPSAiWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSwgcmF0ZSwgU2VsZi1oYXJtIGJ5IGZpcmVhcm0sIEFsbCBhZ2VzIiwKICAgICAgIGZpbGw9IkxvY2F0aW9uIiwgY29sb3I9IkxvY2F0aW9uIiwgeT0iUmF0ZSIsIHg9IiIpICsKICB0aGVtZV9idygpCmBgYAoKIyMjIDMuMyBZTExzIChZZWFycyBvZiBMaWZlIExvc3QpLCByYXRlLCBTZWxmLWhhcm0gYnkgb3RoZXIgc3BlY2lmaWVkIG1lYW5zLCBBbGwgYWdlcwpgYGB7cn0KI1lMTHMgKFllYXJzIG9mIExpZmUgTG9zdCksIHJhdGUsIFNlbGYtaGFybSBieSBmaXJlYXJtLCBBbGwgYWdlcwpkYWRvcyAlPiUgCiAgZmlsdGVyKG1lYXN1cmVfbmFtZSA9PSAiWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSIpICU+JSAKICBmaWx0ZXIoYWdlX25hbWUgPT0gIkFsbCBhZ2VzIikgJT4lIAogIGZpbHRlcihjYXVzZV9uYW1lID09ICJTZWxmLWhhcm0gYnkgb3RoZXIgc3BlY2lmaWVkIG1lYW5zIikgJT4lICAgCiAgZmlsdGVyKG1ldHJpY19uYW1lID09ICJSYXRlIikgJT4lIAogIGdncGxvdChhZXMoeWVhciwgdmFsLCBmaWxsPWxvY2F0aW9uX25hbWUsIGNvbG9yPWxvY2F0aW9uX25hbWUpKSArIAogIGdlb21fbGluZSgpICsKICBmYWNldF93cmFwKH5zZXhfbmFtZSkgKwogIGxhYnModGl0bGUgPSAiWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSwgcmF0ZSwgU2VsZi1oYXJtIGJ5IG90aGVyIHNwZWNpZmllZCBtZWFucywgQWxsIGFnZXMiLAogICAgICAgZmlsbD0iTG9jYXRpb24iLCBjb2xvcj0iTG9jYXRpb24iLCB5PSJSYXRlIiwgeD0iIikgKwogIHRoZW1lX2J3KCkKYGBgCgojIyA0LiBHZXJhbmRvIHZpc3VhbGl6YcOnw7VlcyBncsOhZmljYXMgKERlYXRocykKCiMjIyA0LjEgRGVhdGhzLCByYXRlLCBTZWxmLWhhcm0sIEFsbCBhZ2VzCmBgYHtyfQojRGVhdGhzLCByYXRlLCBTZWxmLWhhcm0sIEFsbCBhZ2VzCmRhZG9zICU+JSAKICBmaWx0ZXIobWVhc3VyZV9uYW1lID09ICJEZWF0aHMiKSAlPiUgCiAgZmlsdGVyKGFnZV9uYW1lID09ICJBbGwgYWdlcyIpICU+JSAKICBmaWx0ZXIoY2F1c2VfbmFtZSA9PSAiU2VsZi1oYXJtIikgJT4lICAgCiAgZmlsdGVyKG1ldHJpY19uYW1lID09ICJSYXRlIikgJT4lIAogIGdncGxvdChhZXMoeWVhciwgdmFsLCBmaWxsPWxvY2F0aW9uX25hbWUsIGNvbG9yPWxvY2F0aW9uX25hbWUpKSArIAogIGdlb21fbGluZSgpICsKICBmYWNldF93cmFwKH5zZXhfbmFtZSkgKwogIGxhYnModGl0bGUgPSAiRGVhdGhzLCByYXRlLCBTZWxmLWhhcm