Analísis de datos

Analísis de datos para la Dra. Anel Hernandez López

Plan para el analísis:

library(readxl)
DBANEL <- read_excel("C:/Users/fidel/OneDrive - CINVESTAV/PROYECTO MDatos/TRABAJOS/DRA. ANEL LÓPEZ HERNÁNDEZ/DBANEL.xlsx")

library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6     ✔ purrr   0.3.4
## ✔ tibble  3.1.7     ✔ dplyr   1.0.9
## ✔ tidyr   1.2.0     ✔ stringr 1.4.0
## ✔ readr   2.1.2     ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
library(magrittr)
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
library(gtsummary)
library(dlookr)
## Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output
## %in% : 'length(x) = 3 > 1' in coercion to 'logical(1)'
## 
## Attaching package: 'dlookr'
## The following object is masked from 'package:magrittr':
## 
##     extract
## The following object is masked from 'package:tidyr':
## 
##     extract
## The following object is masked from 'package:base':
## 
##     transform
DBDraAnel<-DBANEL %>% mutate(SEXO=recode(SEXO,`1` = "Masculino",`2` = "Femenino"),
                          ASA=recode(ASA, `1`= "I",
                                     `2`="II",
                                     `3` = "III",
                                     `4`="IV"),
                          IMC=recode(IMC, `1`="bajo",
                                     `2`="Normal",
                                     `3`="Sobrepeso",
                                     `4`="Obesidad"),
                          COMORBILIDADES=recode(COMORBILIDADES, `0`="No se especifica",
                                                `1`="DM",
                                      `2`="HAS",
                                      `3`="Enf Vascular",
                                      `4`="Dislipidemia",
                                      `5`="Enferemedad Renal",
                                      `6`="Enfermedad Neuronal",
                                      `7`="Enfermedad Pulmonar",
                                      `8`="Otra",
                                      `1,2`="DM+HAS",
                                      `2,4, 8`="HAS+Disl+otra",
                                      `7,8`="Enf pulm+otra",
                                      `2,7`="HAS+Enf pulm",
                                      `1,2,4`="DM+HAS+Disl",
                                      `2,3`="HAS+Enf vasc",
                                      `2,6,8`="HAS+Enf neuro+otra",
                                      `1,2,3`="DM+HAS+Enf vasc",
                                      `1,3,8`="DM+Enf Vasc+otra",
                                      `1,7`="DM+Enf pulm",
                                      `2,8`="HAS+otra",
                                      `1,8`="DM+otra"),
                          COLOCACIÓNBLOQUEO=recode(COLOCACIÓNBLOQUEO, `1`="Si",
                                                   `2`="No"),
                          ANESTESICO=recode(ANESTESICO, `1`="ROPI",
                                            `2`="LIDO",
                                            `1,2`="ROPI-LIDO",
                                            `0`="Ninguno"),
                          COMPLICACION=recode(COMPLICACION, `1`="NO",
                                              `2`="SI"),
                          DIAGNOSTICO=recode(DIAGNOSTICO, `1`="Estenosis AO",
                                             `2`="Insuficiencia AO",
                                             `3`="Doble lesión"))

View(DBDraAnel)

Tablas

Creamos la tabla general:

