Highlights:
- 2020 Hispanic Demographic Census
- Three states with largest population : California (15.4 Million),
Texas (11.3 Million), Florida (5.5 Million)
- State with largest increase from year 2010: Texas with 2,376,780
increase
- State with largest decrease from year 2010: Porto Rico with 504,245
decrease
- California county with largest percentage: Imperial County with
85%
- 2020 Asian Demographic Census
- Three states with largest population : California (6.8 Million), New
York (1.9 Million), Texas (1.6 Million)
- State with largest increase from year 2010: California with
1,087,060 increase
- State with largest decrease from year 2010: Hawaii with 229,069
decrease
- 2020 Black Demographic Census
- Three states with largest population : Texas (3.8 Million), Florida
(3.7 Million), Georgia (3.5 Million)
- State with larger increase from year 2010: Texas with 444,689
increase
- State with larger decrease from year 2010: California with 329,710
decrease
- 2020 White Demographic Census
- Three states with largest population : California (24.8 Million),
Texas (21.7 Million), Florida (16.4 Million)
- State with larger increase from year 2010: Texas with 1,876,762
increase
- State with larger decrease from year 2010: California with 1,492,244
decrease
2020 Census Decennial Survey, as population percentage
# 2020 Decennial Census Variables
all_vars = c(
all = "P2_001N",
hisp = "P2_002N",
white = "P2_005N",
baa = "P2_006N",
amin = "P2_007N",
asian = "P2_008N",
nhopi = "P2_009N",
other = "P2_010N",
multi = "P2_011N"
)
pop2020 <- get_decennial(geography = "state", variables = all_vars, summary_var="P2_001N", year = 2020) %>%
mutate(percent=round(100*(value/summary_value), digits=0)) %>%
arrange(as.numeric(GEOID))
## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
## Note: 2020 decennial Census data use differential privacy, a technique that
## introduces errors into data to preserve respondent confidentiality.
## ℹ Small counts should be interpreted with caution.
## ℹ See https://www.census.gov/library/fact-sheets/2021/protecting-the-confidentiality-of-the-2020-census-redistricting-data.html for additional guidance.
## This message is displayed once per session.
pop2020 %>% filter(variable=="hisp") %>% select(2,4,6) %>% arrange(desc(percent)) %>%
gt() %>% tab_header(
title = md("Hispanic Population _ percentage"),
subtitle = md("2020 Census"))
NAME |
value |
percent |
Puerto Rico |
3249043 |
99 |
New Mexico |
1010811 |
48 |
California |
15579652 |
39 |
Texas |
11441717 |
39 |
Arizona |
2192253 |
31 |
Nevada |
890257 |
29 |
Florida |
5697240 |
26 |
Colorado |
1263390 |
22 |
New Jersey |
2002575 |
22 |
New York |
3948032 |
20 |
Illinois |
2337410 |
18 |
Connecticut |
623293 |
17 |
Rhode Island |
182101 |
17 |
Utah |
492912 |
15 |
Oregon |
588757 |
14 |
