DATASET: wage1
pacman::p_load(tidyverse,Lock5Data,ISLR,nycflights13,wooldridge,expss,hablar,rio,rstatix,ggpubr,lmtest)
wooldridge::wage1
## wage educ exper tenure nonwhite female married numdep smsa northcen south
## 1 3.10 11 2 0 0 1 0 2 1 0 0
## 2 3.24 12 22 2 0 1 1 3 1 0 0
## 3 3.00 11 2 0 0 0 0 2 0 0 0
## 4 6.00 8 44 28 0 0 1 0 1 0 0
## 5 5.30 12 7 2 0 0 1 1 0 0 0
## 6 8.75 16 9 8 0 0 1 0 1 0 0
## 7 11.25 18 15 7 0 0 0 0 1 0 0
## 8 5.00 12 5 3 0 1 0 0 1 0 0
## 9 3.60 12 26 4 0 1 0 2 1 0 0
## 10 18.18 17 22 21 0 0 1 0 1 0 0
## 11 6.25 16 8 2 0 1 0 0 1 0 0
## 12 8.13 13 3 0 0 1 0 0 1 0 0
## 13 8.77 12 15 0 0 0 1 2 1 0 0
## 14 5.50 12 18 3 0 0 0 0 1 0 0
## 15 22.20 12 31 15 0 0 1 1 1 0 0
## 16 17.33 16 14 0 0 0 1 1 1 0 0
## 17 7.50 12 10 0 0 1 1 0 1 0 0
## 18 10.63 13 16 10 0 1 0 0 1 0 0
## 19 3.60 12 13 0 0 1 1 3 1 0 0
## 20 4.50 12 36 6 0 1 1 0 1 0 0
## 21 6.88 12 11 4 0 1 0 0 1 0 0
## 22 8.48 12 29 13 0 0 1 3 1 0 0
## 23 6.33 16 9 9 0 1 0 0 1 0 0
## 24 0.53 12 3 1 0 1 0 0 1 0 0
## 25 6.00 11 37 8 1 1 0 0 1 0 0
## 26 9.56 16 3 3 1 0 1 1 1 0 0
## 27 7.78 16 11 10 0 0 1 1 1 0 0
## 28 12.50 16 31 0 0 0 1 0 1 0 0
## 29 12.50 15 30 0 0 0 1 2 1 0 0
## 30 3.25 8 9 1 0 1 1 2 1 0 0
## 31 13.00 14 23 5 0 0 1 2 1 0 0
## 32 4.50 14 2 5 0 1 0 2 1 0 0
## 33 9.68 13 16 16 0 1 0 0 1 0 0
## 34 5.00 12 7 3 0 1 0 0 1 0 0
## 35 4.68 12 3 0 0 1 0 0 1 0 0
## 36 4.27 16 22 4 1 1 1 1 1 0 0
## 37 6.15 12 15 6 1 1 1 1 1 0 0
## 38 3.51 4 39 15 0 0 1 5 1 0 0
## 39 3.00 14 3 3 0 1 1 0 1 0 0
## 40 6.25 12 11 0 0 1 0 0 1 0 0
## 41 7.81 12 3 0 0 1 1 0 1 0 0
## 42 10.00 12 20 5 1 1 1 4 1 0 0
## 43 4.50 14 16 0 0 1 1 1 1 0 0
## 44 4.00 11 45 12 0 1 1 0 1 0 0
## 45 6.38 13 11 4 0 1 0 0 1 0 0
## 46 13.70 15 20 13 0 0 1 2 1 0 0
## 47 1.67 10 1 0 0 0 0 1 1 0 0
## 48 2.93 12 36 2 0 1 1 1 1 0 0
## 49 3.65 14 9 2 0 0 0 0 1 0 0
## 50 2.90 12 15 1 0 1 1 2 1 0 0
## 51 1.63 12 18 0 0 1 0 2 0 0 0
## 52 8.60 16 3 2 0 1 0 0 1 0 0
## 53 5.00 12 15 5 0 0 1 1 1 0 0
## 54 6.00 12 7 7 0 0 1 0 1 0 0
## 55 2.50 12 2 0 0 0 0 2 0 0 0
## 56 3.25 15 3 0 0 0 0 1 0 0 0
## 57 3.40 16 1 1 0 1 0 1 0 0 0
## 58 10.00 8 13 0 1 0 0 0 1 0 0
## 59 21.63 18 8 8 0 1 0 0 1 0 0
## 60 4.38 16 7 0 0 0 0 0 1 0 0
## 61 11.71 13 40 20 0 1 0 0 1 0 0
## 62 12.39 14 42 5 0 0 0 0 1 0 0
## 63 6.25 10 36 8 0 0 0 0 1 0 0
## 64 3.71 10 13 0 1 1 0 4 1 0 0
## 65 7.78 14 9 3 0 0 0 0 1 0 0
## 66 19.98 14 26 23 0 0 1 2 1 0 0
## 67 6.25 16 7 4 1 1 1 3 1 0 0
## 68 10.00 12 25 3 0 0 1 3 1 0 0
## 69 5.71 16 10 5 0 0 1 1 1 0 0
## 70 2.00 12 3 2 0 1 0 4 1 0 0
## 71 5.71 16 3 0 0 1 0 0 1 0 0
## 72 13.08 17 17 2 1 0 1 3 1 0 0
## 73 4.91 12 17 8 0 0 1 2 1 0 0
## 74 2.91 12 20 34 0 1 1 2 1 0 0
## 75 3.75 12 7 0 0 1 1 0 1 0 0
## 76 11.90 13 24 19 0 0 1 2 1 0 0
## 77 4.00 12 28 0 0 1 1 1 1 0 0
## 78 3.10 12 2 1 0 1 0 1 1 0 0
## 79 8.45 12 19 13 0 0 1 4 1 0 0
## 80 7.14 18 13 0 0 0 1 2 1 0 0
## 81 4.50 9 22 5 0 0 1 4 1 0 0
## 82 4.65 16 3 1 0 0 0 0 1 0 0
## 83 2.90 10 4 0 0 1 0 1 1 0 0
## 84 6.67 12 7 5 0 0 0 0 1 0 0
## 85 3.50 12 6 2 1 1 0 1 1 0 0
## 86 3.26 12 13 3 0 1 1 1 1 0 0
## 87 3.25 12 14 0 0 1 1 1 1 0 0
## 88 8.00 12 14 4 0 1 0 1 1 0 0
## 89 9.85 8 40 24 1 0 1 2 1 0 0
## 90 7.50 12 11 7 0 0 1 1 1 0 0
## 91 5.91 12 14 6 0 0 1 2 0 0 0
## 92 11.76 14 40 39 0 0 1 0 1 0 0
## 93 3.00 12 1 0 0 1 0 2 1 0 0
## 94 4.81 12 2 0 0 1 0 0 1 0 0
## 95 6.50 12 4 1 0 1 0 0 1 0 0
## 96 4.00 9 19 1 0 1 1 1 1 0 0
## 97 3.50 13 1 0 0 0 0 1 1 0 0
## 98 13.16 12 34 22 0 0 1 0 1 0 0
## 99 4.25 14 5 2 0 0 1 2 1 0 0
## 100 3.50 12 3 0 0 0 0 0 1 0 0
## 101 5.13 15 6 6 0 1 0 0 1 0 0
## 102 3.75 12 14 0 0 1 1 3 1 0 0
## 103 4.50 12 35 12 0 1 1 0 1 0 0
## 104 7.63 12 8 4 0 1 0 0 1 0 0
## 105 15.00 14 7 7 1 0 1 1 1 0 0
## 106 6.85 15 11 3 0 1 1 2 1 0 0
## 107 13.33 12 14 11 0 0 1 2 1 0 0
## 108 6.67 12 35 10 0 0 0 0 1 0 0
## 109 2.53 12 46 0 0 1 0 0 1 0 0
## 110 9.80 17 7 0 0 0 1 0 1 0 0
## 111 3.37 11 45 12 0 0 1 0 1 0 0
## 112 24.98 18 29 25 0 0 1 0 1 0 0
## 113 5.40 12 6 3 0 0 1 0 1 0 0
## 114 6.11 14 15 0 0 0 1 2 1 0 0
## 115 4.20 14 33 16 0 1 1 0 1 0 0
## 116 3.75 10 15 0 0 0 0 0 1 0 0
## 117 3.50 14 5 0 0 1 1 0 0 0 1
## 118 3.64 12 7 2 0 0 0 0 1 0 1
## 119 3.80 15 6 1 0 0 1 1 1 0 1
## 120 3.00 8 33 12 0 1 1 3 0 0 1
## 121 5.00 16 2 1 0 1 1 0 0 0 1
## 122 4.63 14 4 0 0 1 1 2 1 0 1
## 123 3.00 15 1 0 0 0 0 0 1 0 1
## 124 3.20 12 29 0 0 1 0 1 1 0 1
## 125 3.91 18 17 3 0 0 1 2 0 0 1
## 126 6.43 16 17 3 0 1 1 2 0 0 1
## 127 5.48 10 36 3 0 1 1 0 1 0 1
## 128 1.50 8 31 30 0 0 0 0 0 0 1
## 129 2.90 10 23 2 0 1 0 2 0 0 1
## 130 5.00 11 13 1 0 0 1 0 0 0 1
## 131 8.92 18 3 3 0 0 1 0 1 0 1
## 132 5.00 15 15 0 0 0 0 0 1 0 1
## 133 3.52 12 48 1 0 0 1 0 0 0 1
## 134 2.90 11 6 0 0 1 0 1 0 0 1
## 135 4.50 12 12 0 0 0 1 3 1 0 1
## 136 2.25 12 5 0 0 1 0 2 1 0 1
## 137 5.00 14 19 5 0 0 1 4 1 0 1
## 138 10.00 16 9 3 1 0 1 2 1 0 1
## 139 3.75 2 39 13 0 0 1 0 1 0 1
## 140 10.00 14 28 11 0 1 1 0 1 0 1
## 141 10.95 16 23 20 0 0 1 4 1 0 1
## 142 7.90 12 2 0 0 0 0 0 1 0 1
## 143 4.72 12 15 1 0 1 0 0 1 0 1
## 144 5.84 13 5 0 0 1 1 1 1 0 1
## 145 3.83 12 18 2 0 1 0 3 1 0 1
## 146 3.20 15 2 2 0 1 0 2 1 0 1
## 147 2.00 10 3 0 1 1 0 5 1 0 1
## 148 4.50 12 31 4 0 1 1 3 1 0 1
## 149 11.55 16 20 5 0 1 1 3 1 0 1
## 150 2.14 13 34 15 1 1 1 0 1 0 1
## 151 2.38 9 5 0 1 0 0 5 1 0 1
## 152 3.75 12 11 0 0 0 0 1 1 0 1
## 153 5.52 13 31 3 0 0 0 0 1 0 1
## 154 6.50 12 8 5 0 1 1 0 1 0 1
## 155 3.10 12 2 2 0 1 0 1 1 0 1
## 156 10.00 14 18 5 0 0 1 2 1 0 1
## 157 6.63 16 3 0 0 0 1 0 1 0 1
## 158 10.00 16 3 2 0 0 1 0 1 0 1
## 159 2.31 9 4 1 0 1 0 5 0 1 0
## 160 6.88 18 4 4 0 0 0 0 1 1 0
## 161 2.83 10 1 0 0 0 0 4 1 1 0
## 162 3.13 10 1 0 0 1 0 1 1 1 0
## 163 8.00 13 28 5 0 0 1 1 1 1 0
## 164 4.50 12 47 4 0 1 1 0 1 1 0
## 165 8.65 18 13 1 0 1 0 0 1 1 0
## 166 2.00 13 2 6 0 1 0 0 1 1 0
## 167 4.75 12 48 2 0 1 1 0 1 1 0
## 168 6.25 13 6 5 0 1 1 1 1 1 0
## 169 6.00 13 8 0 0 0 1 2 1 1 0
## 170 15.38 13 25 21 0 0 1 2 1 1 0
## 171 14.58 18 13 7 0 1 0 0 1 1 0
## 172 12.50 12 8 1 0 0 0 0 1 1 0
## 173 5.25 12 19 10 0 1 1 2 1 1 0
## 174 2.17 13 1 4 0 1 0 1 1 1 0
## 175 7.14 12 43 5 0 1 0 0 1 1 0
## 176 6.22 12 19 9 0 1 1 1 1 1 0
## 177 9.00 12 11 5 0 1 1 0 1 1 0
## 178 10.00 14 43 4 0 0 1 0 1 1 0
## 179 5.77 10 44 3 0 0 1 0 1 1 0
## 180 4.00 12 22 11 0 1 1 2 1 1 0
## 181 8.75 16 3 2 0 0 1 1 1 1 0
## 182 6.53 16 3 2 0 1 0 0 1 1 0
## 183 7.60 12 41 11 0 1 0 0 1 1 0
## 184 5.00 14 5 0 0 0 0 0 1 1 0
## 185 5.00 12 14 11 0 1 0 0 1 1 0
## 186 21.86 12 24 16 0 0 1 3 1 1 0
## 187 8.64 12 28 8 0 0 1 0 1 1 0
## 188 3.30 12 25 8 0 0 1 1 1 1 0
## 189 4.44 12 3 0 0 0 0 0 1 1 0
## 190 4.55 12 11 0 0 0 1 0 0 1 0
## 191 3.50 12 7 6 1 1 1 0 0 1 0
## 192 6.25 16 9 2 0 0 1 1 0 1 0
## 193 3.85 16 5 0 0 0 1 0 1 1 0
## 194 6.18 14 9 3 0 1 1 0 1 1 0
## 195 2.91 11 1 0 0 1 0 3 1 1 0
## 196 6.25 16 2 1 1 1 0 0 1 1 0
## 197 6.25 12 13 0 0 1 1 0 1 1 0
## 198 9.05 12 10 2 0 0 1 3 1 1 0
## 199 10.00 17 5 3 0 0 1 0 1 1 0
## 200 11.11 12 30 8 0 0 1 0 1 1 0
## 201 6.88 12 31 19 0 0 1 3 1 1 0
## 202 8.75 16 1 2 1 0 0 0 1 1 0
## 203 10.00 8 9 0 0 0 1 0 1 1 0
## 204 3.05 12 10 0 0 1 1 2 1 1 0
## 205 3.00 12 38 0 0 1 1 0 0 1 0
## 206 5.80 12 19 6 0 1 1 2 0 1 0
## 207 4.10 16 5 0 0 1 1 0 1 1 0
## 208 8.00 12 26 2 0 0 1 1 1 1 0
## 209 6.15 12 35 12 0 1 0 0 1 1 0
## 210 2.70 9 2 0 0 1 0 1 1 1 0
## 211 2.75 13 1 2 0 1 0 1 1 1 0
## 212 3.00 16 19 10 0 1 1 0 1 1 0
## 213 3.00 14 3 2 0 1 0 0 1 1 0
## 214 7.36 8 36 24 0 0 1 3 1 1 0
## 215 7.50 14 29 24 0 0 1 1 1 1 0
## 216 3.50 13 1 2 0 0 0 3 1 1 0
## 217 8.10 12 38 3 0 1 1 1 1 1 0
## 218 3.75 18 1 2 0 0 0 1 1 1 0
## 219 3.25 9 29 0 1 0 1 1 1 1 0
## 220 5.83 8 36 15 0 1 1 0 0 0 0
## 221 3.50 8 4 0 0 0 0 3 1 0 0
## 222 3.33 12 45 4 0 1 1 0 0 0 0
## 223 4.00 14 22 3 0 1 0 0 1 0 0
## 224 3.50 12 20 4 0 1 1 2 0 0 0
## 225 6.25 16 5 0 0 0 1 0 1 0 0
## 226 2.95 8 15 2 1 1 1 1 1 0 0
## 227 5.71 13 10 2 0 1 1 0 1 0 0
## 228 3.00 9 3 0 0 1 0 0 1 0 0
## 229 22.86 16 16 7 0 0 1 2 1 0 0
## 230 9.00 12 38 1 0 0 1 0 1 0 0
## 231 8.33 15 33 26 0 0 1 1 1 0 0
## 232 3.00 11 2 0 0 0 0 0 1 0 0
## 233 5.75 14 6 5 0 0 1 0 1 0 0
## 234 6.76 12 19 3 1 0 1 2 1 0 0
## 235 10.00 12 29 0 0 0 1 2 1 0 0
## 236 3.00 12 2 0 0 0 0 0 1 0 0
## 237 3.50 18 3 1 0 1 0 0 1 0 0
## 238 3.25 12 4 0 0 0 0 0 1 0 0
## 239 4.00 12 10 1 1 1 0 0 1 0 0
## 240 2.92 12 4 0 0 1 0 1 0 0 1
## 241 3.06 12 14 10 1 1 0 3 0 0 1
## 242 3.20 12 15 5 0 1 1 1 0 0 1
## 243 4.75 12 19 0 0 0 1 3 0 0 1
## 244 3.00 14 17 0 0 1 1 4 1 0 1
## 245 18.16 16 29 7 0 0 1 1 1 0 1
## 246 3.50 12 2 0 0 1 0 2 1 0 1
## 247 4.11 14 5 0 0 0 0 0 0 0 1
## 248 1.96 11 38 3 1 1 0 0 0 0 1
## 249 4.29 12 3 0 0 1 0 0 0 0 1
## 250 3.00 10 47 0 0 0 0 0 0 0 1
## 251 6.45 12 7 6 0 0 1 0 0 0 1
## 252 5.20 6 47 