library(gtsummary)
DBDraAnel %>% select(SEXO, EDAD, PESO, IMC, ASA, DIAGNOSTICO, FEVI, COMORBILIDADES,
                     COLOCACIÓNBLOQUEO, ANESTESICO, DOSISFENTANIL, COMPLICACION,
                     TIEMPO_DE_PINZA, TIEMPO_DE_DCP, TIEMPO_ANESTESICO) %>%  tbl_summary
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic N = 351
SEXO
Femenino 9 (26%)
Masculino 26 (74%)
EDAD 62 (54, 67)
PESO 72 (62, 83)
IMC
Normal 10 (29%)
Obesidad 8 (23%)
Sobrepeso 17 (49%)
ASA
II 2 (5.7%)
III 19 (54%)
IV 14 (40%)
DIAGNOSTICO
Doble lesión 6 (17%)
Estenosis AO 25 (71%)
Insuficiencia AO 4 (11%)
FEVI 60 (46, 65)
COMORBILIDADES
Dislipidemia 1 (2.9%)
DM 3 (8.6%)
DM+Enf pulm 1 (2.9%)
DM+Enf Vasc+otra 1 (2.9%)
DM+HAS 3 (8.6%)
DM+HAS+Disl 1 (2.9%)
DM+HAS+Enf vasc 1 (2.9%)
DM+otra 1 (2.9%)
Enf pulm+otra 1 (2.9%)
Enf Vascular 1 (2.9%)
Enferemedad Renal 1 (2.9%)
Enfermedad Pulmonar 2 (5.7%)
HAS 2 (5.7%)
HAS+Disl+otra 1 (2.9%)
HAS+Enf neuro+otra 1 (2.9%)
HAS+Enf pulm 1 (2.9%)
HAS+Enf vasc 1 (2.9%)
HAS+otra 1 (2.9%)
No se especifica 6 (17%)
Otra 5 (14%)
COLOCACIÓNBLOQUEO
No 14 (40%)
Si 21 (60%)
ANESTESICO
Ninguno 14 (40%)
ROPI 1 (2.9%)
ROPI-LIDO 20 (57%)
DOSISFENTANIL 3.90 (3.50, 5.10)
COMPLICACION
NO 35 (100%)
TIEMPO_DE_PINZA
69 1 (50%)
77 1 (50%)
Unknown 33
TIEMPO_DE_DCP
40 1 (50%)
88 1 (50%)
Unknown 33
TIEMPO_ANESTESICO 312 (284, 355)
1 n (%); Median (IQR)
DBDraAnel %>% select(SEXO, EDAD, PESO, IMC, ASA, DIAGNOSTICO, FEVI, COMORBILIDADES,
                                    COLOCACIÓNBLOQUEO, ANESTESICO, DOSISFENTANIL, COMPLICACION,
                                    TIEMPO_DE_PINZA, TIEMPO_DE_DCP, TIEMPO_ANESTESICO) %>%  
  tbl_summary(by=COLOCACIÓNBLOQUEO) %>%  add_p() %>% add_overall()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PESO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FEVI':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'DOSISFENTANIL':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## There was an error in 'add_p()/add_difference()' for variable 'COMPLICACION', p-value omitted:
## Error in stats::chisq.test(x = c("NO", "NO", "NO", "NO", "NO", "NO", "NO", : 'x' and 'y' must have at least 2 levels
## Warning for variable 'TIEMPO_ANESTESICO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Overall, N = 351 No, N = 141 Si, N = 211 p-value2
SEXO 0.7
Femenino 9 (26%) 3 (21%) 6 (29%)
Masculino 26 (74%) 11 (79%) 15 (71%)
EDAD 62 (54, 67) 61 (41, 73) 62 (57, 66) >0.9
PESO 72 (62, 83) 68 (62, 77) 80 (65, 85) 0.3
IMC 0.6
Normal 10 (29%) 4 (29%) 6 (29%)
Obesidad 8 (23%) 2 (14%) 6 (29%)
Sobrepeso 17 (49%) 8 (57%) 9 (43%)
ASA >0.9
II 2 (5.7%) 1 (7.1%) 1 (4.8%)
III 19 (54%) 7 (50%) 12 (57%)
IV 14 (40%) 6 (43%) 8 (38%)
DIAGNOSTICO 0.2
Doble lesión 6 (17%) 1 (7.1%) 5 (24%)
Estenosis AO 25 (71%) 10 (71%) 15 (71%)
Insuficiencia AO 4 (11%) 3 (21%) 1 (4.8%)
FEVI 60 (46, 65) 62 (34, 66) 60 (55, 65) 0.8
COMORBILIDADES >0.9
Dislipidemia 1 (2.9%) 0 (0%) 1 (4.8%)
DM 3 (8.6%) 1 (7.1%) 2 (9.5%)
DM+Enf pulm 1 (2.9%) 1 (7.1%) 0 (0%)
DM+Enf Vasc+otra 1 (2.9%) 0 (0%) 1 (4.8%)
DM+HAS 3 (8.6%) 1 (7.1%) 2 (9.5%)
DM+HAS+Disl 1 (2.9%) 1 (7.1%) 0 (0%)
DM+HAS+Enf vasc 1 (2.9%) 0 (0%) 1 (4.8%)
DM+otra 1 (2.9%) 0 (0%) 1 (4.8%)
Enf pulm+otra 1 (2.9%) 1 (7.1%) 0 (0%)
Enf Vascular 1 (2.9%) 0 (0%) 1 (4.8%)
Enferemedad Renal 1 (2.9%) 1 (7.1%) 0 (0%)
Enfermedad Pulmonar 2 (5.7%) 1 (7.1%) 1 (4.8%)
HAS 2 (5.7%) 0 (0%) 2 (9.5%)
HAS+Disl+otra 1 (2.9%) 0 (0%) 1 (4.8%)
HAS+Enf neuro+otra 1 (2.9%) 0 (0%) 1 (4.8%)
HAS+Enf pulm 1 (2.9%) 0 (0%) 1 (4.8%)
HAS+Enf vasc 1 (2.9%) 1 (7.1%) 0 (0%)
HAS+otra 1 (2.9%) 0 (0%) 1 (4.8%)
No se especifica 6 (17%) 3 (21%) 3 (14%)
Otra 5 (14%) 3 (21%) 2 (9.5%)
ANESTESICO <0.001
Ninguno 14 (40%) 14 (100%) 0 (0%)
ROPI 1 (2.9%) 0 (0%) 1 (4.8%)
ROPI-LIDO 20 (57%) 0 (0%) 20 (95%)
DOSISFENTANIL 3.90 (3.50, 5.10) 5.20 (4.75, 5.97) 3.50 (3.30, 3.80) <0.001
COMPLICACION
NO 35 (100%) 14 (100%) 21 (100%)
TIEMPO_DE_PINZA >0.9
69 1 (50%) 0 (0%) 1 (100%)
77 1 (50%) 1 (100%) 0 (0%)
Unknown 33 13 20
TIEMPO_DE_DCP >0.9
40 1 (50%) 1 (100%) 0 (0%)
88 1 (50%) 0 (0%) 1 (100%)
Unknown 33 13 20
TIEMPO_ANESTESICO 312 (284, 355) 308 (292, 364) 320 (280, 345) 0.8
1 n (%); Median (IQR)
2 Fisher's exact test; Wilcoxon rank sum test