Washington |
1059213 |
14 |
Idaho |
239407 |
13 |
Kansas |
382603 |
13 |
Massachusetts |
887685 |
13 |
Maryland |
729745 |
12 |
Nebraska |
234715 |
12 |
Oklahoma |
471931 |
12 |
Delaware |
104290 |
11 |
District of Columbia |
77652 |
11 |
North Carolina |
1118596 |
11 |
Virginia |
908749 |
11 |
Georgia |
1123457 |
10 |
Hawaii |
138923 |
10 |
Wyoming |
59046 |
10 |
Arkansas |
256847 |
9 |
Indiana |
554191 |
8 |
Pennsylvania |
1049615 |
8 |
Wisconsin |
447290 |
8 |
Alaska |
49824 |
7 |
Iowa |
215986 |
7 |
Louisiana |
322549 |
7 |
South Carolina |
352838 |
7 |
Tennessee |
479187 |
7 |
Michigan |
564422 |
6 |
Minnesota |
345640 |
6 |
Alabama |
264047 |
5 |
Kentucky |
207854 |
5 |
Missouri |
303068 |
5 |
Mississippi |
105220 |
4 |
Montana |
45199 |
4 |
New Hampshire |
59454 |
4 |
North Dakota |
33412 |
4 |
Ohio |
521308 |
4 |
South Dakota |
38741 |
4 |
Maine |
26609 |
2 |
Vermont |
15504 |
2 |
West Virginia |
34827 |
2 |
pop2020 %>% filter(variable=="white") %>% select(2,4,6) %>% arrange(desc(percent)) %>%
gt() %>% tab_header(
title = md("White Population _ percentage"),
subtitle = md("2020 Census"))
NAME |
value |
percent |
Maine |
1228264 |
90 |
Vermont |
573201 |
89 |
West Virginia |
1598834 |
89 |
New Hampshire |
1200649 |
87 |
Iowa |
2638201 |
83 |
Montana |
901318 |
83 |
North Dakota |
636160 |
82 |
Kentucky |
3664764 |
81 |
Wyoming |
469664 |
81 |
South Dakota |
705583 |
80 |
Idaho |
1450523 |
79 |
Wisconsin |
4634018 |
79 |
Minnesota |
4353880 |
76 |
Missouri |
4663907 |
76 |
Nebraska |
1484687 |
76 |
Ohio |
8954135 |
76 |
Indiana |
5121004 |
75 |
Utah |
2465355 |
75 |
Pennsylvania |
9553417 |
73 |
Kansas |
2122575 |
72 |
Michigan |
7295651 |
72 |
Oregon |
3036158 |
72 |
Tennessee |
4900246 |
71 |
Arkansas |
2063550 |
69 |
Rhode Island |
754050 |
69 |
Massachusetts |
4748897 |
68 |
Colorado |
3760663 |
65 |
Washington |
4918820 |
64 |
Alabama |
3171351 |
63 |
Connecticut |
2279232 |
63 |
South Carolina |
3178552 |
62 |
Oklahoma |
2407188 |
61 |
North Carolina |
6312148 |
60 |
Delaware |
579851 |
59 |
Virginia |
5058363 |
59 |
Alaska |
421758 |
58 |
Illinois |
7472751 |
58 |
Louisiana |
2596702 |
56 |
Mississippi |
1639077 |
55 |
Arizona |
3816547 |
53 |
Florida |
11100503 |
52 |
New Jersey |
4816381 |
52 |
New York |
10598907 |
52 |
Georgia |
5362156 |
50 |
Maryland |
2913782 |
47 |
Nevada |
1425952 |
46 |
Texas |
11584597 |
40 |
District of Columbia |
261771 |
38 |
New Mexico |
772952 |
37 |
California |
13714587 |
35 |
Hawaii |
314365 |
22 |
Puerto Rico |
24548 |
1 |
pop2020 %>% filter(variable=="asian") %>% select(2,4,6) %>% arrange(desc(percent)) %>%
gt() %>% tab_header(
title = md("Asian Population _ percentage"),
subtitle = md("2020 Census"))
NAME |
value |
percent |
Hawaii |
531558 |
37 |
California |
5978795 |
15 |
New Jersey |
942921 |
10 |