13 1 0 1 0 1 0 1
## 253 4.50 13 23 2 1 1 0 0 1 0 1
## 254 3.88 12 12 3 0 0 1 3 1 0 1
## 255 3.45 10 11 0 0 1 0 2 1 0 1
## 256 10.91 12 25 23 0 0 0 0 1 0 1
## 257 4.10 14 6 0 0 1 1 0 1 0 1
## 258 3.00 13 3 1 0 0 0 0 1 0 1
## 259 5.90 12 14 7 1 0 1 2 1 0 1
## 260 18.00 18 13 0 0 1 0 0 1 0 1
## 261 4.00 12 9 0 0 0 0 0 1 0 1
## 262 3.00 12 1 0 1 0 0 0 1 0 1
## 263 3.55 12 6 0 0 1 1 1 0 0 0
## 264 3.00 12 11 1 0 1 1 2 0 0 0
## 265 8.75 12 47 44 0 0 1 0 0 0 0
## 266 2.90 8 49 6 0 1 0 1 0 0 0
## 267 6.26 13 37 17 0 1 1 0 1 0 0
## 268 3.50 13 2 0 0 1 0 0 1 0 0
## 269 4.60 14 7 0 0 1 1 0 1 0 0
## 270 6.00 12 22 8 0 0 0 2 1 0 0
## 271 2.89 10 8 0 0 1 0 1 1 0 0
## 272 5.58 16 1 1 0 0 1 0 1 0 0
## 273 4.00 12 43 6 0 1 1 0 0 0 0
## 274 6.00 16 2 2 0 0 0 0 1 0 0
## 275 4.50 12 2 1 0 1 0 2 1 0 0
## 276 2.92 14 1 3 0 0 0 0 1 0 0
## 277 4.33 18 1 0 0 0 0 0 1 0 0
## 278 18.89 17 26 20 0 0 1 2 1 0 0
## 279 4.28 13 1 1 0 1 0 2 1 0 0
## 280 4.57 14 37 7 0 1 1 0 1 0 0
## 281 6.25 15 12 4 0 1 1 2 1 0 0
## 282 2.95 14 41 23 1 0 1 0 0 1 0
## 283 8.75 12 24 1 0 0 0 0 1 1 0
## 284 8.50 8 38 26 0 0 0 0 1 1 0
## 285 3.75 12 18 0 0 1 1 4 1 1 0
## 286 3.15 12 26 1 0 0 1 0 1 1 0
## 287 5.00 8 45 2 0 0 0 0 0 1 0
## 288 6.46 12 27 0 0 0 1 3 0 1 0
## 289 2.00 9 2 0 0 0 0 3 0 1 0
## 290 4.79 12 41 8 0 0 1 0 1 1 0
## 291 5.78 16 11 4 0 0 1 2 1 1 0
## 292 3.18 12 5 0 0 1 1 0 1 1 0
## 293 4.68 16 3 1 0 1 0 0 1 1 0
## 294 4.10 12 3 2 0 1 0 0 1 1 0
## 295 2.91 12 4 0 0 0 1 0 1 0 1
## 296 6.00 13 21 13 0 0 1 4 0 0 1
## 297 3.60 10 34 26 0 1 1 0 0 0 1
## 298 3.95 6 49 6 0 0 1 6 0 0 1
## 299 7.00 12 6 5 1 0 1 1 0 0 1
## 300 3.00 12 26 9 0 1 1 0 0 0 1
## 301 6.08 16 9 0 0 0 0 0 0 0 1
## 302 8.63 12 23 9 0 0 1 1 0 0 1
## 303 3.00 8 33 2 0 0 1 0 0 0 1
## 304 3.75 12 5 2 0 1 1 1 0 0 1
## 305 2.90 6 49 7 0 0 1 0 0 0 1
## 306 3.00 4 48 0 1 0 1 0 0 0 1
## 307 6.25 11 35 31 0 0 1 0 1 0 1
## 308 3.50 11 23 2 1 1 0 2 0 0 1
## 309 3.00 7 26 1 0 1 0 3 0 0 1
## 310 3.24 12 16 0 0 1 1 2 1 0 1
## 311 8.02 18 23 3 0 1 1 1 1 0 1
## 312 3.33 12 36 8 0 1 1 1 1 0 1
## 313 5.25 16 4 0 0 0 0 0 1 0 1
## 314 6.25 12 10 0 0 0 1 3 1 0 1
## 315 3.50 14 18 2 0 0 1 1 0 1 0
## 316 2.95 12 3 1 0 0 0 1 0 1 0
## 317 3.00 10 7 0 0 1 1 2 0 1 0
## 318 4.69 10 7 7 0 0 0 0 0 1 0
## 319 3.73 9 33 2 0 1 0 1 0 1 0
## 320 4.00 10 34 12 0 0 1 0 0 1 0
## 321 4.00 12 8 0 0 1 1 2 0 1 0
## 322 2.90 12 17 1 0 1 1 2 0 1 0
## 323 3.05 12 2 0 0 1 0 1 0 1 0
## 324 5.05 10 5 0 0 1 0 0 1 1 0
## 325 13.95 16 41 16 0 0 1 0 1 1 0
## 326 18.16 16 35 28 0 0 1 1 1 1 0
## 327 6.25 16 11 4 0 0 0 0 1 1 0
## 328 5.25 12 4 0 1 0 0 0 1 1 0
## 329 4.79 12 12 3 0 1 1 3 1 1 0
## 330 3.35 7 35 0 0 1 0 1 1 0 1
## 331 3.00 8 33 0 0 0 1 1 1 0 1
## 332 8.43 16 8 6 0 0 1 0 1 0 1
## 333 5.70 16 2 0 0 0 0 0 1 0 1
## 334 11.98 18 8 10 0 0 1 2 1 0 1
## 335 3.50 13 29 1 0 1 1 0 0 0 1
## 336 4.24 10 14 5 1 0 1 1 0 0 1
## 337 7.00 16 26 3 0 1 1 1 1 0 1
## 338 6.00 14 11 3 0 1 1 2 1 0 1
## 339 12.22 16 10 2 0 0 0 0 1 0 1
## 340 4.50 12 13 0 0 0 1 0 1 0 1
## 341 3.00 9 23 20 0 1 1 2 0 0 1
## 342 2.90 11 1 2 1 0 0 2 0 0 1
## 343 15.00 11 35 31 0 0 1 0 0 0 1
## 344 4.00 12 5 2 0 0 1 0 0 0 1
## 345 5.25 11 13 11 0 0 1 2 0 0 1
## 346 4.00 12 22 3 0 0 1 3 0 0 1
## 347 3.30 12 21 9 0 1 1 2 0 0 1
## 348 5.05 12 19 0 0 1 1 3 0 0 1
## 349 3.58 12 13 0 0 0 0 0 1 0 1
## 350 5.00 14 15 5 0 0 1 2 0 0 1
## 351 4.57 14 3 0 0 0 1 0 0 0 1
## 352 12.50 18 6 2 0 0 0 0 1 0 1
## 353 3.45 12 6 5 0 1 1 0 1 0 1
## 354 4.63 12 16 1 0 1 0 0 1 0 1
## 355 10.00 12 31 2 0 0 1 0 1 0 1
## 356 2.92 11 1 0 0 1 0 1 0 1 0
## 357 4.51 12 5 2 0 0 0 0 1 1 0
## 358 6.50 17 3 0 0 0 1 0 1 1 0
## 359 7.50 16 11 0 0 0 1 0 1 1 0
## 360 3.54 13 6 7 0 1 1 0 0 1 0
## 361 4.20 13 11 3 0 1 1 2 1 1 0
## 362 3.51 12 7 2 0 1 1 0 1 1 0
## 363 4.50 14 5 0 0 0 1 0 1 1 0
## 364 3.35 14 5 4 0 1 1 0 1 1 0
## 365 2.91 11 2 2 0 0 0 2 1 1 0
## 366 5.25 10 44 7 0 0 1 1 1 1 0
## 367 4.05 8 44 25 0 0 1 0 1 1 0
## 368 3.75 14 13 0 0 1 1 3 1 1 0
## 369 3.40 12 26 15 0 1 1 1 1 1 0
## 370 3.00 10 2 1 0 1 0 1 1 0 1
## 371 6.29 17 10 3 0 0 1 1 1 0 1
## 372 2.54 9 2 0 0 1 0 1 1 0 1
## 373 4.50 12 35 0 0 1 1 1 1 0 1
## 374 3.13 12 6 5 0 1 1 1 1 0 1
## 375 6.36 14 8 1 0 0 1 0 1 0 1
## 376 4.68 16 1 0 0 0 0 0 1 0 1
## 377 6.80 12 14 10 0 0 1 2 0 0 1
## 378 8.53 10 14 6 0 0 1 0 0 0 1
## 379 4.17 0 22 10 0 1 0 0 0 0 1
## 380 3.75 14 8 4 0 1 1 0 0 0 1
## 381 11.10 15 1 4 0 1 0 2 0 0 1
## 382 3.26 16 15 5 1 1 1 2 1 0 1
## 383 9.13 12 14 12 0 0 1 3 1 0 1
## 384 4.50 11 37 10 0 0 1 2 1 0 1
## 385 3.00 11 1 1 0 1 0 1 1 0 1
## 386 8.75 12 4 4 0 0 1 0 1 0 1
## 387 4.14 13 29 0 0 1 1 0 1 0 1
## 388 2.87 12 45 8 0 1 1 0 0 1 0
## 389 3.35 13 22 0 0 1 0 2 0 1 0
## 390 6.08 16 42 10 0 0 0 0 0 1 0
## 391 3.00 15 9 0 1 0 0 0 0 1 0
## 392 4.20 16 8 0 0 1 1 1 1 1 0
## 393 5.60 15 31 15 0 1 0 2 1 1 0
## 394 10.00 12 24 24 0 0 1 0 1 1 0
## 395 12.50 18 16 5 0 0 1 1 1 1 0
## 396 3.76 6 6 0 0 0 0 4 0 0 1
## 397 3.10 6 14 0 1 1 0 5 1 0 1
## 398 4.29 12 47 25 0 1 1 2 1 0 1
## 399 10.92 12 34 5 0 0 1 0 0 0 1
## 400 7.50 16 6 2 0 1 1 1 1 0 1
## 401 4.05 9 7 4 0 1 1 1 1 0 1
## 402 4.65 12 27 2 0 0 1 3 1 0 1
## 403 5.00 11 24 5 0 0 1 0 1 0 1
## 404 2.90 10 18 0 0 1 1 2 0 0 1
## 405 8.00 12 12 3 1 1 0 1 0 0 1
## 406 8.43 8 27 3 0 0 1 3 1 0 1
## 407 2.92 9 49 0 0 1 0 0 1 0 1
## 408 6.25 17 4 0 0 1 0 0 1 0 0
## 409 6.25 16 24 2 0 1 1 2 1 0 0
## 410 5.11 11 3 0 0 0 0 0 1 0 0
## 411 4.00 10 2 0 0 1 0 1 1 0 0
## 412 4.44 8 29 11 0 0 1 3 0 0 1
## 413 6.88 13 34 21 0 0 1 0 0 0 1
## 414 5.43 14 10 3 1 0 1 1 1 0 1
## 415 3.00 13 5 0 0 1 0 1 1 0 1
## 416 2.90 11 2 0 0 1 0 2 1 0 1
## 417 6.25 7 39 21 1 0 1 0 1 0 1
## 418 4.34 16 5 2 1 1 0 0 1 0 1
## 419 3.25 12 14 2 0 1 1 2 0 0 1
## 420 7.26 13 8 2 0 0 0 0 1 0 1
## 421 6.35 14 10 1 0 1 1 2 1 0 1
## 422 5.63 16 2 2 0 0 1 0 1 0 0
## 423 8.75 14 9 3 0 0 1 1 1 0 0
## 424 3.20 11 1 0 0 0 0 0 0 0 0
## 425 3.00 8 45 1 0 1 1 0 0 0 0
## 426 3.00 14 33 3 0 1 1 0 1 0 0
## 427 12.50 17 21 18 0 0 1 3 1 0 0
## 428 2.88 10 2 0 0 1 0 3 1 0 0
## 429 3.35 12 9 1 0 0 1 0 1 1 0
## 430 6.50 12 33 2 0 0 1 0 0 1 0
## 431 10.38 18 16 2 1 0 1 1 1 1 0
## 432 4.50 14 10 0 0 0 1 0 1 1 0
## 433 10.00 18 9 8 0 0 0 0 0 1 0
## 434 3.81 12 8 1 0 1 1 2 0 1 0
## 435 8.80 16 9 1 0 0 1 0 0 0 1
## 436 9.42 14 23 0 0 1 1 2 0 0 1
## 437 6.33 12 23 8 0 0 1 2 0 0 1
## 438 4.00 9 22 18 1 0 0 0 0 0 1
## 439 2.90 12 37 0 0 1 1 0 0 0 1
## 440 20.00 12 22 4 0 0 1 1 0 0 1
## 441 11.25 17 28 25 0 0 1 1 1 0 1
## 442 3.50 12 14 0 1 1 0 2 1 0 1
## 443 6.00 15 19 4 0 1 1 2 1 0 1
## 444 14.38 17 10 9 1 0 1 1 0 0 1
## 445 6.36 16 25 0 0 0 1 1 1 0 1
## 446 3.55 12 21 0 0 1 1 1 0 0 1
## 447 3.00 15 32 0 0 0 1 0 1 0 1
## 448 4.50 16 21 10 0 0 1 1 1 0 1
## 449 6.63 12 36 0 0 1 0 0 1 0 1
## 450 9.30 15 2 2 0 0 1 0 1 0 1
## 451 3.00 12 11 0 0 1 1 2 1 0 1
## 452 3.25 12 40 2 0 1 0 0 0 1 0
## 453 1.50 12 11 1 0 1 1 2 0 1 0
## 454 5.90 12 9 7 0 1 1 1 1 1 0
## 455 8.00 16 23 4 0 0 0 0 1 1 0
## 456 2.90 11 1 0 0 1 0 1 1 1 0
## 457 3.29 14 30 13 0 0 0 0 1 1 0
## 458 6.50 14 41 33 0 0 1 0 1 1 0
## 459 4.00 13 6 0 0 1 0 1 1 1 0
## 460 6.00 14 11 0 0 0 1 0 0 1 0
## 461 4.08 12 43 17 0 1 1 0 1 1 0
## 462 3.75 12 39 2 0 1 1 0 1 1 0
## 463 3.05 8 50 24 0 1 0 0 0 0 1
## 464 3.50 12 26 20 0 1 1 0 0 0 1
## 465 2.92 3 51 30 1 0 0 0 1 0 1
## 466 4.50 11 3 9 0 0 0 0 1 0 1
## 467 3.35 15 3 1 0 1 1 2 1 0 1
## 468 5.95 11 15 9 1 0 1 1 0 0 1
## 469 8.00 12 17 6 0 0 1 2 0 0 1
## 470 3.00 4 36 0 0 0 1 1 0 0 1
## 471 5.00 9 31 9 1 0 1 6 0 0 1
## 472 5.50 12 9 4 0 0 1 1 0 0 1
## 473 2.65 12 42 10 0 1 1 0 1 0 0
## 474 3.00 11 3 0 0 1 0 2 1 0 0
## 475 4.50 12 37 14 0 1 1 0 0 0 0
## 476 17.50 16 23 22 0 0 1 3 1 0 0
## 477 8.18 13 21 5 0 0 0 0 1 0 0
## 478 9.09 15 11 12 0 0 1 1 1 0 0
## 479 11.82 16 35 13 0 0 1 0 1 0 0
## 480 3.25 12 42 0 0 1 1 0 1 0 0
## 481 4.50 12 3 0 0 0 0 0 1 0 0
## 482 4.50 12 13 0 0 0 1 0 1 0 0
## 483 3.71 9 14 7 0 0 1 2 0 0 1
## 484 6.50 10 14 11 0 0 1 3 0 0 1
## 485 2.90 12 39 1 0 1 1 0 0 0 1
## 486 5.60 11 11 8 0 0 1 2 0 0 1
## 487 2.23 8 28 3 0 0 1 4 0 0 1
## 488 5.00 6 18 0 0 1 1 3 1 0 0
## 489 8.33 16 6 2 0 0 1 0 1 0 0
## 490 2.90 12 26 1 0 1 0 4 1 0 1
## 491 6.25 12 21 6 0 0 1 3 1 0 1
## 492 4.55 16 34 2 0 0 1 0 0 0 1
## 493 3.28 12 17 2 0 1 0 0 0 0 1
## 494 2.30 10 2 0 0 1 0 4 1 1 0
## 495 3.30 13 5 0 0 1 0 0 1 1 0
## 496 3.15 13 1 0 0 1 0 4 1 1 0
## 497 12.50 14 40 30 0 0 1 0 1 1 0
## 498 5.15 16 39 21 0 1 0 0 1 0 0
## 499 3.13 10 1 1 0 0 0 2 1 0 0
## 500 7.25 12 14 5 0 0 1 3 1 0 0
## 501 2.90 12 2 2 0 1 0 0 1 0 0
## 502 1.75 11 2 1 0 0 0 2 1 0 0
## 503 2.89 0 42 0 0 1 1 2 0 0 0
## 504 2.90 5 34 0 0 1 1 5 0 0 0
## 505 17.71 16 10 3 0 0 1 1 1 0 0
## 506 6.25 16 4 3 0 0 1 0 0 0 0
## 507 2.60 9 4 