Tabla 1

Creamos la tabla 1 general:

DBDraAnel %>% select(SEXO, EDAD, PESO, IMC,
                     COLOCACIÓNBLOQUEO) %>%  tbl_summary (by=COLOCACIÓNBLOQUEO) %>%
  add_p() %>% add_overall()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PESO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Overall, N = 351 No, N = 141 Si, N = 211 p-value2
SEXO 0.7
Femenino 9 (26%) 3 (21%) 6 (29%)
Masculino 26 (74%) 11 (79%) 15 (71%)
EDAD 62 (54, 67) 61 (41, 73) 62 (57, 66) >0.9
PESO 72 (62, 83) 68 (62, 77) 80 (65, 85) 0.3
IMC 0.6
Normal 10 (29%) 4 (29%) 6 (29%)
Obesidad 8 (23%) 2 (14%) 6 (29%)
Sobrepeso 17 (49%) 8 (57%) 9 (43%)
1 n (%); Median (IQR)
2 Fisher's exact test; Wilcoxon rank sum test

Tabla 2

Creamos la tabla 2:

Tabla 2 con clínica (Diagnostico, ASA, FEVI, comorbilidades, anestesico, tipo de pinza, tiempo de dcp, tiempo anestesico)

DBDraAnel %>% select( ASA, DIAGNOSTICO, FEVI, COMORBILIDADES,
                      COLOCACIÓNBLOQUEO, ANESTESICO, COMPLICACION,
                      TIEMPO_DE_PINZA, TIEMPO_DE_DCP, TIEMPO_ANESTESICO) %>%  tbl_summary (by=COLOCACIÓNBLOQUEO) %>%
  add_p() %>% add_overall()
## Warning for variable 'FEVI':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## There was an error in 'add_p()/add_difference()' for variable 'COMPLICACION', p-value omitted:
## Error in stats::chisq.test(x = c("NO", "NO", "NO", "NO", "NO", "NO", "NO", : 'x' and 'y' must have at least 2 levels
## Warning for variable 'TIEMPO_ANESTESICO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
Characteristic Overall, N = 351 No, N = 141 Si, N = 211 p-value2
ASA >0.9
II 2 (5.7%) 1 (7.1%) 1 (4.8%)
III 19 (54%) 7 (50%) 12 (57%)
IV 14 (40%) 6 (43%) 8 (38%)
DIAGNOSTICO 0.2
Doble lesión 6 (17%) 1 (7.1%) 5 (24%)
Estenosis AO 25 (71%) 10 (71%) 15 (71%)
Insuficiencia AO 4 (11%) 3 (21%) 1 (4.8%)
FEVI 60 (46, 65) 62 (34, 66) 60 (55, 65) 0.8
COMORBILIDADES >0.9
Dislipidemia 1 (2.9%) 0 (0%) 1 (4.8%)
DM 3 (8.6%) 1 (7.1%) 2 (9.5%)
DM+Enf pulm 1 (2.9%) 1 (7.1%) 0 (0%)
DM+Enf Vasc+otra 1 (2.9%) 0 (0%) 1 (4.8%)
DM+HAS 3 (8.6%) 1 (7.1%) 2 (9.5%)
DM+HAS+Disl 1 (2.9%) 1 (7.1%) 0 (0%)
DM+HAS+Enf vasc 1 (2.9%) 0 (0%) 1 (4.8%)
DM+otra 1 (2.9%) 0 (0%) 1 (4.8%)
Enf pulm+otra 1 (2.9%) 1 (7.1%) 0 (0%)
Enf Vascular 1 (2.9%) 0 (0%) 1 (4.8%)
Enferemedad Renal 1 (2.9%) 1 (7.1%) 0 (0%)
Enfermedad Pulmonar 2 (5.7%) 1 (7.1%) 1 (4.8%)
HAS 2 (5.7%) 0 (0%) 2 (9.5%)
HAS+Disl+otra 1 (2.9%) 0 (0%) 1 (4.8%)
HAS+Enf neuro+otra 1 (2.9%) 0 (0%) 1 (4.8%)
HAS+Enf pulm 1 (2.9%) 0 (0%) 1 (4.8%)
HAS+Enf vasc 1 (2.9%) 1 (7.1%) 0 (0%)
HAS+otra 1 (2.9%) 0 (0%) 1 (4.8%)
No se especifica 6 (17%) 3 (21%) 3 (14%)
Otra 5 (14%) 3 (21%) 2 (9.5%)
ANESTESICO <0.001
Ninguno 14 (40%) 14 (100%) 0 (0%)
ROPI 1 (2.9%) 0 (0%) 1 (4.8%)
ROPI-LIDO 20 (57%) 0 (0%) 20 (95%)
COMPLICACION
NO 35 (100%) 14 (100%) 21 (100%)
TIEMPO_DE_PINZA >0.9
69 1 (50%) 0 (0%) 1 (100%)
77 1 (50%) 1 (100%) 0 (0%)
Unknown 33 13 20
TIEMPO_DE_DCP >0.9
40 1 (50%) 1 (100%) 0 (0%)
88 1 (50%) 0 (0%) 1 (100%)
Unknown 33 13 20
TIEMPO_ANESTESICO 312 (284, 355) 308 (292, 364) 320 (280, 345) 0.8
1 n (%); Median (IQR)
2 Fisher's exact test; Wilcoxon rank sum test

