Analísis de datos para la Dra. Anel Hernandez López
Plan para el analísis:
library(readxl)
DBANEL <- read_excel("C:/Users/fidel/OneDrive - CINVESTAV/PROYECTO MDatos/TRABAJOS/DRA. ANEL LÓPEZ HERNÁNDEZ/DBANEL.xlsx")
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.7 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(magrittr)
##
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
##
## set_names
## The following object is masked from 'package:tidyr':
##
## extract
library(gtsummary)
library(dlookr)
## Warning in !is.null(rmarkdown::metadata$output) && rmarkdown::metadata$output
## %in% : 'length(x) = 3 > 1' in coercion to 'logical(1)'
##
## Attaching package: 'dlookr'
## The following object is masked from 'package:magrittr':
##
## extract
## The following object is masked from 'package:tidyr':
##
## extract
## The following object is masked from 'package:base':
##
## transform
DBDraAnel<-DBANEL %>% mutate(SEXO=recode(SEXO,`1` = "Masculino",`2` = "Femenino"),
ASA=recode(ASA, `1`= "I",
`2`="II",
`3` = "III",
`4`="IV"),
IMC=recode(IMC, `1`="bajo",
`2`="Normal",
`3`="Sobrepeso",
`4`="Obesidad"),
COMORBILIDADES=recode(COMORBILIDADES, `0`="No se especifica",
`1`="DM",
`2`="HAS",
`3`="Enf Vascular",
`4`="Dislipidemia",
`5`="Enferemedad Renal",
`6`="Enfermedad Neuronal",
`7`="Enfermedad Pulmonar",
`8`="Otra",
`1,2`="DM+HAS",
`2,4, 8`="HAS+Disl+otra",
`7,8`="Enf pulm+otra",
`2,7`="HAS+Enf pulm",
`1,2,4`="DM+HAS+Disl",
`2,3`="HAS+Enf vasc",
`2,6,8`="HAS+Enf neuro+otra",
`1,2,3`="DM+HAS+Enf vasc",
`1,3,8`="DM+Enf Vasc+otra",
`1,7`="DM+Enf pulm",
`2,8`="HAS+otra",
`1,8`="DM+otra"),
COLOCACIÓNBLOQUEO=recode(COLOCACIÓNBLOQUEO, `1`="Si",
`2`="No"),
ANESTESICO=recode(ANESTESICO, `1`="ROPI",
`2`="LIDO",
`1,2`="ROPI-LIDO",
`0`="Ninguno"),
COMPLICACION=recode(COMPLICACION, `1`="NO",
`2`="SI"),
DIAGNOSTICO=recode(DIAGNOSTICO, `1`="Estenosis AO",
`2`="Insuficiencia AO",
`3`="Doble lesión"))
View(DBDraAnel)
Creamos la tabla general:
library(gtsummary)
DBDraAnel %>% select(SEXO, EDAD, PESO, IMC, ASA, DIAGNOSTICO, FEVI, COMORBILIDADES,
COLOCACIÓNBLOQUEO, ANESTESICO, DOSISFENTANIL, COMPLICACION,
TIEMPO_DE_PINZA, TIEMPO_DE_DCP, TIEMPO_ANESTESICO) %>% tbl_summary
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | N = 351 |
|---|---|
| SEXO | |
| Femenino | 9 (26%) |
| Masculino | 26 (74%) |
| EDAD | 62 (54, 67) |
| PESO | 72 (62, 83) |
| IMC | |
| Normal | 10 (29%) |
| Obesidad | 8 (23%) |
| Sobrepeso | 17 (49%) |
| ASA | |
| II | 2 (5.7%) |
| III | 19 (54%) |
| IV | 14 (40%) |
| DIAGNOSTICO | |
| Doble lesión | 6 (17%) |
| Estenosis AO | 25 (71%) |
| Insuficiencia AO | 4 (11%) |
| FEVI | 60 (46, 65) |
| COMORBILIDADES | |
| Dislipidemia | 1 (2.9%) |
| DM | 3 (8.6%) |
| DM+Enf pulm | 1 (2.9%) |
| DM+Enf Vasc+otra | 1 (2.9%) |
| DM+HAS | 3 (8.6%) |
| DM+HAS+Disl | 1 (2.9%) |
| DM+HAS+Enf vasc | 1 (2.9%) |
| DM+otra | 1 (2.9%) |
| Enf pulm+otra | 1 (2.9%) |
| Enf Vascular | 1 (2.9%) |
| Enferemedad Renal | 1 (2.9%) |
| Enfermedad Pulmonar | 2 (5.7%) |