0 0 0 0 1 0 0 0
## 508 6.63 15 21 3 0 1 1 2 0 0 0
## 509 3.50 12 31 3 1 1 0 1 1 0 0
## 510 6.50 12 20 14 0 0 1 3 1 0 0
## 511 3.00 12 36 1 1 1 0 0 1 0 0
## 512 4.38 13 7 0 1 0 1 1 1 0 0
## 513 10.00 12 15 0 0 0 0 1 0 0 0
## 514 4.95 7 25 17 0 0 1 5 0 0 0
## 515 9.00 17 7 0 0 1 1 2 0 0 0
## 516 1.43 12 17 0 0 1 1 2 0 0 0
## 517 3.08 12 3 1 0 0 0 0 0 0 0
## 518 9.33 14 12 11 0 0 1 3 0 0 0
## 519 7.50 12 18 5 0 0 1 2 0 0 0
## 520 4.75 13 47 1 0 0 1 0 0 0 0
## 521 5.65 12 2 0 0 0 0 0 0 0 0
## 522 15.00 16 14 2 0 1 1 2 0 0 0
## 523 2.27 10 2 0 0 1 0 3 0 0 0
## 524 4.67 15 13 18 0 0 1 3 0 0 0
## 525 11.56 16 5 1 0 0 1 0 0 0 0
## 526 3.50 14 5 4 1 1 0 2 0 0 0
## west construc ndurman trcommpu trade services profserv profocc clerocc
## 1 1 0 0 0 0 0 0 0 0
## 2 1 0 0 0 0 1 0 0 0
## 3 1 0 0 0 1 0 0 0 0
## 4 1 0 0 0 0 0 0 0 1
## 5 1 0 0 0 0 0 0 0 0
## 6 1 0 0 0 0 0 1 1 0
## 7 1 0 0 0 1 0 0 1 0
## 8 1 0 0 0 0 0 0 1 0
## 9 1 0 0 0 1 0 0 1 0
## 10 1 0 0 0 0 0 0 1 0
## 11 1 0 0 0 1 0 0 1 0
## 12 1 0 0 0 0 0 1 0 1
## 13 1 0 0 0 0 0 0 0 0
## 14 1 0 0 0 0 0 0 0 0
## 15 1 0 0 0 0 0 0 1 0
## 16 1 0 0 0 0 0 1 1 0
## 17 1 0 0 0 0 0 0 0 1
## 18 1 0 0 0 0 0 1 1 0
## 19 1 0 0 0 0 0 0 0 0
## 20 1 0 0 0 0 0 1 0 0
## 21 1 0 0 0 0 0 1 1 0
## 22 1 0 0 0 0 0 0 0 0
## 23 1 0 0 0 0 0 0 1 0
## 24 1 0 0 0 0 1 0 0 0
## 25 1 0 0 0 0 1 0 0 0
## 26 1 0 1 0 0 0 0 1 0
## 27 1 0 0 1 0 0 0 0 0
## 28 1 0 0 0 0 0 0 1 0
## 29 1 0 0 0 0 0 0 1 0
## 30 1 0 0 0 0 0 0 0 0
## 31 1 0 0 0 0 0 1 1 0
## 32 1 0 0 0 1 0 0 0 0
## 33 1 0 0 0 0 0 0 1 0
## 34 1 0 0 0 0 0 0 0 1
## 35 1 0 0 0 0 1 0 0 1
## 36 1 0 0 0 1 0 0 1 0
## 37 1 0 0 0 0 1 0 0 0
## 38 1 0 0 0 1 0 0 0 0
## 39 1 0 0 0 0 0 1 0 1
## 40 1 0 0 0 0 0 1 0 1
## 41 1 0 0 0 0 1 0 0 0
## 42 1 0 0 0 0 0 1 0 1
## 43 1 0 0 0 0 0 1 0 1
## 44 1 0 0 0 0 0 1 0 0
## 45 1 0 0 0 0 0 0 0 0
## 46 1 0 0 0 0 0 1 1 0
## 47 1 0 0 0 0 1 0 0 0
## 48 1 0 0 0 1 0 0 1 0
## 49 1 0 0 0 1 0 0 1 0
## 50 1 0 0 0 0 1 0 0 0
## 51 0 0 0 0 0 1 0 0 0
## 52 0 0 0 0 0 0 1 1 0
## 53 0 0 0 0 1 0 0 0 1
## 54 0 0 0 0 0 0 0 0 0
## 55 0 0 0 0 0 0 0 0 0
## 56 0 0 0 0 1 0 0 0 0
## 57 0 0 0 0 1 0 0 0 0
## 58 0 0 0 0 1 0 0 0 0
## 59 0 0 0 0 0 0 1 1 0
## 60 0 0 0 0 1 0 0 0 0
## 61 0 0 1 0 0 0 0 1 0
## 62 0 0 0 0 0 0 1 1 0
## 63 0 0 0 0 1 0 0 0 0
## 64 0 0 0 0 0 0 1 0 1
## 65 0 0 0 0 0 0 1 1 0
## 66 0 0 0 0 0 0 0 1 0
## 67 0 0 0 0 0 0 1 1 0
## 68 0 0 0 0 0 0 1 1 0
## 69 0 0 0 0 0 0 1 1 0
## 70 0 0 0 0 0 1 0 0 0
## 71 0 0 0 0 1 0 0 0 1
## 72 0 0 0 0 0 0 1 1 0
## 73 0 0 0 0 0 0 0 0 0
## 74 0 0 0 0 0 1 0 0 1
## 75 0 1 0 0 0 0 0 0 1
## 76 0 0 0 0 0 0 1 1 0
## 77 0 0 0 0 0 0 1 0 1
## 78 0 0 0 0 1 0 0 0 1
## 79 0 0 0 0 0 0 0 0 0
## 80 0 0 0 0 0 0 1 1 0
## 81 0 0 0 0 0 0 0 0 0
## 82 0 0 1 0 0 0 0 0 0
## 83 0 0 0 0 0 0 1 0 0
## 84 0 0 0 0 0 0 0 1 0
## 85 0 0 0 0 0 0 1 0 0
## 86 0 0 0 0 1 0 0 1 0
## 87 0 0 0 0 0 0 1 0 1
## 88 0 0 0 0 0 0 1 1 0
## 89 0 0 0 0 0 0 0 0 0
## 90 0 0 0 0 0 0 0 0 0
## 91 0 0 0 1 0 0 0 0 0
## 92 0 0 0 1 0 0 0 1 0
## 93 0 0 0 0 1 0 0 1 0
## 94 0 0 0 0 0 0 1 0 0
## 95 0 0 0 0 0 0 1 1 0
## 96 0 0 0 0 0 1 0 0 0
## 97 0 0 1 0 0 0 0 1 0
## 98 0 0 0 0 1 0 0 1 0
## 99 0 0 0 0 1 0 0 0 0
## 100 0 0 0 0 1 0 0 0 0
## 101 0 0 1 0 0 0 0 1 0
## 102 0 0 0 0 0 1 0 0 0
## 103 0 0 0 0 0 0 1 0 1
## 104 0 0 0 1 0 0 0 0 1
## 105 0 0 0 0 0 0 0 0 0
## 106 0 0 0 0 0 0 1 1 0
## 107 0 0 0 0 1 0 0 1 0
## 108 0 0 0 0 0 0 0 0 0
## 109 0 0 0 0 1 0 0 1 0
## 110 0 0 0 0 0 1 0 1 0
## 111 0 0 0 0 1 0 0 1 0
## 112 0 0 0 0 0 0 0 1 0
## 113 0 0 0 0 0 1 0 0 0
## 114 0 0 0 0 1 0 0 1 0
## 115 0 0 0 0 0 0 1 1 0
## 116 0 0 0 0 1 0 0 0 0
## 117 0 0 0 0 0 0 1 0 1
## 118 0 0 0 0 0 0 1 0 0
## 119 0 0 0 0 1 0 0 0 0
## 120 0 0 1 0 0 0 0 0 0
## 121 0 0 0 0 1 0 0 1 0
## 122 0 0 0 0 0 0 1 0 0
## 123 0 0 0 0 1 0 0 1 0
## 124 0 0 0 0 0 0 0 0 1
## 125 0 0 0 0 0 0 1 1 0
## 126 0 0 0 0 0 0 1 1 0
## 127 0 0 0 0 0 0 0 0 0
## 128 0 0 0 0 1 0 0 0 0
## 129 0 0 0 0 0 0 1 0 0
## 130 0 0 0 0 1 0 0 0 0
## 131 0 0 0 0 1 0 0 1 0
## 132 0 0 0 0 1 0 0 1 0
## 133 0 0 0 0 0 0 1 0 0
## 134 0 0 1 0 0 0 0 0 0
## 135 0 0 0 0 1 0 0 0 0
## 136 0 0 0 0 1 0 0 0 0
## 137 0 0 0 0 1 0 0 0 0
## 138 0 0 0 0 0 0 0 1 0
## 139 0 0 0 0 0 0 1 0 0
## 140 0 0 1 0 0 0 0 1 0
## 141 0 0 1 0 0 0 0 1 0
## 142 0 1 0 0 0 0 0 0 0
## 143 0 0 0 0 0 0 0 0 0
## 144 0 0 0 0 0 0 1 0 1
## 145 0 0 0 0 0 0 0 0 1
## 146 0 0 0 1 0 0 0 0 0
## 147 0 0 0 0 1 0 0 0 0
## 148 0 0 0 0 0 0 1 0 1
## 149 0 1 0 0 0 0 0 0 1
## 150 0 0 0 0 0 1 0 0 0
## 151 0 0 0 0 0 0 0 0 0
## 152 0 0 0 0 0 0 0 0 0
## 153 0 0 0 0 1 0 0 0 0
## 154 0 0 0 1 0 0 0 0 1
## 155 0 0 1 0 0 0 0 0 0
## 156 0 0 0 0 0 0 0 1 0
## 157 0 0 0 0 0 0 1 1 0
## 158 0 0 0 1 0 0 0 1 0
## 159 0 0 0 0 1 0 0 0 0
## 160 0 0 0 0 0 0 1 1 0
## 161 0 0 0 0 1 0 0 0 0
## 162 0 0 0 0 1 0 0 1 0
## 163 0 0 0 0 0 1 0 1 0
## 164 0 0 0 0 1 0 0 0 1
## 165 0 0 1 0 0 0 0 1 0
## 166 0 0 0 0 0 1 0 0 0
## 167 0 0 0 0 0 0 1 0 0
## 168 0 0 0 0 0 0 1 1 0
## 169 0 0 0 0 0 0 1 0 0
## 170 0 0 0 0 0 0 1 1 0
## 171 0 0 0 0 0 0 1 1 0
## 172 0 0 0 0 0 0 0 0 0
## 173 0 0 0 1 0 0 0 0 1
## 174 0 0 1 0 0 0 0 0 0
## 175 0 0 0 0 0 0 0 0 0
## 176 0 0 0 0 0 0 1 0 1
## 177 0 0 0 0 0 0 1 1 0
## 178 0 0 0 0 0 0 1 1 0
## 179 0 0 0 0 0 0 1 1 0
## 180 0 0 1 0 0 0 0 0 0
## 181 0 0 1 0 0 0 0 1 0
## 182 0 0 0 0 0 0 1 1 0
## 183 0 0 0 0 0 0 1 1 0
## 184 0 0 0 0 1 0 0 0 0
## 185 0 0 0 0 0 0 1 0 0
## 186 0 0 0 0 1 0 0 1 0
## 187 0 0 1 0 0 0 0 1 0
## 188 0 0 0 0 1 0 0 0 0
## 189 0 0 0 0 1 0 0 1 0
## 190 0 0 0 0 0 0 0 0 0
## 191 0 0 0 0 0 0 0 0 0
## 192 0 0 0 0 0 0 1 1 0
## 193 0 0 0 0 1 0 0 0 0
## 194 0 0 0 0 0 0 1 1 0
## 195 0 0 0 0 0 1 0 1 0
## 196 0 0 0 0 1 0 0 1 0
## 197 0 0 0 0 0 0 1 0 1
## 198 0 1 0 0 0 0 0 1 0
## 199 0 0 0 0 0 0 0 1 0
## 200 0 0 0 0 1 0 0 1 0
## 201 0 0 0 0 0 0 1 0 0
## 202 0 0 0 0 0 0 0 1 0
## 203 0 1 0 0 0 0 0 0 0
## 204 0 0 0 0 1 0 0 0 0
## 205 0 0 0 0 0 1 0 0 1
## 206 0 0 1 0 0 0 0 0 0
## 207 0 0 0 0 0 0 1 1 0
## 208 0 0 0 0 0 0 0 0 0
## 209 0 0 0 0 1 0 0 0 0
## 210 0 0 0 0 1 0 0 0 1
## 211 0 0 0 0 0 0 1 0 0
## 212 0 0 0 0 1 0 0 0 1
## 213 0 0 0 0 0 0 1 0 0
## 214 0 0 0 0 0 0 0 0 0
## 215 0 0 0 0 0 0 0 1 0
## 216 0 0 0 0 1 0 0 0 0
## 217 0 0 0 0 0 0 1 1 0
## 218 0 0 0 0 0 0 1 1 0
## 219 0 0 0 0 0 0 0 0 0
## 220 0 0 0 0 0 0 1 0 1
## 221 0 0 0 0 1 0 0 0 0
## 222 0 0 0 0 1 0 0 0 0
## 223 0 1 0 0 0 0 0 0 1
## 224 0 0 0 0 0 0 1 0 1
## 225 0 0 1 0 0 0 0 1 0
## 226 0 0 1 0 0 0 0 0 0
## 227 0 0 0 0 1 0 0 1 0
## 228 0 0 0 0 0 1 0 0 0
## 229 0 0 0 0 0 0 0 1 0
## 230 0 0 0 0 0 0 1 1 0
## 231 0 0 0 0 0 0 1 1 0
## 232 0 0 0 0 1 0 0 0 0
## 233 0 0 0 0 1 0 0 1 0
## 234 0 0 1 0 0 0 0 0 0
## 235 0 0 0 0 0 0 1 0 1
## 236 0 1 0 0 0 0 0 0 0
## 237 0 0 0 1 0 0 0 1 0
## 238 0 0 0 0 0 1 0 0 0
## 239 0 0 0 0 0 0 1 0 1
## 240 0 0 0 0 1 0 0 1 0
## 241 0 0 0 0 1 0 0 0 0
## 242 0 0 0 0 0 0 1 1 0
## 243 0 0 0 0 0 0 0 0 0
## 244 0 0 0 0 0 1 0 0 1
## 245 0 0 1 0 0 0 0 1 0
## 246 0 0 0 1 0 0 0 0 1
## 247 0 0 0 0 0 0 1 1 0
## 248 0 0 0 0 0 1 0 0 0
## 249 0 0 0 0 1 0 0 0 0
## 250 0 0 0 0 0 1 0 0 0
## 251 0 0 0 0 1 0 0 0 0
## 252 0 1 0 0 0 0 0 0 0
## 253 0 0 0 0 1 0 0 1 0
## 254 0 0 0 0 1 0 0 0 1
## 255 0 0 0 0 1 0 0 0 0
## 256 0 0 0 1 0 0 0 0 0
## 257 0 0 0 0 0 1 0 0 0
## 258 0 0 0 0 1 0 0 0 0
## 259 0 0 0 0 0 1 0 0 0
## 260 0 0 0 0 0 0 1 1 0
## 261 0 0 0 0 0 0 1 1 0
## 262 0 0 0 0 0 1 0 0 0
## 263 0 0 0 0 0 0 0 0 0
## 264 0 0 0 0 0 1 0 0 0
## 265 0 0 0 0 0 0 0 0 0
## 266 0 0 1 0 0 0 0 0 0
## 267 0 0 0 0 0 0 1 1 0
## 268 0 0 0 0 1 0 0 1 0
## 269 0 0 0 0 1 0 0 0 1
## 270 0 0 0 0 1 0 0 1 0
## 271 0 0 0 0 0 0 0 0 0
## 272 0 0 0 0 0 0 1 0 1
## 273 0 0 0 1 0 0 0 0 0
## 274 0 0 1 0 0 0 0 0 0
## 275 0 1 0 0 0 0 0 0 0
## 276 0 0 0 0 0 0 1 0 1
## 277 0 0 0 0 1 0 0 1 0
## 278 0 0 0 0 0 0 1 1 0
## 279 0 0 0 0 1 0 0 1 0
## 280 0 0 0 0 0 1 0 0 0
## 281 0 0 0 0 0 0 1 1 0
## 282 0 0 0 0 0 0 1 1 0
## 283 0 0 1 0 0 0 0 1 0
## 284 0 0 0 0 0 0 0 0 0
## 285 0 0 0 0 0 0 1 0 1
## 286 0 0 0 0 1 0 0 1 0
## 287 0 0 1 0 0 0 0 0 0
## 288 0 0 0 0 0 0 0 0 0
## 289 0 0 0 0 1 0 0 0 0
## 290 0 0 0 0 1 0 0 1 0
## 291 0 0 1 0 0 0 0 1 0
## 292 0 0 0 0 0 0 1 0 0
## 293 0 0 0 0 0 0 1 1 0
## 294 0 0 0 0 0 0 1 0 0
## 295 0 0 0 0 1 0 0 0 0
## 296 0 0 1 0 0 0 0 0 0
## 297 0 0 1 0 0 0 0 0 0
## 298 0 0 0 0 0 0 0 0 0
## 299 0 1 0 0 0 0 0 0 0
## 300 0 0 0 0 0 1 0 0 0
## 301 0 0 0 0 0 1 0 1 0
## 302 0 0 1 0 0 0 0 0 0
## 303 0 0 1 0 0 0 0 0 0
## 304 0 0 0 0 0 0 1 0 1
## 305 0 0 0 0 0 0 0 0 0
## 306 0 0 1 0 0 0 0 0 0
## 307 0 0 0 0 1 0 0 0 0
## 308 0 0 1 0 0 0 0 0 0
## 309 0 0 0 0 1 0 0 0 0
## 310 0 0 0 0 1 0 0 0 1
## 311 0 0 0 0 0 0 1 1 0
## 312 0 0 0 0 0 0 1 0 1
## 313 0 0 1 0 0 0 0 1 0
## 314 0 1 0 0 0 0 0 0 0
## 315 0 0 0 0 1 0 0 1 0
## 316 0 0 0 0 1 0 0 0 0
## 317 0 0 0 0 0 0 1 0 0
## 318 0 0 0 0 0 0 0 0 0
## 319 0 0 0 0 0 0 0 0 0
## 320 0 0 0 