Nevada |
265991 |
9 |
New York |
1916329 |
9 |
Washington |
723062 |
9 |
Maryland |
417962 |
7 |
Massachusetts |
504900 |
7 |
Virginia |
610612 |
7 |
Alaska |
43449 |
6 |
Illinois |
747280 |
6 |
Connecticut |
170459 |
5 |
District of Columbia |
33192 |
5 |
Minnesota |
297460 |
5 |
Oregon |
191797 |
5 |
Texas |
1561518 |
5 |
Delaware |
42398 |
4 |
Georgia |
475680 |
4 |
Pennsylvania |
506674 |
4 |
Arizona |
248837 |
3 |
Colorado |
195220 |
3 |
Florida |
629626 |
3 |
Kansas |
85225 |
3 |
Michigan |
332288 |
3 |
Nebraska |
52359 |
3 |
New Hampshire |
35604 |
3 |
North Carolina |
340059 |
3 |
Ohio |
296604 |
3 |
Rhode Island |
38367 |
3 |
Wisconsin |
174267 |
3 |
Alabama |
75918 |
2 |
Arkansas |
51210 |
2 |
Indiana |
166651 |
2 |
Iowa |
75017 |
2 |
Kentucky |
73843 |
2 |
Louisiana |
85336 |
2 |
Missouri |
132158 |
2 |
New Mexico |
35261 |
2 |
North Dakota |
13050 |
2 |
Oklahoma |
89653 |
2 |
South Carolina |
89394 |
2 |
South Dakota |
13332 |
2 |
Tennessee |
134302 |
2 |
Utah |
78618 |
2 |
Vermont |
11457 |
2 |
Idaho |
26036 |
1 |
Maine |
16668 |
1 |
Mississippi |
32305 |
1 |
Montana |
8077 |
1 |
West Virginia |
14903 |
1 |
Wyoming |
5037 |
1 |
Puerto Rico |
2746 |
0 |
pop2020 %>% filter(variable=="baa") %>% select(2,4,6) %>% arrange(desc(percent)) %>%
gt() %>% tab_header(
title = md("Black Population _ percentage"),
subtitle = md("2020 Census"))
NAME |
value |
percent |
District of Columbia |
282066 |
41 |
Mississippi |
1079001 |
36 |
Georgia |
3278119 |
31 |
Louisiana |
1452420 |
31 |
Maryland |
1795027 |
29 |
Alabama |
1288159 |
26 |
South Carolina |
1269031 |
25 |
Delaware |
212960 |
22 |
North Carolina |
2107526 |
20 |
Virginia |
1578090 |
18 |
Tennessee |
1083772 |
16 |
Arkansas |
449884 |
15 |
Florida |
3127052 |
15 |
Illinois |
1775612 |
14 |
New York |
2759022 |
14 |
Michigan |
1358458 |
13 |
New Jersey |
1154142 |
12 |
Ohio |
1457180 |
12 |
Texas |
3444712 |
12 |
Missouri |
692774 |
11 |
Pennsylvania |
1368978 |
11 |
Connecticut |
360937 |
10 |
Indiana |
637500 |
9 |
Nevada |
291960 |
9 |
Kentucky |
357764 |
8 |
Massachusetts |
457055 |
7 |
Minnesota |
392850 |
7 |
Oklahoma |
283242 |
7 |
Kansas |
163352 |
6 |
Wisconsin |
366508 |
6 |
California |
2119286 |
5 |
Nebraska |
94405 |
5 |
Rhode Island |
55386 |
5 |
Arizona |
317161 |
4 |
Colorado |
221310 |
4 |
Iowa |
129321 |
4 |
Washington |
296170 |
4 |
West Virginia |
64749 |
4 |
Alaska |
20731 |
3 |
North Dakota |
26152 |
3 |
Hawaii |
21877 |
2 |
Maine |
25115 |
2 |
New Mexico |
38330 |
2 |
Oregon |
78658 |
2 |
South Dakota |
17441 |
2 |
Idaho |
14785 |
1 |
New Hampshire |
18655 |
1 |
Utah |
37192 |
1 |
Vermont |
8649 |
1 |
Wyoming |
4735 |
1 |
Montana |
5077 |
0 |
Puerto Rico |
4286 |
0 |
Population changes from 2010 Census to 2020 census