| HAS | 2 (5.7%) |
| HAS+Disl+otra | 1 (2.9%) |
| HAS+Enf neuro+otra | 1 (2.9%) |
| HAS+Enf pulm | 1 (2.9%) |
| HAS+Enf vasc | 1 (2.9%) |
| HAS+otra | 1 (2.9%) |
| No se especifica | 6 (17%) |
| Otra | 5 (14%) |
| COLOCACIÓNBLOQUEO | |
| No | 14 (40%) |
| Si | 21 (60%) |
| ANESTESICO | |
| Ninguno | 14 (40%) |
| ROPI | 1 (2.9%) |
| ROPI-LIDO | 20 (57%) |
| DOSISFENTANIL | 3.90 (3.50, 5.10) |
| COMPLICACION | |
| NO | 35 (100%) |
| TIEMPO_DE_PINZA | |
| 69 | 1 (50%) |
| 77 | 1 (50%) |
| Unknown | 33 |
| TIEMPO_DE_DCP | |
| 40 | 1 (50%) |
| 88 | 1 (50%) |
| Unknown | 33 |
| TIEMPO_ANESTESICO | 312 (284, 355) |
| 1 n (%); Median (IQR) | |
DBDraAnel %>% select(SEXO, EDAD, PESO, IMC, ASA, DIAGNOSTICO, FEVI, COMORBILIDADES,
COLOCACIÓNBLOQUEO, ANESTESICO, DOSISFENTANIL, COMPLICACION,
TIEMPO_DE_PINZA, TIEMPO_DE_DCP, TIEMPO_ANESTESICO) %>%
tbl_summary(by=COLOCACIÓNBLOQUEO) %>% add_p() %>% add_overall()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PESO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'FEVI':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'DOSISFENTANIL':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## There was an error in 'add_p()/add_difference()' for variable 'COMPLICACION', p-value omitted:
## Error in stats::chisq.test(x = c("NO", "NO", "NO", "NO", "NO", "NO", "NO", : 'x' and 'y' must have at least 2 levels
## Warning for variable 'TIEMPO_ANESTESICO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | Overall, N = 351 | No, N = 141 | Si, N = 211 | p-value2 |
|---|---|---|---|---|
| SEXO | 0.7 | |||
| Femenino | 9 (26%) | 3 (21%) | 6 (29%) | |
| Masculino | 26 (74%) | 11 (79%) | 15 (71%) | |
| EDAD | 62 (54, 67) | 61 (41, 73) | 62 (57, 66) | >0.9 |
| PESO | 72 (62, 83) | 68 (62, 77) | 80 (65, 85) | 0.3 |
| IMC | 0.6 | |||
| Normal | 10 (29%) | 4 (29%) | 6 (29%) | |
| Obesidad | 8 (23%) | 2 (14%) | 6 (29%) | |
| Sobrepeso | 17 (49%) | 8 (57%) | 9 (43%) | |
| ASA | >0.9 | |||
| II | 2 (5.7%) | 1 (7.1%) | 1 (4.8%) | |
| III | 19 (54%) | 7 (50%) | 12 (57%) | |
| IV | 14 (40%) | 6 (43%) | 8 (38%) | |
| DIAGNOSTICO | 0.2 | |||
| Doble lesión | 6 (17%) | 1 (7.1%) | 5 (24%) | |
| Estenosis AO | 25 (71%) | 10 (71%) | 15 (71%) | |
| Insuficiencia AO | 4 (11%) | 3 (21%) | 1 (4.8%) | |
| FEVI | 60 (46, 65) | 62 (34, 66) | 60 (55, 65) | 0.8 |
| COMORBILIDADES | >0.9 | |||
| Dislipidemia | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| DM | 3 (8.6%) | 1 (7.1%) | 2 (9.5%) | |
| DM+Enf pulm | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| DM+Enf Vasc+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| DM+HAS | 3 (8.6%) | 1 (7.1%) | 2 (9.5%) | |
| DM+HAS+Disl | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| DM+HAS+Enf vasc | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| DM+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| Enf pulm+otra | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| Enf Vascular | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| Enferemedad Renal | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| Enfermedad Pulmonar | 2 (5.7%) | 1 (7.1%) | 1 (4.8%) | |