0 0 0 0 0 0
## 321 0 0 0 0 1 0 0 1 0
## 322 0 0 1 0 0 0 0 0 0
## 323 0 0 0 0 0 0 1 0 0
## 324 0 0 0 0 0 0 1 0 1
## 325 0 0 1 0 0 0 0 1 0
## 326 0 0 1 0 0 0 0 1 0
## 327 0 0 0 0 0 1 0 1 0
## 328 0 0 1 0 0 0 0 0 1
## 329 0 0 0 0 0 0 1 1 0
## 330 0 0 0 0 0 0 0 0 0
## 331 0 0 0 1 0 0 0 0 0
## 332 0 0 1 0 0 0 0 1 0
## 333 0 0 0 0 1 0 0 1 0
## 334 0 0 0 1 0 0 0 1 0
## 335 0 0 0 0 0 0 1 0 1
## 336 0 0 0 0 1 0 0 0 0
## 337 0 0 0 0 0 0 1 1 0
## 338 0 0 0 0 0 0 1 0 1
## 339 0 0 0 0 0 0 1 1 0
## 340 0 0 0 0 1 0 0 0 0
## 341 0 0 1 0 0 0 0 0 0
## 342 0 0 0 0 1 0 0 0 0
## 343 0 0 1 0 0 0 0 0 0
## 344 0 1 0 0 0 0 0 0 0
## 345 0 0 1 0 0 0 0 0 0
## 346 0 0 1 0 0 0 0 0 0
## 347 0 0 0 0 1 0 0 1 0
## 348 0 0 0 0 0 0 1 0 1
## 349 0 0 0 0 0 1 0 0 0
## 350 0 0 0 0 1 0 0 1 0
## 351 0 0 0 0 0 0 1 1 0
## 352 0 0 0 0 0 1 0 0 1
## 353 0 0 0 0 1 0 0 0 1
## 354 0 0 0 0 0 0 1 0 1
## 355 0 0 0 0 1 0 0 1 0
## 356 0 0 0 0 1 0 0 0 0
## 357 0 0 0 0 1 0 0 0 0
## 358 0 0 0 0 0 0 1 1 0
## 359 0 0 0 0 0 1 0 1 0
## 360 0 0 0 0 0 0 1 0 1
## 361 0 0 0 0 1 0 0 0 1
## 362 0 0 0 0 1 0 0 0 1
## 363 0 1 0 0 0 0 0 1 0
## 364 0 0 0 0 1 0 0 1 0
## 365 0 0 0 0 1 0 0 0 0
## 366 0 0 0 0 0 0 0 0 0
## 367 0 0 1 0 0 0 0 0 0
## 368 0 0 0 0 1 0 0 0 1
## 369 0 1 0 0 0 0 0 0 1
## 370 0 0 0 0 1 0 0 0 1
## 371 0 0 0 0 0 1 0 1 0
## 372 0 0 0 0 1 0 0 0 0
## 373 0 0 0 0 1 0 0 0 1
## 374 0 0 0 0 0 0 1 0 1
## 375 0 0 0 0 1 0 0 1 0
## 376 0 0 1 0 0 0 0 1 0
## 377 0 0 1 0 0 0 0 0 0
## 378 0 0 0 0 0 0 0 0 0
## 379 0 0 0 0 0 1 0 0 0
## 380 0 0 0 1 0 0 0 1 0
## 381 0 0 0 0 0 0 1 0 1
## 382 0 0 0 0 1 0 0 1 0
## 383 0 0 1 0 0 0 0 1 0
## 384 0 0 1 0 0 0 0 0 0
## 385 0 0 0 0 0 0 1 0 0
## 386 0 0 0 0 0 0 1 0 1
## 387 0 0 0 0 1 0 0 0 1
## 388 0 0 0 0 1 0 0 1 0
## 389 0 0 0 0 1 0 0 0 1
## 390 0 0 0 0 1 0 0 1 0
## 391 0 0 0 0 0 1 0 0 0
## 392 0 0 0 0 0 0 1 0 1
## 393 0 0 0 0 0 0 1 0 0
## 394 0 0 1 0 0 0 0 0 0
## 395 0 0 0 0 0 0 1 1 0
## 396 0 0 0 0 0 0 0 0 0
## 397 0 0 0 0 1 0 0 0 1
## 398 0 0 1 0 0 0 0 0 1
## 399 0 0 0 0 0 0 1 1 0
## 400 0 0 0 0 0 0 1 1 0
## 401 0 0 0 0 0 0 0 0 0
## 402 0 0 0 0 0 0 0 0 0
## 403 0 0 0 0 1 0 0 0 0
## 404 0 0 0 0 1 0 0 0 1
## 405 0 0 0 0 0 0 0 0 0
## 406 0 0 1 0 0 0 0 0 0
## 407 0 0 0 0 0 1 0 0 0
## 408 1 0 0 0 1 0 0 1 0
## 409 1 0 0 0 0 0 1 1 0
## 410 1 1 0 0 0 0 0 0 0
## 411 1 0 0 0 0 1 0 0 0
## 412 0 0 0 0 1 0 0 1 0
## 413 0 0 0 0 0 1 0 1 0
## 414 0 0 0 0 1 0 0 1 0
## 415 0 0 0 0 0 0 1 0 0
## 416 0 0 0 0 1 0 0 1 0
## 417 0 0 0 0 1 0 0 0 0
## 418 0 0 0 0 0 0 1 0 1
## 419 0 0 0 1 0 0 0 0 1
## 420 0 0 0 0 1 0 0 1 0
## 421 0 0 0 0 0 0 0 0 0
## 422 0 0 0 0 1 0 0 0 0
## 423 0 0 1 0 0 0 0 1 0
## 424 0 0 0 0 1 0 0 0 0
## 425 0 0 0 0 0 0 0 0 0
## 426 0 0 0 0 0 0 1 0 0
## 427 0 0 0 0 0 0 0 1 0
## 428 0 0 0 0 1 0 0 0 1
## 429 0 0 0 0 1 0 0 0 0
## 430 0 0 0 0 0 0 0 0 0
## 431 0 0 0 0 0 0 1 1 0
## 432 0 0 0 0 0 0 1 0 0
## 433 0 0 0 1 0 0 0 1 0
## 434 0 0 0 0 0 1 0 0 0
## 435 0 0 0 0 0 0 1 1 0
## 436 0 0 0 0 0 1 0 0 0
## 437 0 0 0 0 0 0 0 1 0
## 438 0 0 0 0 0 0 0 0 0
## 439 0 0 0 0 1 0 0 1 0
## 440 0 0 0 0 1 0 0 1 0
## 441 0 0 1 0 0 0 0 0 0
## 442 0 1 0 0 0 0 0 0 0
## 443 0 0 0 0 0 0 1 0 0
## 444 0 0 1 0 0 0 0 1 0
## 445 0 0 1 0 0 0 0 1 0
## 446 0 0 1 0 0 0 0 0 0
## 447 0 0 0 0 0 1 0 0 0
## 448 0 0 0 0 1 0 0 1 0
## 449 0 0 0 0 1 0 0 0 1
## 450 0 0 0 0 1 0 0 0 0
## 451 0 0 0 0 1 0 0 1 0
## 452 0 0 0 0 1 0 0 0 0
## 453 0 0 0 0 0 0 1 0 0
## 454 0 0 0 0 0 0 0 0 0
## 455 0 0 0 0 1 0 0 1 0
## 456 0 0 0 0 1 0 0 1 0
## 457 0 0 0 0 1 0 0 1 0
## 458 0 0 0 0 1 0 0 1 0
## 459 0 1 0 0 0 0 0 0 1
## 460 0 0 0 0 1 0 0 0 0
## 461 0 0 0 0 0 0 1 0 1
## 462 0 0 0 0 0 1 0 1 0
## 463 0 0 1 0 0 0 0 0 0
## 464 0 0 1 0 0 0 0 0 0
## 465 0 0 0 0 0 1 0 0 0
## 466 0 1 0 0 0 0 0 0 0
## 467 0 0 0 0 0 1 0 0 1
## 468 0 1 0 0 0 0 0 0 0
## 469 0 0 0 0 1 0 0 1 0
## 470 0 1 0 0 0 0 0 0 0
## 471 0 0 0 0 0 0 0 0 0
## 472 0 0 0 0 1 0 0 0 0
## 473 1 0 0 0 0 1 0 0 1
## 474 1 0 0 0 1 0 0 0 0
## 475 1 0 0 0 0 0 1 0 1
## 476 1 0 0 0 1 0 0 1 0
## 477 1 0 0 0 1 0 0 1 0
## 478 1 0 0 1 0 0 0 1 0
## 479 1 0 0 1 0 0 0 1 0
## 480 1 0 0 0 1 0 0 1 0
## 481 1 0 0 0 0 0 0 0 0
## 482 1 0 0 0 0 0 0 0 0
## 483 0 0 1 0 0 0 0 0 0
## 484 0 0 0 0 1 0 0 0 0
## 485 0 0 0 0 0 0 1 0 0
## 486 0 0 0 0 0 0 0 0 1
## 487 0 0 0 0 0 0 1 1 0
## 488 1 0 0 0 1 0 0 0 0
## 489 1 0 0 1 0 0 0 0 1
## 490 0 0 0 0 1 0 0 0 1
## 491 0 0 0 0 1 0 0 1 0
## 492 0 0 0 0 0 0 1 1 0
## 493 0 0 0 0 0 0 1 0 0
## 494 0 0 0 0 1 0 0 0 0
## 495 0 0 0 0 0 0 1 1 0
## 496 0 0 0 1 0 0 0 0 1
## 497 0 0 0 0 0 0 0 1 0
## 498 1 0 0 0 0 0 1 0 1
## 499 1 0 0 0 1 0 0 0 0
## 500 1 0 0 1 0 0 0 0 0
## 501 1 0 0 0 0 0 1 0 1
## 502 1 0 0 0 1 0 0 0 0
## 503 1 0 0 0 0 1 0 0 0
## 504 1 0 1 0 0 0 0 0 0
## 505 1 1 0 0 0 0 0 1 0
## 506 1 0 0 1 0 0 0 0 0
## 507 1 0 0 0 1 0 0 0 0
## 508 1 0 0 0 0 0 1 1 0
## 509 1 0 0 0 0 1 0 0 0
## 510 1 0 0 0 1 0 0 0 0
## 511 1 0 0 0 0 1 0 0 0
## 512 1 0 1 0 0 0 0 0 0
## 513 0 0 0 0 0 1 0 1 0
## 514 0 1 0 0 0 0 0 0 0
## 515 0 0 0 0 0 0 1 1 0
## 516 0 0 0 0 1 0 0 0 0
## 517 0 0 0 0 0 0 1 1 0
## 518 0 0 0 0 0 0 1 1 0
## 519 1 0 0 0 1 0 0 0 0
## 520 1 0 0 0 1 0 0 0 0
## 521 1 1 0 0 0 0 0 0 0
## 522 1 0 0 0 0 0 1 1 0
## 523 1 0 0 0 1 0 0 1 0
## 524 1 1 0 0 0 0 0 1 0
## 525 1 0 1 0 0 0 0 0 0
## 526 1 0 0 0 0 0 1 0 1
## servocc lwage expersq tenursq
## 1 0 1.1314021 4 0
## 2 1 1.1755733 484 4
## 3 0 1.0986123 4 0
## 4 0 1.7917595 1936 784
## 5 0 1.6677068 49 4
## 6 0 2.1690538 81 64
## 7 0 2.4203682 225 49
## 8 0 1.6094379 25 9
## 9 0 1.2809339 676 16
## 10 0 2.9003222 484 441
## 11 0 1.8325815 64 4
## 12 0 2.0955610 9 0
## 13 0 2.1713369 225 0
## 14 0 1.7047480 324 9
## 15 0 3.1000924 961 225
## 16 0 2.8524392 196 0
## 17 0 2.0149031 100 0
## 18 0 2.3636801 256 100
## 19 0 1.2809339 169 0
## 20 1 1.5040774 1296 36
## 21 0 1.9286187 121 16
## 22 0 2.1377103 841 169
## 23 0 1.8453002 81 81
## 24 1 -0.6348783 9 1
## 25 0 1.7917595 1369 64
## 26 0 2.2575877 9 9
## 27 0 2.0515563 121 100
## 28 0 2.5257287 961 0
## 29 0 2.5257287 900 0
## 30 0 1.1786550 81 1
## 31 0 2.5649493 529 25
## 32 0 1.5040774 4 25
## 33 0 2.2700620 256 256
## 34 0 1.6094379 49 9
## 35 0 1.5432981 9 0
## 36 0 1.4516138 484 16
## 37 1 1.8164521 225 36
## 38 0 1.2556161 1521 225
## 39 0 1.0986123 9 9
## 40 0 1.8325815 121 0
## 41 1 2.0554049 9 0
## 42 0 2.3025851 400 25
## 43 0 1.5040774 256 0
## 44 1 1.3862944 2025 144
## 45 0 1.8531681 121 16
## 46 0 2.6173959 400 169
## 47 0 0.5128236 1 0
## 48 0 1.0750024 1296 4
## 49 0 1.2947272 81 4
## 50 1 1.0647107 225 1
## 51 1 0.4885800 324 0
## 52 0 2.1517622 9 4
## 53 0 1.6094379 225 25
## 54 0 1.7917595 49 49
## 55 0 0.9162908 4 0
## 56 1 1.1786550 9 0
## 57 1 1.2237755 1 1
## 58 0 2.3025851 169 0
## 59 0 3.0740812 64 64
## 60 1 1.4770488 49 0
## 61 0 2.4604433 1600 400
## 62 0 2.5168898 1764 25
## 63 1 1.8325815 1296 64
## 64 0 1.3110319 169 0
## 65 0 2.0515563 81 9
## 66 0 2.9947317 676 529
## 67 0 1.8325815 49 16
## 68 0 2.3025851 625 9
## 69 0 1.7422190 100 25
## 70 0 0.6931472 9 4
## 71 0 1.7422190 9 0
## 72 0 2.5710843 289 4
## 73 0 1.5912739 289 64
## 74 0 1.0681531 400 1156
## 75 0 1.3217559 49 0
## 76 0 2.4765384 576 361
## 77 0 1.3862944 784 0
## 78 0 1.1314021 4 1
## 79 0 2.1341665 361 169
## 80 0 1.9657128 169 0
## 81 0 1.5040774 484 25
## 82 0 1.5368673 9 1
## 83 1 1.0647107 16 0
## 84 0 1.8976198 49 25
## 85 1 1.2527629 36 4
## 86 0 1.1817272 169 9
## 87 0 1.1786550 196 0
## 88 0 2.0794415 196 16
## 89 0 2.2874715 1600 576
## 90 0 2.0149031 121 49
## 91 0 1.7766458 196 36
## 92 0 2.4647040 1600 1521
## 93 0 1.0986123 1 0
## 94 1 1.5706971 4 0
## 95 0 1.8718022 16 1
## 96 1 1.3862944 361 1
## 97 0 1.2527629 1 0
## 98 0 2.5771818 1156 484
## 99 0 1.4469190 25 4
## 100 1 1.2527629 9 0
## 101 0 1.6351057 36 36
## 102 1 1.3217559 196 0
## 103 0 1.5040774 1225 144
## 104 0 2.0320878 64 16
## 105 0 2.7080503 49 49
## 106 0 1.9242487 121 9
## 107 0 2.5900171 196 121
## 108 0 1.8976198 1225 100
## 109 0 0.9282193 2116 0
## 110 0 2.2823825 49 0
## 111 0 1.2149127 2025 144
## 112 0 3.2180755 841 625
## 113 0 1.6863990 36 9
## 114 0 1.8099267 225 0
## 115 0 1.4350845 1089 256
## 116 0 1.3217559 225 0
## 117 0 1.2527629 25 0
## 118 1 1.2919837 49 4
## 119 0 1.3350011 36 1
## 120 0 1.0986123 1089 144
## 121 0 1.6094379 4 1
## 122 1 1.5325569 16 0
## 123 0 1.0986123 1 0
## 124 0 1.1631508 841 0
## 125 0 1.3635374 289 9
## 126 0 1.8609746 289 9
## 127 0 1.7011051 1296 9
## 128 0 0.4054651 961 900
## 129 1 1.0647107 529 4
## 130 0 1.6094379 169 1
## 131 0 2.1882958 9 9
## 132 0 1.6094379 225 0
## 133 0 1.2584610 2304 1
## 134 0 1.0647107 36 0
## 135 0 1.5040774 144 0
## 136 1 0.8109302 25 0
## 137 0 1.6094379 361 25
## 138 0 2.3025851 81 9
## 139 1 1.3217559 1521 169
## 140 0 2.3025851 784 