Para definir los puntos de corte, y como la medida esta desde arriba, use el percentil mas chico para el borde superior y el mas grande para el borde inferior
Puede ser un poco confuso pero cuando lo mires en los graficos te vas a dar cuenta
quantile(base1$`borde sup`, .05)
## 5%
## 20.45
quantile(base1$`borde inf`, .95)
## 95%
## 39.47
#diagnostico de cada punto de corte
base1$diagnosis_superior<-base1$`borde sup`>20.45
base1$diagnosis_inferior<-base1$`borde inf`<39.47
#posibilidad de encontrar la arteria entre esos dos puntos de corte
base1$diagnosis_any<-base1$diagnosis_inferior==T |base1$diagnosis_superior==T
base1$diagnosis_both<-base1$diagnosis_inferior==T & base1$diagnosis_superior==T
base1 %>% select(diagnosis_inferior, diagnosis_superior, diagnosis_any, diagnosis_both,Metodo) %>%
tbl_summary(by=Metodo) %>% add_overall()
| Characteristic | Overall, N = 591 | ANGIO TC, N = 501 | CADAVER, N = 91 |
|---|---|---|---|
| diagnosis_inferior | 56 (95%) | 47 (94%) | 9 (100%) |
| diagnosis_superior | 56 (95%) | 47 (94%) | 9 (100%) |
| diagnosis_any | 59 (100%) | 50 (100%) | 9 (100%) |
| diagnosis_both | 53 (90%) | 44 (88%) | 9 (100%) |
| 1 n (%) | |||
| Characteristic | NEURONAVEGADOR, N = 201 |
|---|---|
| diagnosis_inferior | 19 (95%) |
| diagnosis_superior | 18 (90%) |
| diagnosis_any | 20 (100%) |
| diagnosis_both | 17 (85%) |
| 1 n (%) | |
El estadistico ICC se interpreta así
Less than 0.50: Poor reliability.
Between 0.5 and 0.75: Moderate reliability.
Between 0.75 and 0.9: Good reliability.
Greater than 0.9: Excellent reliability.
Como veras en ambas la correlacion es mala, se debe a que son realmente pocos casos
bs<-interater %>% select(R1_borde_sup, R2_borde_sup)
icc(bs, model="twoway", type="consistency", unit = "single")
## Single Score Intraclass Correlation
##
## Model: twoway
## Type : consistency
##
## Subjects = 8
## Raters = 2
## ICC(C,1) = 0.221
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(7,7) = 1.57 , p = 0.284
##
## 95%-Confidence Interval for ICC Population Values:
## -0.522 < ICC < 0.774
bi<-interater %>% select(R1_borde_inf, R2_borde_inf)
icc(bs, model="twoway", type="consistency", unit = "single")
## Single Score Intraclass Correlation
##
## Model: twoway
## Type : consistency
##
## Subjects = 8
## Raters = 2
## ICC(C,1) = 0.221
##
## F-Test, H0: r0 = 0 ; H1: r0 > 0
## F(7,7) = 1.57 , p = 0.284
##
## 95%-Confidence Interval for ICC Population Values:
## -0.522 < ICC < 0.774