| HAS | 2 (5.7%) | 0 (0%) | 2 (9.5%) | |
| HAS+Disl+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| HAS+Enf neuro+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| HAS+Enf pulm | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| HAS+Enf vasc | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| HAS+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| No se especifica | 6 (17%) | 3 (21%) | 3 (14%) | |
| Otra | 5 (14%) | 3 (21%) | 2 (9.5%) | |
| ANESTESICO | <0.001 | |||
| Ninguno | 14 (40%) | 14 (100%) | 0 (0%) | |
| ROPI | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| ROPI-LIDO | 20 (57%) | 0 (0%) | 20 (95%) | |
| DOSISFENTANIL | 3.90 (3.50, 5.10) | 5.20 (4.75, 5.97) | 3.50 (3.30, 3.80) | <0.001 |
| COMPLICACION | ||||
| NO | 35 (100%) | 14 (100%) | 21 (100%) | |
| TIEMPO_DE_PINZA | >0.9 | |||
| 69 | 1 (50%) | 0 (0%) | 1 (100%) | |
| 77 | 1 (50%) | 1 (100%) | 0 (0%) | |
| Unknown | 33 | 13 | 20 | |
| TIEMPO_DE_DCP | >0.9 | |||
| 40 | 1 (50%) | 1 (100%) | 0 (0%) | |
| 88 | 1 (50%) | 0 (0%) | 1 (100%) | |
| Unknown | 33 | 13 | 20 | |
| TIEMPO_ANESTESICO | 312 (284, 355) | 308 (292, 364) | 320 (280, 345) | 0.8 |
| 1 n (%); Median (IQR) | ||||
| 2 Fisher's exact test; Wilcoxon rank sum test | ||||
Creamos la tabla 1 general:
DBDraAnel %>% select(SEXO, EDAD, PESO, IMC,
COLOCACIÓNBLOQUEO) %>% tbl_summary (by=COLOCACIÓNBLOQUEO) %>%
add_p() %>% add_overall()
## Warning for variable 'EDAD':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning for variable 'PESO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | Overall, N = 351 | No, N = 141 | Si, N = 211 | p-value2 |
|---|---|---|---|---|
| SEXO | 0.7 | |||
| Femenino | 9 (26%) | 3 (21%) | 6 (29%) | |
| Masculino | 26 (74%) | 11 (79%) | 15 (71%) | |
| EDAD | 62 (54, 67) | 61 (41, 73) | 62 (57, 66) | >0.9 |
| PESO | 72 (62, 83) | 68 (62, 77) | 80 (65, 85) | 0.3 |
| IMC | 0.6 | |||
| Normal | 10 (29%) | 4 (29%) | 6 (29%) | |
| Obesidad | 8 (23%) | 2 (14%) | 6 (29%) | |
| Sobrepeso | 17 (49%) | 8 (57%) | 9 (43%) | |
| 1 n (%); Median (IQR) | ||||
| 2 Fisher's exact test; Wilcoxon rank sum test | ||||
Creamos la tabla 2:
Tabla 2 con clínica (Diagnostico, ASA, FEVI, comorbilidades, anestesico, tipo de pinza, tiempo de dcp, tiempo anestesico)
DBDraAnel %>% select( ASA, DIAGNOSTICO, FEVI, COMORBILIDADES,
COLOCACIÓNBLOQUEO, ANESTESICO, COMPLICACION,
TIEMPO_DE_PINZA, TIEMPO_DE_DCP, TIEMPO_ANESTESICO) %>% tbl_summary (by=COLOCACIÓNBLOQUEO) %>%
add_p() %>% add_overall()
## Warning for variable 'FEVI':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## There was an error in 'add_p()/add_difference()' for variable 'COMPLICACION', p-value omitted:
## Error in stats::chisq.test(x = c("NO", "NO", "NO", "NO", "NO", "NO", "NO", : 'x' and 'y' must have at least 2 levels
## Warning for variable 'TIEMPO_ANESTESICO':
## simpleWarning in wilcox.test.default(x = DATA[[1L]], y = DATA[[2L]], ...): cannot compute exact p-value with ties
## Warning: The `fmt_missing()` function is deprecated and will soon be removed
## * Use the `sub_missing()` function instead
| Characteristic | Overall, N = 351 | No, N = 141 | Si, N = 211 | p-value2 |
