#install.packages("conjoint")
#install.packages("mclust")
#install.packages("robustbase")
#install.packages("kernlab")
library("conjoint")
data(ice)
experiment<-expand.grid(
flavor=c("chocolate","vanilla","strawberry"),
price=c("$1.50","$2.00","$2.50"),
container=c("cone","cup"),
topping=c("yes","no"))
factdesign<-caFactorialDesign(data=experiment,type="orthogonal")
prof=caEncodedDesign(design=factdesign)
(round(cov(prof),5))
flavor price container topping
flavor 0.75 0.00 0.00 0.00
price 0.00 0.75 0.00 0.00
container 0.00 0.00 0.25 0.00
topping 0.00 0.00 0.00 0.25
(round(cor(prof),5))
flavor price container topping
flavor 1 0 0 0
price 0 1 0 0
container 0 0 1 0
topping 0 0 0 1
#the preferences of one or more respondents
pref=ipref
pref
# profiles to vote by the survey respondents
profiles= iprof
profiles
#the levels of the attributes
levelnames=ilevn
levelnames
preferences=caRankToScore(y.rank=pref)
caModel(preferences[1,],profiles)
Call:
lm(formula = frml)
Residuals:
1 2 3 4 5 6 7 8
6.667e-01 -6.667e-01 1.500e+00 -1.500e+00 -2.833e+00 2.833e+00 8.327e-16 -2.167e+00
9
2.167e+00
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.2500 1.4633 3.588 0.0697 .
factor(x$flavour)1 1.0000 1.8509 0.540 0.6431
factor(x$flavour)2 0.3333 1.8509 0.180 0.8737
factor(x$price)1 1.0000 1.8509 0.540 0.6431
factor(x$price)2 -1.0000 1.8509 -0.540 0.6431
factor(x$container)1 1.2500 1.3882 0.900 0.4629
factor(x$topping)1 0.5000 1.3882 0.360 0.7532
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 3.926 on 2 degrees of freedom
Multiple R-squared: 0.4861, Adjusted R-squared: -1.056
F-statistic: 0.3153 on 6 and 2 DF, p-value: 0.8851
importance=caImportance(y=preferences[1,],x=profiles)
Conjoint(y=preferences,x=profiles,z=levelnames)
Call:
lm(formula = frml)
Residuals:
Min 1Q Median 3Q Max
-3,9444 -1,6944 0,0833 1,3333 5,6944
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5,3472 0,3747 14,269 <2e-16 ***
factor(x$flavour)1 -0,2222 0,4740 -0,469 0,6414
factor(x$flavour)2 0,7222 0,4740 1,524 0,1343
factor(x$price)1 0,8333 0,4740 1,758 0,0853 .
factor(x$price)2 -0,3333 0,4740 -0,703 0,4854
factor(x$container)1 0,9167 0,3555 2,578 0,0131 *
factor(x$topping)1 -0,1250 0,3555 -0,352 0,7267
---
Signif. codes: 0 ‘***’ 0,001 ‘**’ 0,01 ‘*’ 0,05 ‘.’ 0,1 ‘ ’ 1
Residual standard error: 2,463 on 47 degrees of freedom
Multiple R-squared: 0,2079, Adjusted R-squared: 0,1068
F-statistic: 2,057 on 6 and 47 DF, p-value: 0,07656
[1] "Part worths (utilities) of levels (model parameters for whole sample):"
[1] "Average importance of factors (attributes):"
[1] 35,13 31,39 20,43 13,05
[1] Sum of average importance: 100
[1] "Chart of average factors importance"

LS0tCnRpdGxlOiAiQ29uam9pbnQgQW5hbHlzaXMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KCmBgYHtyfQojaW5zdGFsbC5wYWNrYWdlcygiY29uam9pbnQiKQojaW5zdGFsbC5wYWNrYWdlcygibWNsdXN0IikKI2luc3RhbGwucGFja2FnZXMoInJvYnVzdGJhc2UiKQojaW5zdGFsbC5wYWNrYWdlcygia2VybmxhYiIpCmxpYnJhcnkoImNvbmpvaW50IikKYGBgCgpgYGB7cn0KZGF0YShpY2UpCmV4cGVyaW1lbnQ8LWV4cGFuZC5ncmlkKApmbGF2b3I9YygiY2hvY29sYXRlIiwidmFuaWxsYSIsInN0cmF3YmVycnkiKSwKcHJpY2U9YygiJDEuNTAiLCIkMi4wMCIsIiQyLjUwIiksCmNvbnRhaW5lcj1jKCJjb25lIiwiY3VwIiksCnRvcHBpbmc9YygieWVzIiwibm8iKSkKYGBgCgpgYGB7cn0KZmFjdGRlc2lnbjwtY2FGYWN0b3JpYWxEZXNpZ24oZGF0YT1leHBlcmltZW50LHR5cGU9Im9ydGhvZ29uYWwiKQpwcm9mPWNhRW5jb2RlZERlc2lnbihkZXNpZ249ZmFjdGRlc2lnbikKKHJvdW5kKGNvdihwcm9mKSw1KSkKKHJvdW5kKGNvcihwcm9mKSw1KSkKYGBgCmBgYHtyfQojdGhlIHByZWZlcmVuY2VzIG9mIG9uZSBvciBtb3JlIHJlc3BvbmRlbnRzCnByZWY9aXByZWYgCnByZWYKIyBwcm9maWxlcyB0byB2b3RlIGJ5IHRoZSBzdXJ2ZXkgcmVzcG9uZGVudHMKcHJvZmlsZXM9IGlwcm9mCnByb2ZpbGVzCiN0aGUgbGV2ZWxzIG9mIHRoZSBhdHRyaWJ1dGVzCmxldmVsbmFtZXM9aWxldm4KbGV2ZWxuYW1lcwpgYGAKYGBge3J9CnByZWZlcmVuY2VzPWNhUmFua1RvU2NvcmUoeS5yYW5rPXByZWYpCmNhTW9kZWwocHJlZmVyZW5jZXNbMSxdLHByb2ZpbGVzKQppbXBvcnRhbmNlPWNhSW1wb3J0YW5jZSh5PXByZWZlcmVuY2VzWzEsXSx4PXByb2ZpbGVzKQpgYGAKYGBge3J9CkNvbmpvaW50KHk9cHJlZmVyZW5jZXMseD1wcm9maWxlcyx6PWxldmVsbmFtZXMpCmBgYAoKCg==