0sIEFsbCBhZ2VzIiwKICAgICAgIGZpbGw9IkxvY2F0aW9uIiwgY29sb3I9IkxvY2F0aW9uIiwgeT0iUmF0ZSIsIHg9IiIpICsKICB0aGVtZV9idygpCmBgYAoKIyMjIDQuMiBEZWF0aHMsIHJhdGUsIFNlbGYtaGFybSwgQWxsIGFnZXMKYGBge3J9CiNEZWF0aHMsIHJhdGUsIFNlbGYtaGFybSBieSBmaXJlYXJtLCBBbGwgYWdlcwpkYWRvcyAlPiUgCiAgZmlsdGVyKG1lYXN1cmVfbmFtZSA9PSAiRGVhdGhzIikgJT4lIAogIGZpbHRlcihhZ2VfbmFtZSA9PSAiQWxsIGFnZXMiKSAlPiUgCiAgZmlsdGVyKGNhdXNlX25hbWUgPT0gIlNlbGYtaGFybSBieSBmaXJlYXJtIikgJT4lICAgCiAgZmlsdGVyKG1ldHJpY19uYW1lID09ICJSYXRlIikgJT4lIAogIGdncGxvdChhZXMoeWVhciwgdmFsLCBmaWxsPWxvY2F0aW9uX25hbWUsIGNvbG9yPWxvY2F0aW9uX25hbWUpKSArIAogIGdlb21fbGluZSgpICsKICBmYWNldF93cmFwKH5zZXhfbmFtZSkgKwogIGxhYnModGl0bGUgPSAiRGVhdGhzLCByYXRlLCBTZWxmLWhhcm0gYnkgZmlyZWFybSwgQWxsIGFnZXMiLAogICAgICAgZmlsbD0iTG9jYXRpb24iLCBjb2xvcj0iTG9jYXRpb24iLCB5PSJSYXRlIiwgeD0iIikgKwogIHRoZW1lX2J3KCkKYGBgCgojIyMgNC4zIERlYXRocywgcmF0ZSwgU2VsZi1oYXJtLCBBbGwgYWdlcwpgYGB7cn0KI0RlYXRocywgcmF0ZSwgU2VsZi1oYXJtIGJ5IG90aGVyIHNwZWNpZmllZCBtZWFucywgQWxsIGFnZXMKZGFkb3MgJT4lIAogIGZpbHRlcihtZWFzdXJlX25hbWUgPT0gIkRlYXRocyIpICU+JSAKICBmaWx0ZXIoYWdlX25hbWUgPT0gIkFsbCBhZ2VzIikgJT4lIAogIGZpbHRlcihjYXVzZV9uYW1lID09ICJTZWxmLWhhcm0gYnkgb3RoZXIgc3BlY2lmaWVkIG1lYW5zIikgJT4lICAgCiAgZmlsdGVyKG1ldHJpY19uYW1lID09ICJSYXRlIikgJT4lIAogIGdncGxvdChhZXMoeWVhciwgdmFsLCBmaWxsPWxvY2F0aW9uX25hbWUsIGNvbG9yPWxvY2F0aW9uX25hbWUpKSArIAogIGdlb21fbGluZSgpICsKICBmYWNldF93cmFwKH5zZXhfbmFtZSkgKwogIGxhYnModGl0bGUgPSAiRGVhdGhzLCByYXRlLCBTZWxmLWhhcm0gYnkgb3RoZXIgc3BlY2lmaWVkIG1lYW5zLCBBbGwgYWdlcyIsCiAgICAgICBmaWxsPSJMb2NhdGlvbiIsIGNvbG9yPSJMb2NhdGlvbiIsIHk9IlJhdGUiLCB4PSIiKSArCiAgdGhlbWVfYncoKQpgYGAKIyMgNS4gR2VyYW5kbyB2aXN1YWxpemHDp8O1ZXMgZ3LDoWZpY2FzIChEQUxZcyAoRGlzYWJpbGl0eS1BZGp1c3RlZCBMaWZlIFllYXJzKSkKCiMjIyA1LjEgRGVhdGhzLCByYXRlLCBTZWxmLWhhcm0sIEFsbCBhZ2VzCmBgYHtyfQojRGVhdGhzLCByYXRlLCBTZWxmLWhhcm0sIEFsbCBhZ2VzCmRhZG9zICU+JSAKICBmaWx0ZXIobWVhc3VyZV9uYW1lID09ICJEQUxZcyAoRGlzYWJpbGl0eS1BZGp1c3RlZCBMaWZlIFllYXJzKSIpICU+JSAKICBmaWx0ZXIoYWdlX25hbWUgPT0gIkFsbCBhZ2VzIikgJT4lIAogIGZpbHRlcihjYXVzZV9uYW1lID09ICJTZWxmLWhhcm0iKSAlPiUgICAKICBmaWx0ZXIobWV0cmljX25hbWUgPT0gIlJhdGUiKSAlPiUgCiAgZ2dwbG90KGFlcyh5ZWFyLCB2YWwsIGZpbGw9bG9jYXRpb25fbmFtZSwgY29sb3I9bG9jYXRpb25fbmFtZSkpICsgCiAgZ2VvbV9saW5lKCkgKwogIGZhY2V0X3dyYXAofnNleF9uYW1lKSArCiAgbGFicyh0aXRsZSA9ICJEZWF0aHMsIHJhdGUsIFNlbGYtaGFybSwgQWxsIGFnZXMiLAogICAgICAgZmlsbD0iTG9jYXRpb24iLCBjb2xvcj0iTG9jYXRpb24iLCB5PSJSYXRlIiwgeD0iIikgKwogIHRoZW1lX2J3KCkKYGBgCgojIyMgNS4yIERlYXRocywgcmF0ZSwgU2VsZi1oYXJtLCBBbGwgYWdlcwpgYGB7cn0KI0RlYXRocywgcmF0ZSwgU2VsZi1oYXJtIGJ5IGZpcmVhcm0sIEFsbCBhZ2VzCmRhZG9zICU+JSAKICBmaWx0ZXIobWVhc3VyZV9uYW1lID09ICJEQUxZcyAoRGlzYWJpbGl0eS1BZGp1c3RlZCBMaWZlIFllYXJzKSIpICU+JSAKICBmaWx0ZXIoYWdlX25hbWUgPT0gIkFsbCBhZ2VzIikgJT4lIAogIGZpbHRlcihjYXVzZV9uYW1lID09ICJTZWxmLWhhcm0gYnkgZmlyZWFybSIpICU+JSAgIAogIGZpbHRlcihtZXRyaWNfbmFtZSA9PSAiUmF0ZSIpICU+JSAKICBnZ3Bsb3QoYWVzKHllYXIsIHZhbCwgZmlsbD1sb2NhdGlvbl9uYW1lLCBjb2xvcj1sb2NhdGlvbl9uYW1lKSkgKyAKICBnZW9tX2xpbmUoKSArCiAgZmFjZXRfd3JhcCh+c2V4X25hbWUpICsKICBsYWJzKHRpdGxlID0gIkRlYXRocywgcmF0ZSwgU2VsZi1oYXJtIGJ5IGZpcmVhcm0sIEFsbCBhZ2VzIiwKICAgICAgIGZpbGw9IkxvY2F0aW9uIiwgY29sb3I9IkxvY2F0aW9uIiwgeT0iUmF0ZSIsIHg9IiIpICsKICB0aGVtZV9idygpCmBgYAoKIyMjIDUuMyBEZWF0aHMsIHJhdGUsIFNlbGYtaGFybSwgQWxsIGFnZXMKYGBge3J9CiNEZWF0aHMsIHJhdGUsIFNlbGYtaGFybSBieSBvdGhlciBzcGVjaWZpZWQgbWVhbnMsIEFsbCBhZ2VzCmRhZG9zICU+JSAKICBmaWx0ZXIobWVhc3VyZV9uYW1lID09ICJEQUxZcyAoRGlzYWJpbGl0eS1BZGp1c3RlZCBMaWZlIFllYXJzKSIpICU+JSAKICBmaWx0ZXIoYWdlX25hbWUgPT0gIkFsbCBhZ2VzIikgJT4lIAogIGZpbHRlcihjYXVzZV9uYW1lID09