|---|---|---|---|---|
| ASA | >0.9 | |||
| II | 2 (5.7%) | 1 (7.1%) | 1 (4.8%) | |
| III | 19 (54%) | 7 (50%) | 12 (57%) | |
| IV | 14 (40%) | 6 (43%) | 8 (38%) | |
| DIAGNOSTICO | 0.2 | |||
| Doble lesión | 6 (17%) | 1 (7.1%) | 5 (24%) | |
| Estenosis AO | 25 (71%) | 10 (71%) | 15 (71%) | |
| Insuficiencia AO | 4 (11%) | 3 (21%) | 1 (4.8%) | |
| FEVI | 60 (46, 65) | 62 (34, 66) | 60 (55, 65) | 0.8 |
| COMORBILIDADES | >0.9 | |||
| Dislipidemia | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| DM | 3 (8.6%) | 1 (7.1%) | 2 (9.5%) | |
| DM+Enf pulm | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| DM+Enf Vasc+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| DM+HAS | 3 (8.6%) | 1 (7.1%) | 2 (9.5%) | |
| DM+HAS+Disl | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| DM+HAS+Enf vasc | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| DM+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| Enf pulm+otra | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| Enf Vascular | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| Enferemedad Renal | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| Enfermedad Pulmonar | 2 (5.7%) | 1 (7.1%) | 1 (4.8%) | |
| HAS | 2 (5.7%) | 0 (0%) | 2 (9.5%) | |
| HAS+Disl+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| HAS+Enf neuro+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| HAS+Enf pulm | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| HAS+Enf vasc | 1 (2.9%) | 1 (7.1%) | 0 (0%) | |
| HAS+otra | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| No se especifica | 6 (17%) | 3 (21%) | 3 (14%) | |
| Otra | 5 (14%) | 3 (21%) | 2 (9.5%) | |
| ANESTESICO | <0.001 | |||
| Ninguno | 14 (40%) | 14 (100%) | 0 (0%) | |
| ROPI | 1 (2.9%) | 0 (0%) | 1 (4.8%) | |
| ROPI-LIDO | 20 (57%) | 0 (0%) | 20 (95%) | |
| COMPLICACION | ||||
| NO | 35 (100%) | 14 (100%) | 21 (100%) | |
| TIEMPO_DE_PINZA | >0.9 | |||
| 69 | 1 (50%) | 0 (0%) | 1 (100%) | |
| 77 | 1 (50%) | 1 (100%) | 0 (0%) | |
| Unknown | 33 | 13 | 20 | |
| TIEMPO_DE_DCP | >0.9 | |||
| 40 | 1 (50%) | 1 (100%) | 0 (0%) | |
| 88 | 1 (50%) | 0 (0%) | 1 (100%) | |
| Unknown | 33 | 13 | 20 | |
| TIEMPO_ANESTESICO | 312 (284, 355) | 308 (292, 364) | 320 (280, 345) | 0.8 |
| 1 n (%); Median (IQR) | ||||
| 2 Fisher's exact test; Wilcoxon rank sum test | ||||
Figura 1, caja y bigotes (Box-plot) de la dosis de fentanil vs colocación si o no del bloqueo (estadística=wilcoxon U mann-whitney)
DBBPDRA <- DBDraAnel %>% select(COLOCACIÓNBLOQUEO, DOSISFENTANIL)
library(ggplot2)
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
## filter
library(ggpubr)
# Box plot
# Box plot facetted by ""
pdranel <- ggboxplot(DBBPDRA, x = "COLOCACIÓNBLOQUEO", y = "DOSISFENTANIL")