121
## 141 0 2.3933394 529 400
## 142 0 2.0668628 4 0
## 143 0 1.5518087 225 1
## 144 0 1.7647308 25 0
## 145 0 1.3428648 324 4
## 146 0 1.1631508 4 4
## 147 1 0.6931472 9 0
## 148 0 1.5040774 961 16
## 149 0 2.4466856 400 25
## 150 0 0.7608059 1156 225
## 151 1 0.8671005 25 0
## 152 0 1.3217559 121 0
## 153 0 1.7083778 961 9
## 154 0 1.8718022 64 25
## 155 0 1.1314021 4 4
## 156 0 2.3025851 324 25
## 157 0 1.8916048 9 0
## 158 0 2.3025851 9 4
## 159 1 0.8372475 16 1
## 160 0 1.9286187 16 16
## 161 0 1.0402766 1 0
## 162 0 1.1410331 1 0
## 163 0 2.0794415 784 25
## 164 0 1.5040774 2209 16
## 165 0 2.1575594 169 1
## 166 1 0.6931472 4 36
## 167 1 1.5581446 2304 4
## 168 0 1.8325815 36 25
## 169 1 1.7917595 64 0
## 170 0 2.7330680 625 441
## 171 0 2.6796508 169 49
## 172 0 2.5257287 64 1
## 173 0 1.6582280 361 100
## 174 1 0.7747272 1 16
## 175 0 1.9657128 1849 25
## 176 0 1.8277699 361 81
## 177 0 2.1972246 121 25
## 178 0 2.3025851 1849 16
## 179 0 1.7526721 1936 9
## 180 0 1.3862944 484 121
## 181 0 2.1690538 9 4
## 182 0 1.8764070 9 4
## 183 0 2.0281482 1681 121
## 184 0 1.6094379 25 0
## 185 1 1.6094379 196 121
## 186 0 3.0846586 576 256
## 187 0 2.1564026 784 64
## 188 0 1.1939224 625 64
## 189 0 1.4906543 9 0
## 190 0 1.5151273 121 0
## 191 0 1.2527629 49 36
## 192 0 1.8325815 81 4
## 193 0 1.3480731 25 0
## 194 0 1.8213183 81 9
## 195 0 1.0681531 1 0
## 196 0 1.8325815 4 1
## 197 0 1.8325815 169 0
## 198 0 2.2027647 100 4
## 199 0 2.3025851 25 9
## 200 0 2.4078455 900 64
## 201 1 1.9286187 961 361
## 202 0 2.1690538 1 4
## 203 0 2.3025851 81 0
## 204 0 1.1151416 100 0
## 205 0 1.0986123 1444 0
## 206 0 1.7578579 361 36
## 207 0 1.4109869 25 0
## 208 0 2.0794415 676 4
## 209 0 1.8164521 1225 144
## 210 0 0.9932518 4 0
## 211 1 1.0116010 1 4
## 212 0 1.0986123 361 100
## 213 1 1.0986123 9 4
## 214 0 1.9960599 1296 576
## 215 0 2.0149031 841 576
## 216 0 1.2527629 1 4
## 217 0 2.0918641 1444 9
## 218 0 1.3217559 1 4
## 219 0 1.1786550 841 0
## 220 0 1.7630169 1296 225
## 221 1 1.2527629 16 0
## 222 0 1.2029723 2025 16
## 223 0 1.3862944 484 9
## 224 0 1.2527629 400 16
## 225 0 1.8325815 25 0
## 226 0 1.0818052 225 4
## 227 0 1.7422190 100 4
## 228 0 1.0986123 9 0
## 229 0 3.1293886 256 49
## 230 0 2.1972246 1444 1
## 231 0 2.1198635 1089 676
## 232 0 1.0986123 4 0
## 233 0 1.7491999 36 25
## 234 0 1.9110229 361 9
## 235 0 2.3025851 841 0
## 236 0 1.0986123 4 0
## 237 0 1.2527629 9 1
## 238 0 1.1786550 16 0
## 239 0 1.3862944 100 1
## 240 0 1.0715836 16 0
## 241 0 1.1184149 196 100
## 242 0 1.1631508 225 25
## 243 0 1.5581446 361 0
## 244 0 1.0986123 289 0
## 245 0 2.8992214 841 49
## 246 0 1.2527629 4 0
## 247 0 1.4134231 25 0
## 248 0 0.6729445 1444 9
## 249 1 1.4562867 9 0
## 250 1 1.0986123 2209 0
## 251 0 1.8640801 49 36
## 252 0 1.6486586 2209 169
## 253 0 1.5040774 529 4
## 254 0 1.3558352 144 9
## 255 1 1.2383742 121 0
## 256 0 2.3896797 625 529
## 257 1 1.4109869 36 0
## 258 0 1.0986123 9 1
## 259 0 1.7749524 196 49
## 260 0 2.8903718 169 0
## 261 0 1.3862944 81 0
## 262 0 1.0986123 1 0
## 263 0 1.2669476 36 0
## 264 1 1.0986123 121 1
## 265 0 2.1690538 2209 1936
## 266 0 1.0647107 2401 36
## 267 0 1.8341802 1369 289
## 268 0 1.2527629 4 0
## 269 0 1.5260563 49 0
## 270 0 1.7917595 484 64
## 271 0 1.0612565 64 0
## 272 0 1.7191888 1 1
## 273 0 1.3862944 1849 36
## 274 0 1.7917595 4 4
## 275 0 1.5040774 4 1
## 276 0 1.0715836 1 9
## 277 0 1.4655675 1 0
## 278 0 2.9386327 676 400
## 279 0 1.4539530 1 1
## 280 1 1.5195132 1369 49
## 281 0 1.8325815 144 16
## 282 0 1.0818052 1681 529
## 283 0 2.1690538 576 1
## 284 0 2.1400661 1444 676
## 285 0 1.3217559 324 0
## 286 0 1.1474025 676 1
## 287 0 1.6094379 2025 4
## 288 0 1.8656293 729 0
## 289 1 0.6931472 4 0
## 290 0 1.5665303 1681 64
## 291 0 1.7544037 121 16
## 292 1 1.1568812 25 0
## 293 0 1.5432981 9 1
## 294 1 1.4109869 9 4
## 295 0 1.0681531 16 0
## 296 0 1.7917595 441 169
## 297 0 1.2809339 1156 676
## 298 0 1.3737156 2401 36
## 299 0 1.9459101 36 25
## 300 1 1.0986123 676 81
## 301 0 1.8050047 81 0
## 302 0 2.1552446 529 81
## 303 0 1.0986123 1089 4
## 304 0 1.3217559 25 4
## 305 1 1.0647107 2401 49
## 306 0 1.0986123 2304 0
## 307 0 1.8325815 1225 961
## 308 0 1.2527629 529 4
## 309 1 1.0986123 676 1
## 310 0 1.1755733 256 0
## 311 0 2.0819385 529 9
## 312 0 1.2029723 1296 64
## 313 0 1.6582280 16 0
## 314 0 1.8325815 100 0
## 315 0 1.2527629 324 4
## 316 0 1.0818052 9 1
## 317 1 1.0986123 49 0
## 318 0 1.5454326 49 49
## 319 0 1.3164083 1089 4
## 320 0 1.3862944 1156 144
## 321 0 1.3862944 64 0
## 322 0 1.0647107 289 1
## 323 1 1.1151416 4 0
## 324 0 1.6193882 25 0
## 325 0 2.6354795 1681 256
## 326 0 2.8992214 1225 784
## 327 0 1.8325815 121 16
## 328 0 1.6582280 16 0
## 329 0 1.5665303 144 9
## 330 0 1.2089603 1225 0
## 331 0 1.0986123 1089 0
## 332 0 2.1317968 64 36
## 333 0 1.7404661 4 0
## 334 0 2.4832385 64 100
## 335 0 1.2527629 841 1
## 336 0 1.4445633 196 25
## 337 0 1.9459101 676 9
## 338 0 1.7917595 121 9
## 339 0 2.5030739 100 4
## 340 0 1.5040774 169 0
## 341 0 1.0986123 529 400
## 342 1 1.0647107 1 4
## 343 0 2.7080503 1225 961
## 344 0 1.3862944 25 4
## 345 0 1.6582280 169 121
## 346 0 1.3862944 484 9
## 347 0 1.1939224 441 81
## 348 0 1.6193882 361 0
## 349 0 1.2753627 169 0
## 350 0 1.6094379 225 25
## 351 0 1.5195132 9 0
## 352 0 2.5257287 36 4
## 353 0 1.2383742 36 25
## 354 0 1.5325569 256 1
## 355 0 2.3025851 961 4
## 356 1 1.0715836 1 0
## 357 0 1.5062972 25 4
## 358 0 1.8718022 9 0
## 359 0 2.0149031 121 0
## 360 0 1.2641267 36 49
## 361 0 1.4350845 121 9
## 362 0 1.2556161 49 4
## 363 0 1.5040774 25 0
## 364 0 1.2089603 25 16
## 365 1 1.0681531 4 4
## 366 0 1.6582280 1936 49
## 367 1 1.3987169 1936 625
## 368 0 1.3217559 169 0
## 369 0 1.2237755 676 225
## 370 0 1.0986123 4 1
## 371 0 1.8389610 100 9
## 372 1 0.9321641 4 0
## 373 0 1.5040774 1225 0
## 374 0 1.1410331 36 25
## 375 0 1.8500284 64 1
## 376 0 1.5432981 1 0
## 377 0 1.9169227 196 100
## 378 0 2.1435893 196 36
## 379 0 1.4279160 484 100
## 380 0 1.3217559 64 16
## 381 0 2.4069452 1 16
## 382 0 1.1817272 225 25
## 383 0 2.2115657 196 144
## 384 0 1.5040774 1369 100
## 385 1 1.0986123 1 1
## 386 0 2.1690538 16 16
## 387 0 1.4206958 841 0
## 388 0 1.0543120 2025 64
## 389 0 1.2089603 484 0
## 390 0 1.8050047 1764 100
## 391 0 1.0986123 81 0
## 392 0 1.4350845 64 0
## 393 1 1.7227666 961 225
## 394 0 2.3025851 576 576
## 395 0 2.5257287 256 25
## 396 0 1.3244189 36 0
## 397 0 1.1314021 196 0
## 398 0 1.4562867 2209 625
## 399 0 2.3905959 1156 25
## 400 0 2.0149031 36 4
## 401 0 1.3987169 49 16
## 402 1 1.5368673 729 4
## 403 0 1.6094379 576 25
## 404 0 1.0647107 324 0
## 405 0 2.0794415 144 9
## 406 0 2.1317968 729 9
## 407 0 1.0715836 2401 0
## 408 0 1.8325815 16 0
## 409 0 1.8325815 576 4
## 410 0 1.6311995 9 0
## 411 0 1.3862944 4 0
## 412 0 1.4906543 841 121
## 413 0 1.9286187 1156 441
## 414 0 1.6919391 100 9
## 415 1 1.0986123 25 0
## 416 0 1.0647107 4 0
## 417 0 1.8325815 1521 441
## 418 0 1.4678744 25 4
## 419 0 1.1786550 196 4
## 420 0 1.9823799 64 4
## 421 0 1.8484548 100 1
## 422 1 1.7281095 4 4
## 423 0 2.1690538 81 9
## 424 1 1.1631508 1 0
## 425 0 1.0986123 2025 1
## 426 1 1.0986123 1089 9
## 427 0 2.5257287 441 324
## 428 0 1.0577903 4 0
## 429 0 1.2089603 81 1
## 430 0 1.8718022 1089 4
## 431 0 2.3398809 256 4
## 432 0 1.5040774 100 0
## 433 0 2.3025851 81 64
## 434 1 1.3376292 64 1
## 435 0 2.1747518 81 1
## 436 0 2.2428350 529 0
## 437 0 1.8453002 529 64
## 438 0 1.3862944 484 324
## 439 0 1.0647107 1369 0
## 440 0 2.9957323 484 16
## 441 0 2.4203682 784 625
## 442 0 1.2527629 196 0
## 443 1 1.7917595 361 16
## 444 0 2.6658382 100 81
## 445 0 1.8500284 625 0
## 446 0 1.2669476 441 0
## 447 1 1.0986123 1024 0
## 448 0 1.5040774 441 100
## 449 0 1.8916048 1296 0
## 450 0 2.2300143 4 4
## 451 0 1.0986123 121 0
## 452 1 1.1786550 1600 4
## 453 1 0.4054651 121 1
## 454 0 1.7749524 81 49
## 455 0 2.0794415 529 16
## 456 0 1.0647107 1 0
## 457 0 1.1908876 900 169
## 458 0 1.8718022 1681 1089
## 459 0 1.3862944 36 0
## 460 0 1.7917595 121 0
## 461 0 1.4060969 1849 289
## 462 0 1.3217559 1521 4
## 463 0 1.1151416 2500 576
## 464 0 1.2527629 676 400
## 465 1 1.0715836 2601 900
## 466 0 1.5040774 9 81
## 467 0 1.2089603 9 1
## 468 0 1.7833912 225 81
## 469 0 2.0794415 289 36
## 470 0 1.0986123 1296 0
## 471 0 1.6094379 961 81
## 472 0 1.7047480 81 16
## 473 0 0.9745597 1764 100
## 474 0 1.0986123 9 0
## 475 0 1.5040774 1369 196
## 476 0 2.8622010 529 484
## 477 0 2.1016922 441 25
## 478 0 2.2071750 121 144
## 479 0 2.4697931 1225 169
## 480 0 1.1786550 1764 0
## 481 0 1.5040774 9 0
## 482 0 1.5040774 169 0
## 483 0 1.3110319 196 49
## 484 0 1.8718022 196 121
## 485 1 1.0647107 1521 1
## 486 0 1.7227666 121 64
## 487 0 0.8020016 784 9
## 488 1 1.6094379 324 0
## 489 0 2.1198635 36 4
## 490 0 1.0647107 676 1
## 491 0 1.8325815 441 36
## 492 0 1.5151273 1156 4
## 493 1 1.1878434 289 4
## 494 1 0.8329091 4 0
## 495 0 1.1939224 25 0
## 496 0 1.1474025 1 0
## 497 0 2.5257287 1600 900
## 498 0 1.6389967 1521 441
## 499 1 1.1410331 1 1
## 500 0 1.9810015 196 25
## 501 0 1.0647107 4 4
## 502 1 0.5596158 4 1
## 503 0 1.0612565 1764 0
## 504 0 1.0647107 1156 0
## 505 0 2.8741293 100 9
## 506 1 1.8325815 16 9
## 507 0 0.9555114 16 0
## 508 0 1.8916048 441 9
## 509 0 1.2527629 961 9
## 510 0 1.8718022 400 196
## 511 0 1.0986123 1296 1
## 512 0 1.4770488 49 0
## 513 0 2.3025851 225 0
## 514 0 1.5993875 625 289
## 515 0 2.1972246 49 0
## 516 0 0.3576744 289 0
## 517 0 1.1249295 9 1
## 518 0 2.2332351 144 121
## 519 0 2.0149031 324 25
## 520 0 1.5581446 2209 1
## 521 0 1.7316556 4 0
## 522 0 2.7080503 196 4
## 523 0 0.8197798 4 0
## 524 0 1.5411590 169 324
## 525 0 2.4475510 25 1
## 526 0 1.2527629 25 16
w1<- wage1