Figura 1

Figura 1, caja y bigotes (Box-plot) de la dosis de fentanil vs colocación si o no del bloqueo (estadística=wilcoxon U mann-whitney)

DBBPDRA <- DBDraAnel %>%  select(COLOCACIÓNBLOQUEO, DOSISFENTANIL)



library(ggplot2)
library(rstatix)
## 
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
## 
##     filter
library(ggpubr)


# Box plot
# Box plot facetted by ""
pdranel <- ggboxplot(DBBPDRA, x = "COLOCACIÓNBLOQUEO", y = "DOSISFENTANIL")
# Use only p.format as label. Remove method name.
pdranel + stat_compare_means(label = "p.signif", paired =,label.x = 1.5, label.y = 10)

p <- ggboxplot(DBBPDRA, x = "COLOCACIÓNBLOQUEO", y = "DOSISFENTANIL", xlab = "Bloqueo", ylab="Fentanil (ng/dL)",
               legend.title = "", color = "COLOCACIÓNBLOQUEO", palette = "",
               add = "jitter")
#  Add p-value
p + stat_compare_means()

# Change method
p + stat_compare_means(method = "wilcox.test",label = "p.signif",label.x = 1.5, label.y = 8)

Tabla 3

Analisis de regresión mútiple

Con objetivo de explorar si alguna otra variable (independiente) tiene influencia sobre esta diferencia estadística en la disminución de la dosis de fentanil con la colocación del bloqueo

#te propongo hacer un analisis de regresión múltiple.

library(finalfit)
# load package
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(sjmisc)
## 
## Attaching package: 'sjmisc'
## The following object is masked from 'package:purrr':
## 
##     is_empty
## The following object is masked from 'package:tidyr':
## 
##     replace_na
## The following object is masked from 'package:tibble':
## 
##     add_case
library(sjlabelled)
## 
## Attaching package: 'sjlabelled'
## The following object is masked from 'package:finalfit':
## 
##     remove_labels
## The following object is masked from 'package:forcats':
## 
##     as_factor
## The following object is masked from 'package:dplyr':
## 
##     as_label
## The following object is masked from 'package:ggplot2':
## 
##     as_label
#data : DBDraAnel

explanatory_vars<- c("SEXO", "EDAD", "PESO", "IMC",
                      "ASA", "DIAGNOSTICO", "FEVI", "DOSISFENTANIL",
                      "COLOCACIÓNBLOQUEO")