# Use only p.format as label. Remove method name.
pdranel + stat_compare_means(label = "p.signif", paired =,label.x = 1.5, label.y = 10)
p <- ggboxplot(DBBPDRA, x = "COLOCACIÓNBLOQUEO", y = "DOSISFENTANIL", xlab = "Bloqueo", ylab="Fentanil (ng/dL)",
legend.title = "", color = "COLOCACIÓNBLOQUEO", palette = "",
add = "jitter")
# Add p-value
p + stat_compare_means()
# Change method
p + stat_compare_means(method = "wilcox.test",label = "p.signif",label.x = 1.5, label.y = 8)
Analisis de regresión mútiple
Con objetivo de explorar si alguna otra variable (independiente) tiene influencia sobre esta diferencia estadística en la disminución de la dosis de fentanil con la colocación del bloqueo
#te propongo hacer un analisis de regresión múltiple.
library(finalfit)
# load package
library(sjPlot)
## Learn more about sjPlot with 'browseVignettes("sjPlot")'.
library(sjmisc)
##
## Attaching package: 'sjmisc'
## The following object is masked from 'package:purrr':
##
## is_empty
## The following object is masked from 'package:tidyr':
##
## replace_na
## The following object is masked from 'package:tibble':
##
## add_case
library(sjlabelled)
##
## Attaching package: 'sjlabelled'
## The following object is masked from 'package:finalfit':
##
## remove_labels
## The following object is masked from 'package:forcats':
##
## as_factor
## The following object is masked from 'package:dplyr':
##
## as_label
## The following object is masked from 'package:ggplot2':
##
## as_label
#data : DBDraAnel
explanatory_vars<- c("SEXO", "EDAD", "PESO", "IMC",
"ASA", "DIAGNOSTICO", "FEVI", "DOSISFENTANIL",
"COLOCACIÓNBLOQUEO")
## convert dichotomous variables to 0/1
DBanel<-DBDraAnel %>% mutate(bloqueo = ifelse(COLOCACIÓNBLOQUEO == "no"
| COLOCACIÓNBLOQUEO == "Si",
'1', '0'))
str(DBanel)