# Log-level model
lm(log(wage) ~ educ, data=w1) %>% summary() # b1*100
##
## Call:
## lm(formula = log(wage) ~ educ, data = w1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.21158 -0.36393 -0.07263 0.29712 1.52339
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.583773 0.097336 5.998 3.74e-09 ***
## educ 0.082744 0.007567 10.935 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4801 on 524 degrees of freedom
## Multiple R-squared: 0.1858, Adjusted R-squared: 0.1843
## F-statistic: 119.6 on 1 and 524 DF, p-value: < 2.2e-16
w2 <- lm(log(wage) ~ educ+exper, data = w1)
summary(w2)
##
## Call:
## lm(formula = log(wage) ~ educ + exper, data = w1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.05800 -0.30136 -0.04539 0.30601 1.44425
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.216854 0.108595 1.997 0.0464 *
## educ 0.097936 0.007622 12.848 < 2e-16 ***
## exper 0.010347 0.001555 6.653 7.24e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4614 on 523 degrees of freedom
## Multiple R-squared: 0.2493, Adjusted R-squared: 0.2465
## F-statistic: 86.86 on 2 and 523 DF, p-value: < 2.2e-16
w3 <- lm(log(wage) ~ educ+exper+tenure, data = w1)
summary(w3)
##
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure, data = w1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.05802 -0.29645 -0.03265 0.28788 1.42809
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.284360 0.104190 2.729 0.00656 **
## educ 0.092029 0.007330 12.555 < 2e-16 ***
## exper 0.004121 0.001723 2.391 0.01714 *
## tenure 0.022067 0.003094 7.133 3.29e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4409 on 522 degrees of freedom
## Multiple R-squared: 0.316, Adjusted R-squared: 0.3121
## F-statistic: 80.39 on 3 and 522 DF, p-value: < 2.2e-16
wage1 <- w1 %>% dplyr::mutate(
marrmen = ifelse(female == 0 & married == 1,1,0),
marrfem = ifelse(female == 1 & married == 1,1,0),
)
w4 <- lm(log(wage) ~ marrmen + marrfem + educ + exper + tenure, data = wage1)
summary(w4)
##
## Call:
## lm(formula = log(wage) ~ marrmen + marrfem + educ + exper + tenure,
## data = wage1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.99444 -0.24176 -0.04485 0.24534 1.26391
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.328368 0.096206 3.413 0.000692 ***
## marrmen 0.348273 0.044287 7.864 2.16e-14 ***
## marrfem -0.063199 0.047143 -1.341 0.180638
## educ 0.083847 0.006870 12.204 < 2e-16 ***
## exper 0.003041 0.001656 1.836 0.066950 .
## tenure 0.015906 0.002923 5.441 8.15e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4065 on 520 degrees of freedom
## Multiple R-squared: 0.4207, Adjusted R-squared: 0.4151
## F-statistic: 75.52 on 5 and 520 DF, p-value: < 2.2e-16
wage2 <- w1 %>% dplyr::mutate(
marrmen = ifelse(female == 0 & married == 1,1,0),
marrfem = ifelse(female == 1 & married == 1,1,0),
bmen = ifelse(female == 0 & nonwhite == 1,1,0),
bfem = ifelse(female == 1 & nonwhite == 1,1,0)
)
w5 <- lm(log(wage) ~ bmen + bfem + marrmen + marrfem + educ + exper + tenure, data = wage2,)
summary(w5)
##
## Call:
## lm(formula = log(wage) ~ bmen + bfem + marrmen + marrfem + educ +
## exper + tenure, data = wage2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.99929 -0.24369 -0.03954 0.24779 1.22205
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.327663 0.097410 3.364 0.000826 ***
## bmen 0.037529 0.079608 0.471 0.637534
## bfem -0.090279 0.084741 -1.065 0.287210
## marrmen 0.337644 0.045267 7.459 3.70e-13 ***
## marrfem -0.064434 0.047329 -1.361 0.173972
## educ 0.084289 0.006919 12.182 < 2e-16 ***
## exper 0.003156 0.001660 1.901 0.057895 .
## tenure 0.015812 0.002926 5.403 9.98e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4068 on 518 degrees of freedom
## Multiple R-squared: 0.4222, Adjusted R-squared: 0.4144
## F-statistic: 54.08 on 7 and 518 DF, p-value: < 2.2e-16
wage3 <- w1 %>% dplyr::mutate(
marrmen = ifelse(female == 0 & married == 1,1,0),
marrfem = ifelse(female == 1 & married == 1,1,0),
bmen = ifelse(female == 0 & nonwhite == 1,1,0),
bfem = ifelse(female == 1 & nonwhite == 1,1,0),
smen = ifelse(female == 0 & south == 1,1,0),
sfem = ifelse(female == 1 & south == 1,1,0)
)
w6 <- lm(log(wage) ~ smen + sfem + bmen + bfem + marrmen + marrfem + educ + exper + tenure, data = wage3)
summary(w6)
##
## Call:
## lm(formula = log(wage) ~ smen + sfem + bmen + bfem + marrmen +
## marrfem + educ + exper + tenure, data = wage3)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.02008 -0.24979 -0.03848 0.22913 1.23594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.367344 0.099444 3.694 0.000244 ***
## smen -0.085334 0.050200 -1.700 0.089758 .
## sfem -0.053757 0.052926 -1.016 0.310245
## bmen 0.054225 0.080376 0.675 0.500205
## bfem -0.086273 0.085443 -1.010 0.313104
## marrmen 0.353150 0.047874 7.377 6.52e-13 ***
## marrfem -0.064784 0.048385 -1.339 0.181185
## educ 0.082740 0.006956 11.895 < 2e-16 ***
## exper 0.003184 0.001659 1.920 0.055444 .
## tenure 0.015426 0.002928 5.268 2.03e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4061 on 516 degrees of freedom
## Multiple R-squared: 0.4263, Adjusted R-squared: 0.4163
## F-statistic: 42.61 on 9 and 516 DF, p-value: < 2.2e-16
wage4 <- w1 %>% dplyr::mutate(
marrmen = ifelse(female == 0 & married == 1,1,0),
marrfem = ifelse(female == 1 & married == 1,1,0),
bmen = ifelse(female == 0 & nonwhite == 1,1,0),
bfem = ifelse(female == 1 & nonwhite == 1,1,0),
smen = ifelse(female == 0 & south == 1,1,0),
sfem = ifelse(female == 1 & south == 1,1,0),
umen = ifelse(female == 0 & smsa == 1,1,0),
ufem = ifelse(female == 1 & smsa == 1,1,0)
)
w7 <- lm(log(wage) ~ umen + ufem + smen + sfem + bmen + bfem + marrmen + marrfem + educ + exper + tenure, data = wage4)
summary(w7)
##
## Call:
## lm(formula = log(wage) ~ umen + ufem + smen + sfem + bmen + bfem +
## marrmen + marrfem + educ + exper + tenure, data = wage4)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.00373 -0.24410 -0.03511 0.23174 1.34327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.319541 0.100425 3.182 0.001552 **
## umen 0.186720 0.049463 3.775 0.000179 ***
## ufem 0.093354 0.049818 1.874 0.061510 .
## smen -0.059712 0.050489 -1.183 0.237490
## sfem -0.024062 0.052897 -0.455 0.649385
## bmen 0.042926 0.079634 0.539 0.590096
## bfem -0.072161 0.085242 -0.847 0.397647
## marrmen 0.328023 0.051311 6.393 3.66e-10 ***
## marrfem -0.027657 0.049771 -0.556 0.578668
## educ 0.077584 0.007009 11.070 < 2e-16 ***
## exper 0.003379 0.001640 2.060 0.039867 *
## tenure 0.014814 0.002899 5.111 4.53e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4013 on 514 degrees of freedom
## Multiple R-squared: 0.442, Adjusted R-squared: 0.4301
## F-statistic: 37.02 on 11 and 514 DF, p-value: < 2.2e-16
#1. In the first (lm) log-level model, wage increases by 8.27% when educ increases by one unit. By adding exper (w2), the coefficient of educ changes to 0.0979 indicating that wage increases by 9.79% when educ increases by one unit and exper is added. Add tenure (w3) and the coefficient of educ changes to 0.0920 so that wage increases by 9.20%. Add married (w4) and the coefficient educ changes 0.0838, wage increases by 8.38%. Black (w5) is added and the coefficient of educ changes to 0.0842 and wage increases by 8.42%. Add south (w6) and the coefficient of educ is 0.0827 and the wage increases by 8.27%. Finally, add urban (w7) and the coefficient of educ changes to 0.0775 so that the wage increases 7.75% when educ increases by one additional unit and all the variables are added.