ICJTZWxmLWhhcm0gYnkgb3RoZXIgc3BlY2lmaWVkIG1lYW5zIikgJT4lICAgCiAgZmlsdGVyKG1ldHJpY19uYW1lID09ICJSYXRlIikgJT4lIAogIGdncGxvdChhZXMoeWVhciwgdmFsLCBmaWxsPWxvY2F0aW9uX25hbWUsIGNvbG9yPWxvY2F0aW9uX25hbWUpKSArIAogIGdlb21fbGluZSgpICsKICBmYWNldF93cmFwKH5zZXhfbmFtZSkgKwogIGxhYnModGl0bGUgPSAiRGVhdGhzLCByYXRlLCBTZWxmLWhhcm0gYnkgb3RoZXIgc3BlY2lmaWVkIG1lYW5zLCBBbGwgYWdlcyIsCiAgICAgICBmaWxsPSJMb2NhdGlvbiIsIGNvbG9yPSJMb2NhdGlvbiIsIHk9IlJhdGUiLCB4PSIiKSArCiAgdGhlbWVfYncoKQpgYGAKCgojIyA2LiBHZXJhbmRvIHZpc3VhbGl6YcOnw7VlcyBncsOhZmljYXMgKERlYXRocykKCmBgYHtyfQojaW1wb3J0YW5kbyBhIGJhc2UKZGFkb3MyIDwtIHJlYWRfY3N2KCJkYXRhL0lITUUtR0JEXzIwMTlfREFUQS1kY2QxYzg2Yi0xaWRhZGVzLmNzdiIpCgojcGxvdGFuZG8gYSBiYXNlIGRlIGRhZG9zCnBhZ2VkX3RhYmxlKGRhZG9zMikKYGBgCgojIyMgNi4xIERlYXRocywgUmF0ZSwgU2VsZi1oYXJtIGJ5IGZpcmVhcm0KCmBgYHtyfQojRGVhdGhzLCBSYXRlLCBTZWxmLWhhcm0gYnkgZmlyZWFybQpkYWRvczIgJT4lIAogIGZpbHRlcihjYXVzZV9uYW1lID09ICJTZWxmLWhhcm0gYnkgZmlyZWFybSIpICU+JSAgIAogIGZpbHRlcihtZXRyaWNfbmFtZSA9PSAiUmF0ZSIpICU+JSAKICBnZ3Bsb3QoYWVzKHllYXIsIHZhbCwgZmlsbD1sb2NhdGlvbl9uYW1lLCBjb2xvcj1sb2NhdGlvbl9uYW1lKSkgKyAKICBnZW9tX2xpbmUoKSArCiAgZmFjZXRfZ3JpZChzZXhfbmFtZX5hZ2VfbmFtZSkgKwogIGxhYnModGl0bGUgPSAiRGVhdGhzLCBSYXRlLCBTZWxmLWhhcm0gYnkgZmlyZWFybSIsCiAgICAgICBmaWxsPSJMb2NhdGlvbiIsIGNvbG9yPSJMb2NhdGlvbiIsIHk9IlJhdGUiLCB4PSIiKSArCiAgdGhlbWVfYncoKQpgYGAKCiMgNy4gVGFiZWxhcwoKIyMgNy4xLiBUYWJlbGEgRGVhdGhzLCBSYXRlLCBTZWxmLWhhcm0sIExvY2F0aW9uLCBTZXggYnkgeWVhcgoKYGBge3IgdGFibGVvbmUtZGVhdGhzfQogCmRlYXRoc19jYXVzZV9sb2NhdGlvbl9zZXggPC0gZGFkb3MgJT4lIAogIHJlbmFtZSh5ZWFyX2RlYXRocyA9IHllYXIpICU+JSAKICBmaWx0ZXIobWVhc3VyZV9uYW1lID09ICJEZWF0aHMiKSAlPiUKICBmaWx0ZXIobG9jYXRpb25fbmFtZSAhPSAiR2xvYmFsIikgJT4lIAogIGZpbHRlcihhZ2VfbmFtZSAhPSAiQWxsIGFnZXMiKSAlPiUKICBzZWxlY3Qoc2V4X25hbWUsIGFnZV9uYW1lLCBjYXVzZV9uYW1lLCBsb2NhdGlvbl9uYW1lLHllYXJfZGVhdGhzLCB2YWwpIAoKdGFiX2RlYXRoc19jYXVzZV9sb2NhdGlvbl9zZXggPC0gZGVhdGhzX2NhdXNlX2xvY2F0aW9uX3NleCAlPiUgCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IHllYXJfZGVhdGhzLCB2YWx1ZXNfZnJvbSA9IHZhbCkgJT4lIGthYmxlb25lKCkKdGFiX2RlYXRoc19jYXVzZV9sb2NhdGlvbl9zZXgKCmBgYAoKIyMgNy4yLiBUYWJlbGEgWUxMcywgUmF0ZSwgU2VsZi1oYXJtLCBMb2NhdGlvbiwgU2V4IGJ5IHllYXIKCmBgYHtyIHRhYmxlb25lLXlsbH0KIApZTExfY2F1c2VfbG9jYXRpb25fc2V4IDwtIGRhZG9zICU+JSAKICByZW5hbWUoeWVhcl95bGwgPSB5ZWFyKSAlPiUgCiAgZmlsdGVyKG1lYXN1cmVfbmFtZSA9PSAiWUxMcyAoWWVhcnMgb2YgTGlmZSBMb3N0KSIpICU+JQogIGZpbHRlcihsb2NhdGlvbl9uYW1lICE9ICJHbG9iYWwiKSAlPiUgCiAgZmlsdGVyKGFnZV9uYW1lICE9ICJBbGwgYWdlcyIpICU+JQogIHNlbGVjdChzZXhfbmFtZSwgYWdlX25hbWUsIGNhdXNlX25hbWUsIGxvY2F0aW9uX25hbWUseWVhcl95bGwsIHZhbCkgCgp0YWJfWUxMX2NhdXNlX2xvY2F0aW9uX3NleCA8LSBZTExfY2F1c2VfbG9jYXRpb25fc2V4ICU+JSAKICBwaXZvdF93aWRlcihuYW1lc19mcm9tID0geWVhcl95bGwsIHZhbHVlc19mcm9tID0gdmFsKSAlPiUga2FibGVvbmUoKQp0YWJfWUxMX2NhdXNlX2xvY2F0aW9uX3NleAoKYGBgCgojIyA3LjMuIFRhYmVsYSBEQUxZcywgUmF0ZSwgU2VsZi1oYXJtLCBMb2NhdGlvbiwgU2V4IGJ5IHllYXIKCmBgYHtyIHRhYmxlb25lLWRhbHl9CiAKREFMWV9jYXVzZV9sb2NhdGlvbl9zZXggPC0gZGFkb3MgJT4lIAogIHJlbmFtZSh5ZWFyX0RBTFkgPSB5ZWFyKSAlPiUgCiAgZmlsdGVyKG1lYXN1cmVfbmFtZSA9PSAiREFMWXMgKERpc2FiaWxpdHktQWRqdXN0ZWQgTGlmZSBZZWFycykiKSAlPiUKICBmaWx0ZXIobG9jYXRpb25fbmFtZSAhPSAiR2xvYmFsIikgJT4lIAogIGZpbHRlcihhZ2VfbmFtZSAhPSAiQWxsIGFnZXMiKSAlPiUKICBzZWxlY3Qoc2V4X25hbWUsIGFnZV9uYW1lLCBjYXVzZV9uYW1lLCBsb2NhdGlvbl9uYW1lLHllYXJfREFMWSwgdmFsKSAKCnRhYl9EQUxZX2NhdXNlX2xvY2F0aW9uX3NleCA8LSBEQUxZX2NhdXNlX2xvY2F0aW9uX3NleCAlPiUgCiAgcGl2b3Rfd2lkZXIobmFtZXNfZnJvbSA9IHllYXJfREFMWSwgdmFsdWVzX2Zyb20gPSB2YWwpICU+JSBrYWJsZW9uZSgpCnRhYl9EQUxZX2NhdXNlX2xvY2F0aW9uX3NleAoKYGBgCg==