* Note of caution: when comparing data from year to year, it is important to be consistent in selecting data standards:
** ACS one-year estimate, or ACS 5-year estimate, or 10-year Decennial Survey
* survey application
** 10-year Decennial surveys are used for general nation-wide analysis
** 5-year ACS surveys are used for specific demographic analysis and county level geography
2010 Decenial census survey for states
vars10 <- c(Hispanic="P005010", Asian="P005006",White="P005003",Black="P005004")
pop2010 <- get_decennial(geography = "state", variables = vars10, year = 2010,
summary_var = "P005001", geometry = F) %>%
mutate(pct = round(100 * (value / summary_value),digits = 0))
## Getting data from the 2010 decennial Census
## Using Census Summary File 1
vars20 <- c(Hispanic="P2_002N", Asian="P1_006N",White="P1_003N",Black="P1_004N")
pop2020 <- get_decennial(geography = "state", variables = vars20, year = 2020,
summary_var = "P1_001N", geometry = F) %>%
mutate(pct = round(100 * (value / summary_value),digits = 0))
## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
#----------------------------------------
hispanic2010 <- filter(pop2010,variable=="Hispanic") %>% arrange(desc(pct))
gt(hispanic2010[,c(2,4,6)]) %>%
tab_header(
title = "Hispanic Population _ by percentage",
subtitle = "2010 Census _ All states "
)
NAME |
value |
pct |
Puerto Rico |
3688455 |
99 |
New Mexico |
953403 |
46 |
California |
14013719 |
38 |
Texas |
9460921 |
38 |
Arizona |
1895149 |
30 |
Nevada |
716501 |
27 |
Florida |
4223806 |
22 |
Colorado |
1038687 |
21 |
New Jersey |
1555144 |
18 |
New York |
3416922 |
18 |
Illinois |
2027578 |
16 |
Connecticut |
479087 |
13 |
Utah |
358340 |
13 |
Oregon |
450062 |
12 |
Rhode Island |
130655 |
12 |
Idaho |
175901 |
11 |
Kansas |
300042 |
11 |
Washington |
755790 |
11 |
Massachusetts |
627654 |
10 |
District of Columbia |
54749 |
9 |
Georgia |
853689 |
9 |
Hawaii |
120842 |
9 |
Nebraska |
167405 |
9 |
Oklahoma |
332007 |
9 |
Wyoming |
50231 |
9 |
Delaware |
73221 |
8 |
Maryland |
470632 |
8 |
North Carolina |
800120 |
8 |
Virginia |
631825 |
8 |
Alaska |
39249 |
6 |
Arkansas |
186050 |
6 |
Indiana |
389707 |
6 |
Pennsylvania |
719660 |
6 |
Wisconsin |
336056 |
6 |
Iowa |
151544 |
5 |
Minnesota |
250258 |
5 |
South Carolina |
235682 |
5 |
Tennessee |
290059 |
5 |
Alabama |
185602 |
4 |
Louisiana |
192560 |
4 |
Michigan |
436358 |
4 |
Missouri |
212470 |
4 |
Kentucky |
132836 |
3 |
Mississippi |
81481 |
3 |
Montana |
28565 |
3 |
New Hampshire |
36704 |
3 |
Ohio |
354674 |
3 |
South Dakota |
22119 |
3 |
North Dakota |
13467 |
2 |
Maine |
16935 |
1 |
Vermont |
9208 |
1 |
West Virginia |
22268 |
1 |
#-------------------------------------
asian2010 <- filter(pop2010,variable=="Asian") %>% arrange(desc(pct))
gt(asian2010[,c(2,4,6)]) %>% tab_header(
title = "Asian Population _ by percentage",