#ASSUMPTIONS
plot(w7)# Residual versus leverage plot
plot(w7,5)# Cooks distance
plot(w7,4)# Scale location plot, homocedasticity
plot(w7,3)#normality
plot(w7,2)#non-linear patterns
plot(w7,1)
# Testing homoskedasticity: Breusch-Pagan test
lmtest::bptest(w7)
##
## studentized Breusch-Pagan test
##
## data: w7
## BP = 7.3365, df = 11, p-value = 0.7712
# Outliers
car::outlierTest(w7) # If Bonferroni p-value < 5%, then that observation is an outlier.
## rstudent unadjusted p-value Bonferroni p
## 24 -5.14409 3.8328e-07 0.0002016
# Non-independence of errors
car::durbinWatsonTest(w7)
## lag Autocorrelation D-W Statistic p-value
## 1 0.0887085 1.822043 0.034
## Alternative hypothesis: rho != 0
# Global validation
gv1 <- gvlma::gvlma(w7)
gv1
##
## Call:
## lm(formula = log(wage) ~ umen + ufem + smen + sfem + bmen + bfem +
## marrmen + marrfem + educ + exper + tenure, data = wage4)
##
## Coefficients:
## (Intercept) umen ufem smen sfem bmen
## 0.319541 0.186720 0.093354 -0.059712 -0.024062 0.042926
## bfem marrmen marrfem educ exper tenure
## -0.072161 0.328023 -0.027657 0.077584 0.003379 0.014814
##
##
## ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
## USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
## Level of Significance = 0.05
##
## Call:
## gvlma::gvlma(x = w7)
##
## Value p-value Decision
## Global Stat 49.4432 4.719e-10 Assumptions NOT satisfied!
## Skewness 0.4823 4.874e-01 Assumptions acceptable.
## Kurtosis 39.1659 3.893e-10 Assumptions NOT satisfied!
## Link Function 5.6532 1.742e-02 Assumptions NOT satisfied!
## Heteroscedasticity 4.1418 4.184e-02 Assumptions NOT satisfied!
#linear hypothesis
car::linearHypothesis(w7, c("exper - tenure = 0"), white.adjust = "hc1")
## Linear hypothesis test
##
## Hypothesis:
## exper - tenure = 0
##
## Model 1: restricted model
## Model 2: log(wage) ~ umen + ufem + smen + sfem + bmen + bfem + marrmen +
## marrfem + educ + exper + tenure
##
## Note: Coefficient covariance matrix supplied.
##
## Res.Df Df F Pr(>F)
## 1 515
## 2 514 1 7.2541 0.007305 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#2. Linear hypothesis: Do not reject H0 in the linear hypothesis so it is proved that exper and tenure cancel each other out.
#3. Assumptions: In the homoscedasticity test, do not reject the H0, so there is homoscedasticity in the model; in the outlier test, the value is less than 5%, so the observation is an outlier; in the independence test, do not reject H0, so the errors are independent; and in the global validation, the assumption is not fulfilled
DATASET: marketing
pacman::p_load(tidyverse,car, wooldridge, jtools, hablar, broom, gvlma, datarium, MASS, forestmangr)
m1 <- datarium::marketing
model <- lm(sales ~ youtube, data = m1)
mx<-max(m1$youtube)
med<-median(m1$youtube)
below <- m1[m1$youtube<med,]
below
## youtube facebook newspaper sales
## 2 53.40 47.16 54.12 12.48
## 3 20.64 55.08 83.16 11.16
## 6 10.44 58.68 90.00 8.64
## 7 69.00 39.36 28.20 14.16
## 8 144.24 23.52 13.92 15.84
## 9 10.32 2.52 1.20 5.76
## 11 79.32 6.96 29.04 10.32
## 13 28.56 42.12 79.08 11.04
## 14 117.00 9.12 8.64 11.64
## 17 81.36 43.92 136.80 15.00
## 19 83.04 24.60 21.96 13.56
## 20 176.76 28.68 22.92 17.52
## 23 15.84 19.08 59.52 6.72
## 25 74.76 15.12 21.96 11.64
## 27 171.48 35.16 15.12 18.00
## 30 84.72 19.20 48.96 12.60
## 32 135.48 20.88 46.32 14.28
## 33 116.64 1.80 36.00 11.52
## 35 114.84 1.68 8.88 11.40
## 38 89.64 59.28 54.84 17.64
## 39 51.72 32.04 42.12 12.12
## 45 30.12 30.84 51.96 10.20
## 47 107.64 11.88 42.84 12.72
## 50 80.28 14.04 44.16 11.64
## 52 120.48 11.52 4.32 12.84
## 57 8.76 33.72 49.68 6.60
## 58 163.44 23.04 19.92 15.84
## 61 64.20 2.40 25.68 9.72
## 64 123.24 35.52 10.08 16.80
## 65 157.32 51.36 34.68 21.60
## 66 82.80 11.16 1.08 11.16
## 67 37.80 29.52 2.64 11.40
## 68 167.16 17.40 12.24 16.08
## 72 131.76 17.16 38.04 14.88
## 73 32.16 39.60 23.16 10.56
## 74 155.28 6.84 37.56 13.20
## 76 20.28 52.44 107.28 10.44
## 77 33.00 1.92 24.84 8.28
## 78 144.60 34.20 17.04 17.04
## 79 6.48 35.88 11.28 6.36
## 80 139.20 9.24 27.72 13.20
## 81 91.68 32.04 26.76 14.16
## 83 90.36 24.36 39.00 13.56
## 84 82.08 53.40 42.72 16.32
## 87 91.56 33.00 19.20 14.40
## 88 132.84 48.72 75.84 19.20
## 89 105.96 30.60 88.08 15.48
## 90 131.76 57.36 61.68 20.04
## 91 161.16 5.88 11.16 13.44
## 92 34.32 1.80 39.60 8.76
## 95 128.88 16.80 13.08 13.80
## 100 162.24 50.04 55.08 20.64
## 106 165.48 55.68 70.80 23.04
## 107 30.00 13.20 35.64 8.64
## 108 108.48 0.36 27.84 10.44
## 109 15.72 0.48 30.72 6.36
## 115 93.84 56.16 41.40 17.52
## 116 90.12 42.00 63.24 15.12
## 117 167.04 17.16 30.72 14.64
## 118 91.68 0.96 17.76 11.28
## 119 150.84 44.28 95.04 19.08
## 120 23.28 19.20 26.76 7.92
## 121 169.56 32.16 55.44 18.60
## 122 22.56 26.04 60.48 8.40
## 124 147.72 41.52 14.88 18.24
## 126 104.64 14.16 31.08 12.72
## 127 9.36 46.68 60.72 7.92
## 128 96.24 0.00 11.04 10.56
## 130 71.52 14.40 51.72 11.64
## 131 0.84 47.52 10.44 1.92
## 133 10.08 32.64 2.52 6.84
## 135 44.28 46.32 78.72 12.96
## 136 57.96 56.40 10.20 13.92
## 137 30.72 46.80 11.16 11.40
## 139 51.60 31.08 24.60 11.52
## 141 88.08 20.40 15.48 13.08
## 144 125.52 6.84 41.28 12.48
## 145 115.44 17.76 46.68 13.68
## 146 168.36 2.28 10.80 12.36
## 149 45.60 48.36 14.28 13.08
## 150 53.64 30.96 24.72 12.12
## 152 145.20 10.08 58.44 13.92
## 156 4.92 13.92 6.84 3.84
## 157 112.68 52.20 60.60 18.36
## 159 14.04 44.28 54.24 8.76
## 160 158.04 22.08 41.52 15.48
## 162 102.84 42.96 59.16 15.96
## 165 140.64 17.64 6.48 14.28
## 167 21.48 45.12 25.92 9.60
## 171 60.00 13.92 22.08 10.08
## 173 23.52 24.12 20.40 9.12
## 183 67.44 6.84 35.64 10.44
## 187 167.40 2.52 31.92 12.36
## 190 22.44 14.52 28.08 8.04
## 191 47.40 49.32 6.96 12.96
## 192 90.60 12.96 7.20 11.88
## 193 20.64 4.92 37.92 7.08
## 195 179.64 42.72 7.20 20.76
## 196 45.84 4.44 16.56 9.12
## 197 113.04 5.88 9.72 11.64
above <- m1[m1$youtube<med,]
above
## youtube facebook newspaper sales
## 2 53.40 47.16 54.12 12.48
## 3 20.64 55.08 83.16 11.16
## 6 10.44 58.68 90.00 8.64
## 7 69.00 39.36 28.20 14.16
## 8 144.24 23.52 13.92 15.84
## 9 10.32 2.52 1.20 5.76
## 11 79.32 6.96 29.04 10.32
## 13 28.56 42.12 79.08 11.04
## 14 117.00 9.12 8.64 11.64
## 17 81.36 43.92 136.80 15.00
## 19 83.04 24.60 21.96 13.56
## 20 176.76 28.68 22.92 17.52
## 23 15.84 19.08 59.52 6.72
## 25 74.76 15.12 21.96 11.64
## 27 171.48 35.16 15.12 18.00
## 30 84.72 19.20 48.96 12.60
## 32 135.48 20.88 46.32 14.28
## 33 116.64 1.80 36.00 11.52
## 35 114.84 1.68 8.88 11.40
## 38 89.64 59.28 54.84 17.64
## 39 51.72 32.04 42.12 12.12
## 45 30.12 30.84 51.96 10.20
## 47 107.64 11.88 42.84 12.72
## 50 80.28 14.04 44.16 11.64
## 52 120.48 11.52 4.32 12.84
## 57 8.76 33.72 49.68 6.60
## 58 163.44 23.04 19.92 15.84
## 61 64.20 2.40 25.68 9.72
## 64 123.24 35.52 10.08 16.80
## 65 157.32 51.36 34.68 21.60
## 66 82.80 11.16 1.08 11.16
## 67 37.80 29.52 2.64 11.40
## 68 167.16 17.40 12.24 16.08
## 72 131.76 17.16 38.04 14.88
## 73 32.16 39.60 23.16 10.56
## 74 155.28 6.84 37.56 13.20
## 76 20.28 52.44 107.28 10.44
## 77 33.00 1.92 24.84 8.28
## 78 144.60 34.20 17.04 17.04
## 79 6.48 35.88 11.28 6.36
## 80 139.20 9.24 27.72 13.20
## 81 91.68 32.04 26.76 14.16
## 83 90.36 24.36 39.00 13.56
## 84 82.08 53.40 42.72 16.32
## 87 91.56 33.00 19.20 14.40
## 88 132.84 48.72 75.84 19.20
## 89 105.96 30.60 88.08 15.48
## 90 131.76 57.36 61.68 20.04
## 91 161.16 5.88 11.16 13.44
## 92 34.32 1.80 39.60 8.76
## 95 128.88 16.80 13.08 13.80
## 100 162.24 50.04 55.08 20.64
## 106 165.48 55.68 70.80 23.04
## 107 30.00 13.20 35.64 8.64
## 108 108.48 0.36 27.84 10.44
## 109 15.72 0.48 30.72 6.36
## 115 93.84 56.16 41.40 17.52
## 116 90.12 42.00 63.24 15.12
## 117 167.04 17.16 30.72 14.64
## 118 91.68 0.96 17.76 11.28
## 119 150.84 44.28 95.04 19.08
## 120 23.28 19.20 26.76 7.92
## 121 169.56 32.16 55.44 18.60
## 122 22.56 26.04 60.48 8.40
## 124 147.72 41.52 14.88 18.24
## 126 104.64 14.16 31.08 12.72
## 127 9.36 46.68 60.72 7.92
## 128 96.24 0.00 11.04 10.56
## 130 71.52 14.40 51.72 11.64
## 131 0.84 47.52 10.44 1.92
## 133 10.08 32.64 2.52 6.84
## 135 44.28 46.32 78.72 12.96
## 136 57.96 56.40 10.20 13.92
## 137 30.72 46.80 11.16 11.40
## 139 51.60 31.08 24.60 11.52
## 141 88.08 20.40 15.48 13.08
## 144 125.52 6.84 41.28 12.48
## 145 115.44 17.76 46.68 13.68
## 146 168.36 2.28 10.80 12.36
## 149 45.60 48.36 14.28 13.08
## 150 53.64 30.96 24.72 12.12
## 152 145.20 10.08 58.44 13.92
## 156 4.92 13.92 6.84 3.84
## 157 112.68 52.20 60.60 18.36
## 159 14.04 44.28 54.24 8.76
## 160 158.04 22.08 41.52 15.48
## 162 102.84 42.96 59.16 15.96
## 165 140.64 17.64 6.48 14.28
## 167 21.48 45.12 25.92 9.60
## 171 60.00 13.92 22.08 10.08
## 173 23.52 24.12 20.40 9.12
## 183 67.44 6.84 35.64 10.44
## 187 167.40 2.52 31.92 12.36
## 190 22.44 14.52 28.08 8.04
## 191 47.40 49.32 6.96 12.96
## 192 90.60 12.96 7.20 11.88
## 193 20.64 4.92 37.92 7.08
## 195 179.64 42.72 7.20 20.76
## 196 45.84 4.44 16.56 9.12
## 197 113.04 5.88 9.72 11.64
#Dummy variable= youtube2
m1<- m1 %>% dplyr::mutate(youtube2=
ifelse(m1$youtube>= med, 1, 0))
regression <- lm(youtube2~facebook+newspaper, data = m1)
summary(regression)
##
## Call:
## lm(formula = youtube2 ~ facebook + newspaper, data = m1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.59695 -0.49204 -0.00731 0.50100 0.56415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4233608 0.0735516 5.756 3.26e-08 ***
## facebook 0.0018651 0.0021356 0.873 0.384
## newspaper 0.0006701 0.0014559 0.460 0.646
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.502 on 197 degrees of freedom
## Multiple R-squared: 0.007256, Adjusted R-squared: -0.002823
## F-statistic: 0.7199 on 2 and 197 DF, p-value: 0.4881
# The adjusted r^2 is nearly 0 so this means that the two independent variables don't explain the dependent variable at all.
#The coefficients are not significant at all because the p value is higher than alpha for all independent variables.