## convert dichotomous variables to 0/1 

DBanel<-DBDraAnel %>% mutate(bloqueo = ifelse(COLOCACIÓNBLOQUEO == "no"
                                                        | COLOCACIÓNBLOQUEO == "Si",
                                                        '1', '0'))
str(DBanel)
## tibble [35 × 16] (S3: tbl_df/tbl/data.frame)
##  $ SEXO             : chr [1:35] "Masculino" "Masculino" "Femenino" "Masculino" ...
##  $ EDAD             : num [1:35] 56 52 30 61 62 76 62 65 21 47 ...
##  $ PESO             : num [1:35] 70 87 60 82 63 62 78 92 58 76 ...
##  $ IMC              : chr [1:35] "Normal" "Sobrepeso" "Sobrepeso" "Sobrepeso" ...
##  $ ASA              : chr [1:35] "III" "III" "II" "III" ...
##  $ DIAGNOSTICO      : chr [1:35] "Estenosis AO" "Estenosis AO" "Estenosis AO" "Estenosis AO" ...
##  $ FEVI             : num [1:35] 60 69 62 60 54 63 62 45 65 20 ...
##  $ COMORBILIDADES   : chr [1:35] "HAS" "HAS+Disl+otra" "Enf pulm+otra" "Otra" ...
##  $ COLOCACIÓNBLOQUEO: chr [1:35] "Si" "Si" "No" "Si" ...
##  $ ANESTESICO       : chr [1:35] "ROPI-LIDO" "ROPI-LIDO" "Ninguno" "ROPI-LIDO" ...
##  $ DOSISFENTANIL    : num [1:35] 3.1 5 7 5.8 2.9 6 5.9 3.5 3.3 5.1 ...
##  $ COMPLICACION     : chr [1:35] "NO" "NO" "NO" "NO" ...
##  $ TIEMPO_DE_PINZA  : num [1:35] NA NA NA 69 NA 77 NA NA NA NA ...
##  $ TIEMPO_DE_DCP    : num [1:35] NA NA NA 88 NA 40 NA NA NA NA ...
##  $ TIEMPO_ANESTESICO: num [1:35] 300 360 240 240 300 240 312 270 240 540 ...
##  $ bloqueo          : chr [1:35] "1" "1" "0" "1" ...
DBanel$bloqueo = as.numeric(DBanel$bloqueo)


dependent <- "bloqueo"


lm_results <- lm(bloqueo ~  SEXO + EDAD + PESO + IMC +
                      ASA + DIAGNOSTICO + FEVI + DOSISFENTANIL, data = DBanel)

summary(lm_results)
## 
## Call:
## lm(formula = bloqueo ~ SEXO + EDAD + PESO + IMC + ASA + DIAGNOSTICO + 
##     FEVI + DOSISFENTANIL, data = DBanel)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.70607 -0.11514  0.01625  0.10512  0.82203 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  2.250792   0.574213   3.920 0.000686 ***
## SEXOMasculino               -0.004270   0.163331  -0.026 0.979368    
## EDAD                        -0.004563   0.004703  -0.970 0.341999    
## PESO                        -0.005191   0.007330  -0.708 0.486010    
## IMCObesidad                  0.357200   0.270024   1.323 0.198889    
## IMCSobrepeso                 0.350400   0.173323   2.022 0.054997 .  
## ASAIII                       0.057364   0.338716   0.169 0.866996    
## ASAIV                       -0.073849   0.333539  -0.221 0.826726    
## DIAGNOSTICOEstenosis AO     -0.237040   0.167312  -1.417 0.169958    
## DIAGNOSTICOInsuficiencia AO -0.322352   0.233624  -1.380 0.180917    
## FEVI                         0.009686   0.004882   1.984 0.059317 .  
## DOSISFENTANIL               -0.364910   0.057457  -6.351 1.76e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3224 on 23 degrees of freedom
## Multiple R-squared:  0.7154, Adjusted R-squared:  0.5793 
## F-statistic: 5.255 on 11 and 23 DF,  p-value: 0.0003973
tab_model(lm_results)
  bloqueo
Predictors Estimates CI p
(Intercept) 2.25 1.06 – 3.44 0.001
SEXO [Masculino] -0.00 -0.34 – 0.33 0.979
EDAD -0.00 -0.01 – 0.01 0.342
PESO -0.01 -0.02 – 0.01 0.486
IMC [Obesidad] 0.36 -0.20 – 0.92 0.199
IMC [Sobrepeso] 0.35 -0.01 – 0.71 0.055
ASA [III] 0.06 -0.64 – 0.76 0.867
ASA [IV] -0.07 -0.76 – 0.62 0.827
DIAGNOSTICO [Estenosis
AO]
-0.24 -0.58 – 0.11 0.170
DIAGNOSTICO
[Insuficiencia AO]
-0.32 -0.81 – 0.16 0.181
FEVI 0.01 -0.00 – 0.02 0.059
DOSISFENTANIL -0.36 -0.48 – -0.25 <0.001
Observations 35
R2 / R2 adjusted 0.715 / 0.579