library(readxl)
## Warning: package 'readxl' was built under R version 4.1.3
Burgerdata <- read_excel("C:/Users/Lab pc/Downloads/Burgerdata.xlsx")
View(Burgerdata)
attach(Burgerdata)
names(Burgerdata)
## [1] "Weightgain" "Companies"
boxplot(Weightgain ~ Companies)

# Ho - mean weight gain is same for all the companies
aov(Weightgain ~ Companies)
## Call:
##    aov(formula = Weightgain ~ Companies)
## 
## Terms:
##                 Companies Residuals
## Sum of Squares    24.2575   90.2280
## Deg. of Freedom         3        16
## 
## Residual standard error: 2.374711
## Estimated effects may be unbalanced
Anova1 <- aov(Weightgain ~ Companies)
summary(Anova1)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Companies    3  24.26   8.086   1.434   0.27
## Residuals   16  90.23   5.639
attributes(Anova1)
## $names
##  [1] "coefficients"  "residuals"     "effects"       "rank"         
##  [5] "fitted.values" "assign"        "qr"            "df.residual"  
##  [9] "contrasts"     "xlevels"       "call"          "terms"        
## [13] "model"        
## 
## $class
## [1] "aov" "lm"
Anova1$coefficients
##         (Intercept)        CompaniesKFC CompaniesMacDonalds    CompaniesWendies 
##                5.96                1.74                2.96                2.32
summary(Anova1)
##             Df Sum Sq Mean Sq F value Pr(>F)
## Companies    3  24.26   8.086   1.434   0.27
## Residuals   16  90.23   5.639
TukeyHSD(Anova1)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Weightgain ~ Companies)
## 
## $Companies
##                         diff       lwr      upr     p adj
## KFC-Burger King         1.74 -2.556962 6.036962 0.6602070
## MacDonalds-Burger King  2.96 -1.336962 7.256962 0.2394801
## Wendies-Burger King     2.32 -1.976962 6.616962 0.4357091
## MacDonalds-KFC          1.22 -3.076962 5.516962 0.8477602
## Wendies-KFC             0.58 -3.716962 4.876962 0.9797373
## Wendies-MacDonalds     -0.64 -4.936962 3.656962 0.9731569
plot(TukeyHSD(Anova1))

plot(TukeyHSD(Anova1), las=1)

kruskal.test(Weightgain ~ Companies)
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Weightgain by Companies
## Kruskal-Wallis chi-squared = 2.9365, df = 3, p-value = 0.4015