#ASSUMPTIONS
# Testing homoskedasticity: Breusch-Pagan test
lmtest::bptest(regression)
##
## studentized Breusch-Pagan test
##
## data: regression
## BP = 0.69309, df = 2, p-value = 0.7071
# Outliers
car::outlierTest(regression) # If Bonferroni p-value < 5%, then that observation is an outlier
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
## rstudent unadjusted p-value Bonferroni p
## 17 -1.241559 0.21588 NA
# Non-independence of errors
car::durbinWatsonTest(regression)
## lag Autocorrelation D-W Statistic p-value
## 1 0.01856574 1.952929 0.75
## Alternative hypothesis: rho != 0
# Global validation
gv1 <- gvlma::gvlma(regression)
gv1
##
## Call:
## lm(formula = youtube2 ~ facebook + newspaper, data = m1)
##
## Coefficients:
## (Intercept) facebook newspaper
## 0.4233608 0.0018651 0.0006701
##
##
## ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
## USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
## Level of Significance = 0.05
##
## Call:
## gvlma::gvlma(x = regression)
##
## Value p-value Decision
## Global Stat 3.332e+01 1.027e-06 Assumptions NOT satisfied!
## Skewness 3.266e-05 9.954e-01 Assumptions acceptable.
## Kurtosis 3.236e+01 1.279e-08 Assumptions NOT satisfied!
## Link Function 9.550e-01 3.285e-01 Assumptions acceptable.
## Heteroscedasticity 1.135e-03 9.731e-01 Assumptions acceptable.
glimpse(marketing)
## Rows: 200
## Columns: 4
## $ youtube <dbl> 276.12, 53.40, 20.64, 181.80, 216.96, 10.44, 69.00, 144.24, …
## $ facebook <dbl> 45.36, 47.16, 55.08, 49.56, 12.96, 58.68, 39.36, 23.52, 2.52…
## $ newspaper <dbl> 83.04, 54.12, 83.16, 70.20, 70.08, 90.00, 28.20, 13.92, 1.20…
## $ sales <dbl> 26.52, 12.48, 11.16, 22.20, 15.48, 8.64, 14.16, 15.84, 5.76,…
ggplot(m1, aes(x= youtube, y =sales, col= facebook))
plot(m1$youtube2, m1$facebook)
ggplot(m1,aes(x= youtube2, y= facebook)) + geom_point()
#group 1: youtube2=1
#group 2: youtube2=0
splitdata <- split(m1, m1$youtube2)
above <- splitdata$`1`
below <- splitdata$`0`
above
## youtube facebook newspaper sales youtube2
## 1 276.12 45.36 83.04 26.52 1
## 4 181.80 49.56 70.20 22.20 1
## 5 216.96 12.96 70.08 15.48 1
## 10 239.76 3.12 25.44 12.72 1
## 12 257.64 28.80 4.80 20.88 1
## 15 244.92 39.48 55.20 22.80 1
## 16 234.48 57.24 63.48 26.88 1
## 18 337.68 47.52 66.96 29.28 1
## 21 262.08 33.24 64.08 21.60 1
## 22 284.88 6.12 28.20 15.00 1
## 24 273.96 20.28 31.44 18.60 1
## 26 315.48 4.20 23.40 14.40 1
## 28 288.12 20.04 27.48 19.08 1
## 29 298.56 32.52 27.48 22.68 1
## 31 351.48 33.96 51.84 25.68 1
## 34 318.72 24.00 0.36 20.88 1
## 36 348.84 4.92 10.20 15.36 1
## 37 320.28 52.56 6.00 30.48 1
## 40 273.60 45.24 38.40 25.80 1
## 41 243.00 26.76 37.92 19.92 1
## 42 212.40 40.08 46.44 20.52 1
## 43 352.32 33.24 2.16 24.84 1
## 44 248.28 10.08 31.68 15.48 1
## 46 210.12 27.00 37.80 17.88 1
## 48 287.88 49.80 22.20 27.84 1
## 49 272.64 18.96 59.88 17.76 1
## 51 239.76 3.72 41.52 13.68 1
## 53 259.68 50.04 47.52 27.12 1
## 54 219.12 55.44 70.44 25.44 1
## 55 315.24 34.56 19.08 24.24 1
## 56 238.68 59.28 72.00 28.44 1
## 59 252.96 59.52 45.24 28.56 1
## 60 252.84 35.40 11.16 22.08 1
## 62 313.56 51.24 65.64 29.04 1
## 63 287.16 18.60 32.76 18.84 1
## 69 284.88 33.00 13.20 22.68 1
## 70 260.16 52.68 32.64 26.76 1
## 71 238.92 36.72 46.44 21.96 1
## 75 256.08 29.52 15.72 20.40 1
## 82 287.76 4.92 44.28 14.76 1
## 85 256.20 51.60 40.56 26.04 1
## 86 231.84 22.08 78.84 18.24 1
## 93 261.24 40.20 70.80 23.28 1
## 94 301.08 43.80 86.76 26.64 1
## 96 195.96 37.92 63.48 20.28 1
## 97 237.12 4.20 7.08 14.04 1
## 98 221.88 25.20 26.40 18.60 1
## 99 347.64 50.76 61.44 30.48 1
## 101 266.88 5.16 59.76 14.04 1
## 102 355.68 43.56 121.08 28.56 1
## 103 336.24 12.12 25.68 17.76 1
## 104 225.48 20.64 21.48 17.64 1
## 105 285.84 41.16 6.36 24.84 1
## 110 306.48 32.28 6.60 23.76 1
## 111 270.96 9.84 67.80 16.08 1
## 112 290.04 45.60 27.84 26.16 1
## 113 210.84 18.48 2.88 16.92 1
## 114 251.52 24.72 12.84 19.08 1
## 123 268.80 2.88 18.72 13.92 1
## 125 275.40 38.76 89.04 23.64 1
## 129 264.36 58.80 3.84 29.64 1
## 132 318.24 3.48 51.60 15.24 1
## 134 263.76 40.20 54.12 23.52 1
## 138 328.44 34.68 71.64 24.96 1
## 140 221.88 52.68 2.04 24.84 1
## 142 232.44 42.48 90.72 23.04 1
## 143 264.60 39.84 45.48 24.12 1
## 147 288.12 8.76 10.44 15.84 1
## 148 291.84 58.80 53.16 30.48 1
## 151 336.84 16.68 44.40 19.32 1
## 153 237.12 27.96 17.04 19.92 1
## 154 205.56 47.64 45.24 22.80 1
## 155 225.36 25.32 11.40 18.72 1
## 158 179.76 1.56 29.16 12.12 1
## 161 207.00 21.72 36.84 17.28 1
## 163 226.08 21.72 30.72 17.88 1
## 164 196.20 44.16 8.88 21.60 1
## 166 281.40 4.08 101.76 14.28 1
## 168 248.16 6.24 23.28 14.64 1
## 169 258.48 28.32 69.12 20.52 1
## 170 341.16 12.72 7.68 18.00 1
## 172 197.40 25.08 56.88 17.40 1
## 174 202.08 8.52 15.36 14.04 1
## 175 266.88 4.08 15.72 13.80 1
## 176 332.28 58.68 50.16 32.40 1
## 177 298.08 36.24 24.36 24.24 1
## 178 204.24 9.36 42.24 14.04 1
## 179 332.04 2.76 28.44 14.16 1
## 180 198.72 12.00 21.12 15.12 1
## 181 187.92 3.12 9.96 12.60 1
## 182 262.20 6.48 32.88 14.64 1
## 184 345.12 51.60 86.16 31.44 1
## 185 304.56 25.56 36.00 21.12 1
## 186 246.00 54.12 23.52 27.12 1
## 188 229.32 34.44 21.84 20.76 1
## 189 343.20 16.68 4.44 19.08 1
## 194 200.16 50.40 4.32 23.52 1
## 198 212.40 11.16 7.68 15.36 1
## 199 340.32 50.40 79.44 30.60 1
## 200 278.52 10.32 10.44 16.08 1
below
## youtube facebook newspaper sales youtube2
## 2 53.40 47.16 54.12 12.48 0
## 3 20.64 55.08 83.16 11.16 0
## 6 10.44 58.68 90.00 8.64 0
## 7 69.00 39.36 28.20 14.16 0
## 8 144.24 23.52 13.92 15.84 0
## 9 10.32 2.52 1.20 5.76 0
## 11 79.32 6.96 29.04 10.32 0
## 13 28.56 42.12 79.08 11.04 0
## 14 117.00 9.12 8.64 11.64 0
## 17 81.36 43.92 136.80 15.00 0
## 19 83.04 24.60 21.96 13.56 0
## 20 176.76 28.68 22.92 17.52 0
## 23 15.84 19.08 59.52 6.72 0
## 25 74.76 15.12 21.96 11.64 0
## 27 171.48 35.16 15.12 18.00 0
## 30 84.72 19.20 48.96 12.60 0
## 32 135.48 20.88 46.32 14.28 0
## 33 116.64 1.80 36.00 11.52 0
## 35 114.84 1.68 8.88 11.40 0
## 38 89.64 59.28 54.84 17.64 0
## 39 51.72 32.04 42.12 12.12 0
## 45 30.12 30.84 51.96 10.20 0
## 47 107.64 11.88 42.84 12.72 0
## 50 80.28 14.04 44.16 11.64 0
## 52 120.48 11.52 4.32 12.84 0
## 57 8.76 33.72 49.68 6.60 0
## 58 163.44 23.04 19.92 15.84 0
## 61 64.20 2.40 25.68 9.72 0
## 64 123.24 35.52 10.08 16.80 0
## 65 157.32 51.36 34.68 21.60 0
## 66 82.80 11.16 1.08 11.16 0
## 67 37.80 29.52 2.64 11.40 0
## 68 167.16 17.40 12.24 16.08 0
## 72 131.76 17.16 38.04 14.88 0
## 73 32.16 39.60 23.16 10.56 0
## 74 155.28 6.84 37.56 13.20 0
## 76 20.28 52.44 107.28 10.44 0
## 77 33.00 1.92 24.84 8.28 0
## 78 144.60 34.20 17.04 17.04 0
## 79 6.48 35.88 11.28 6.36 0
## 80 139.20 9.24 27.72 13.20 0
## 81 91.68 32.04 26.76 14.16 0
## 83 90.36 24.36 39.00 13.56 0
## 84 82.08 53.40 42.72 16.32 0
## 87 91.56 33.00 19.20 14.40 0
## 88 132.84 48.72 75.84 19.20 0
## 89 105.96 30.60 88.08 15.48 0
## 90 131.76 57.36 61.68 20.04 0
## 91 161.16 5.88 11.16 13.44 0
## 92 34.32 1.80 39.60 8.76 0
## 95 128.88 16.80 13.08 13.80 0
## 100 162.24 50.04 55.08 20.64 0
## 106 165.48 55.68 70.80 23.04 0
## 107 30.00 13.20 35.64 8.64 0
## 108 108.48 0.36 27.84 10.44 0
## 109 15.72 0.48 30.72 6.36 0
## 115 93.84 56.16 41.40 17.52 0
## 116 90.12 42.00 63.24 15.12 0
## 117 167.04 17.16 30.72 14.64 0
## 118 91.68 0.96 17.76 11.28 0
## 119 150.84 44.28 95.04 19.08 0
## 120 23.28 19.20 26.76 7.92 0
## 121 169.56 32.16 55.44 18.60 0
## 122 22.56 26.04 60.48 8.40 0
## 124 147.72 41.52 14.88 18.24 0
## 126 104.64 14.16 31.08 12.72 0
## 127 9.36 46.68 60.72 7.92 0
## 128 96.24 0.00 11.04 10.56 0
## 130 71.52 14.40 51.72 11.64 0
## 131 0.84 47.52 10.44 1.92 0
## 133 10.08 32.64 2.52 6.84 0
## 135 44.28 46.32 78.72 12.96 0
## 136 57.96 56.40 10.20 13.92 0
## 137 30.72 46.80 11.16 11.40 0
## 139 51.60 31.08 24.60 11.52 0
## 141 88.08 20.40 15.48 13.08 0
## 144 125.52 6.84 41.28 12.48 0
## 145 115.44 17.76 46.68 13.68 0
## 146 168.36 2.28 10.80 12.36 0
## 149 45.60 48.36 14.28 13.08 0
## 150 53.64 30.96 24.72 12.12 0
## 152 145.20 10.08 58.44 13.92 0
## 156 4.92 13.92 6.84 3.84 0
## 157 112.68 52.20 60.60 18.36 0
## 159 14.04 44.28 54.24 8.76 0
## 160 158.04 22.08 41.52 15.48 0
## 162 102.84 42.96 59.16 15.96 0
## 165 140.64 17.64 6.48 14.28 0
## 167 21.48 45.12 25.92 9.60 0
## 171 60.00 13.92 22.08 10.08 0
## 173 23.52 24.12 20.40 9.12 0
## 183 67.44 6.84 35.64 10.44 0
## 187 167.40 2.52 31.92 12.36 0
## 190 22.44 14.52 28.08 8.04 0
## 191 47.40 49.32 6.96 12.96 0
## 192 90.60 12.96 7.20 11.88 0
## 193 20.64 4.92 37.92 7.08 0
## 195 179.64 42.72 7.20 20.76 0
## 196 45.84 4.44 16.56 9.12 0
## 197 113.04 5.88 9.72 11.64 0
modelo_above<- lm(sales~facebook+newspaper,data = above)
modelo_below<- lm(sales~facebook+newspaper,data = below)
summary(modelo_above)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.588688336 0.377873105 33.314592 6.657034e-55
## facebook 0.277368569 0.010158798 27.303286 2.526274e-47
## newspaper 0.007560243 0.006804784 1.111019 2.693066e-01
summary(modelo_below)$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 10.179455291 0.71929513 14.1519870 2.518154e-25
## facebook 0.086432381 0.02270908 3.8060722 2.472636e-04
## newspaper 0.004953095 0.01572088 0.3150648 7.533892e-01
#For both groups 1 & 2 the null hypothesis for the coefficient of facebook is rejected
# so facebook coefficient is significant because their P Values are smaller than 5%.
#For both groups 1 & 2 the null hypothesis for the coefficient of newspaper is not rejected
# so facebook coefficient is not significant because their P Values are higher than 5%.
#ASSUMPTIONS
# Testing homoskedasticity: Breusch-Pagan test
lmtest::bptest(modelo_above)
##
## studentized Breusch-Pagan test
##
## data: modelo_above
## BP = 22.168, df = 2, p-value = 1.536e-05
lmtest::bptest(modelo_below)
##
## studentized Breusch-Pagan test
##
## data: modelo_below
## BP = 14.371, df = 2, p-value = 0.0007576
# Outliers
car::outlierTest(modelo_above) # If Bonferroni p-value < 5%, then that observation is an outlier
## No Studentized residuals with Bonferroni p < 0.05
## Largest |rstudent|:
## rstudent unadjusted p-value Bonferroni p
## 4 -2.840367 0.005502 0.5502
car::outlierTest(modelo_below)
## rstudent unadjusted p-value Bonferroni p
## 131 -3.727644 0.00032672 0.032672
# Non-independence of errors
car::durbinWatsonTest(modelo_above)
## lag Autocorrelation D-W Statistic p-value
## 1 -0.00548723 2.008134 0.974
## Alternative hypothesis: rho != 0
car::durbinWatsonTest(modelo_below)
## lag Autocorrelation D-W Statistic p-value
## 1 -0.07286263 2.141837 0.492
## Alternative hypothesis: rho != 0
# Global validation
gv1 <- gvlma::gvlma(modelo_above)
gv1
##
## Call:
## lm(formula = sales ~ facebook + newspaper, data = above)
##
## Coefficients:
## (Intercept) facebook newspaper
## 12.58869 0.27737 0.00756
##
##
## ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
## USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
## Level of Significance = 0.05
##
## Call:
## gvlma::gvlma(x = modelo_above)
##
## Value p-value Decision
## Global Stat 0.237117 0.9935 Assumptions acceptable.
## Skewness 0.008739 0.9255 Assumptions acceptable.
## Kurtosis 0.009113 0.9239 Assumptions acceptable.
## Link Function 0.180676 0.6708 Assumptions acceptable.
## Heteroscedasticity 0.038590 0.8443 Assumptions acceptable.
gv2 <- gvlma::gvlma(modelo_below)
gv2
##
## Call:
## lm(formula = sales ~ facebook + newspaper, data = below)
##
## Coefficients:
## (Intercept) facebook newspaper
## 10.179455 0.086432 0.004953
##
##
## ASSESSMENT OF THE LINEAR MODEL ASSUMPTIONS
## USING THE GLOBAL TEST ON 4 DEGREES-OF-FREEDOM:
## Level of Significance = 0.05
##
## Call:
## gvlma::gvlma(x = modelo_below)
##
## Value p-value Decision
## Global Stat 6.12328 0.19013 Assumptions acceptable.
## Skewness 4.96138 0.02592 Assumptions NOT satisfied!
## Kurtosis 0.86584 0.35211 Assumptions acceptable.
## Link Function 0.03436 0.85295 Assumptions acceptable.
## Heteroscedasticity 0.26171 0.60895 Assumptions acceptable.