## tibble [35 × 16] (S3: tbl_df/tbl/data.frame)
## $ SEXO : chr [1:35] "Masculino" "Masculino" "Femenino" "Masculino" ...
## $ EDAD : num [1:35] 56 52 30 61 62 76 62 65 21 47 ...
## $ PESO : num [1:35] 70 87 60 82 63 62 78 92 58 76 ...
## $ IMC : chr [1:35] "Normal" "Sobrepeso" "Sobrepeso" "Sobrepeso" ...
## $ ASA : chr [1:35] "III" "III" "II" "III" ...
## $ DIAGNOSTICO : chr [1:35] "Estenosis AO" "Estenosis AO" "Estenosis AO" "Estenosis AO" ...
## $ FEVI : num [1:35] 60 69 62 60 54 63 62 45 65 20 ...
## $ COMORBILIDADES : chr [1:35] "HAS" "HAS+Disl+otra" "Enf pulm+otra" "Otra" ...
## $ COLOCACIÓNBLOQUEO: chr [1:35] "Si" "Si" "No" "Si" ...
## $ ANESTESICO : chr [1:35] "ROPI-LIDO" "ROPI-LIDO" "Ninguno" "ROPI-LIDO" ...
## $ DOSISFENTANIL : num [1:35] 3.1 5 7 5.8 2.9 6 5.9 3.5 3.3 5.1 ...
## $ COMPLICACION : chr [1:35] "NO" "NO" "NO" "NO" ...
## $ TIEMPO_DE_PINZA : num [1:35] NA NA NA 69 NA 77 NA NA NA NA ...
## $ TIEMPO_DE_DCP : num [1:35] NA NA NA 88 NA 40 NA NA NA NA ...
## $ TIEMPO_ANESTESICO: num [1:35] 300 360 240 240 300 240 312 270 240 540 ...
## $ bloqueo : chr [1:35] "1" "1" "0" "1" ...
DBanel$bloqueo = as.numeric(DBanel$bloqueo)
dependent <- "bloqueo"
lm_results <- lm(bloqueo ~ SEXO + EDAD + PESO + IMC +
ASA + DIAGNOSTICO + FEVI + DOSISFENTANIL, data = DBanel)
summary(lm_results)
##
## Call:
## lm(formula = bloqueo ~ SEXO + EDAD + PESO + IMC + ASA + DIAGNOSTICO +
## FEVI + DOSISFENTANIL, data = DBanel)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.70607 -0.11514 0.01625 0.10512 0.82203
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.250792 0.574213 3.920 0.000686 ***
## SEXOMasculino -0.004270 0.163331 -0.026 0.979368
## EDAD -0.004563 0.004703 -0.970 0.341999
## PESO -0.005191 0.007330 -0.708 0.486010
## IMCObesidad 0.357200 0.270024 1.323 0.198889
## IMCSobrepeso 0.350400 0.173323 2.022 0.054997 .
## ASAIII 0.057364 0.338716 0.169 0.866996
## ASAIV -0.073849 0.333539 -0.221 0.826726
## DIAGNOSTICOEstenosis AO -0.237040 0.167312 -1.417 0.169958
## DIAGNOSTICOInsuficiencia AO -0.322352 0.233624 -1.380 0.180917
## FEVI 0.009686 0.004882 1.984 0.059317 .
## DOSISFENTANIL -0.364910 0.057457 -6.351 1.76e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3224 on 23 degrees of freedom
## Multiple R-squared: 0.7154, Adjusted R-squared: 0.5793
## F-statistic: 5.255 on 11 and 23 DF, p-value: 0.0003973
tab_model(lm_results)
| bloqueo | |||
|---|---|---|---|
| Predictors | Estimates | CI | p |
| (Intercept) | 2.25 | 1.06 – 3.44 | 0.001 |
| SEXO [Masculino] | -0.00 | -0.34 – 0.33 | 0.979 |
| EDAD | -0.00 | -0.01 – 0.01 | 0.342 |
| PESO | -0.01 | -0.02 – 0.01 | 0.486 |
| IMC [Obesidad] | 0.36 | -0.20 – 0.92 | 0.199 |
| IMC [Sobrepeso] | 0.35 | -0.01 – 0.71 | 0.055 |
| ASA [III] | 0.06 | -0.64 – 0.76 | 0.867 |
| ASA [IV] | -0.07 | -0.76 – 0.62 | 0.827 |
|
DIAGNOSTICO [Estenosis AO] |
-0.24 | -0.58 – 0.11 | 0.170 |
|
DIAGNOSTICO [Insuficiencia AO] |
-0.32 | -0.81 – 0.16 | 0.181 |
| FEVI | 0.01 | -0.00 – 0.02 | 0.059 |
| DOSISFENTANIL | -0.36 | -0.48 – -0.25 | <0.001 |
| Observations | 35 | ||
| R2 / R2 adjusted | 0.715 / 0.579 | ||