subtitle = "2010 Census _ All states"
)
NAME |
value |
pct |
Hawaii |
513294 |
38 |
California |
4775070 |
13 |
New Jersey |
719827 |
8 |
Nevada |
191047 |
7 |
New York |
1406194 |
7 |
Washington |
475634 |
7 |
Alaska |
37459 |
5 |
Illinois |
580586 |
5 |
Maryland |
316694 |
5 |
Massachusetts |
347495 |
5 |
Virginia |
436298 |
5 |
Connecticut |
134091 |
4 |
Minnesota |
212996 |
4 |
Oregon |
139436 |
4 |
Texas |
948426 |
4 |
Arizona |
170509 |
3 |
Colorado |
135564 |
3 |
Delaware |
28308 |
3 |
District of Columbia |
20818 |
3 |
Georgia |
311692 |
3 |
Pennsylvania |
346288 |
3 |
Rhode Island |
29988 |
3 |
Louisiana |
69327 |
2 |
Florida |
445216 |
2 |
Indiana |
101444 |
2 |
Iowa |
52597 |
2 |
Kansas |
66967 |
2 |
Michigan |
236490 |
2 |
Missouri |
97221 |
2 |
Nebraska |
31919 |
2 |
New Hampshire |
28241 |
2 |
North Carolina |
206579 |
2 |
Ohio |
190765 |
2 |
Oklahoma |
64154 |
2 |
Utah |
54176 |
2 |
Wisconsin |
128052 |
2 |
Alabama |
52937 |
1 |
Arkansas |
35647 |
1 |
Kentucky |
48338 |
1 |
Idaho |
18529 |
1 |
Maine |
13442 |
1 |
Mississippi |
25477 |
1 |
Montana |
6138 |
1 |
New Mexico |
26305 |
1 |
North Dakota |
6839 |
1 |
South Carolina |
58307 |
1 |
South Dakota |
7553 |
1 |
Tennessee |
90311 |
1 |
Vermont |
7875 |
1 |
West Virginia |
12285 |
1 |
Wyoming |
4279 |
1 |
Puerto Rico |
2930 |
0 |
white2010 <- filter(pop2010,variable=="White") %>% arrange(desc(pct))
gt(white2010[,c(2,4,6)]) %>% tab_header(
title = "White Population _ by percentage",
subtitle = "2010 Census _ all states"
)
NAME |
value |
pct |
Maine |
1254297 |
94 |
Vermont |
590223 |
94 |
West Virginia |
1726256 |
93 |
New Hampshire |
1215050 |
92 |
Iowa |
2701123 |
89 |
North Dakota |
598007 |
89 |
Montana |
868628 |
88 |
Kentucky |
3745655 |
86 |
Wyoming |
483874 |
86 |
South Dakota |
689502 |
85 |
Idaho |
1316243 |
84 |
Minnesota |
4405142 |
83 |
Wisconsin |
4738411 |
83 |
Indiana |
5286453 |
82 |
Nebraska |
1499753 |
82 |
Missouri |
4850748 |
81 |
Ohio |
9359263 |
81 |
Utah |
2221719 |
80 |
Pennsylvania |
10094652 |
79 |
Kansas |
2230539 |
78 |
Oregon |
3005848 |
78 |
Michigan |
7569939 |
77 |
Massachusetts |
4984800 |
76 |
Rhode Island |
803685 |
76 |
Tennessee |
4800782 |
76 |
Arkansas |
2173469 |
75 |
Washington |
4876804 |
73 |
Connecticut |
2546262 |
71 |
Colorado |
3520793 |
70 |
Oklahoma |
2575381 |
69 |
Alabama |
3204402 |
67 |
Delaware |
586752 |
65 |
North Carolina |
6223995 |
65 |
Virginia |
5186450 |
65 |
Alaska |
455320 |
64 |
Illinois |
8167753 |
64 |
South Carolina |
2962740 |
64 |
Louisiana |
2734884 |
60 |
New Jersey |
5214878 |
59 |
Arizona |
3695647 |
58 |
Florida |
10884722 |
58 |
Mississippi |
1722287 |
58 |
New York |
11304247 |
58 |
Georgia |
5413920 |
56 |
Maryland |
3157958 |
55 |
Nevada |
1462081 |
54 |
Texas |
11397345 |
45 |
California |
14956253 |
40 |
New Mexico |
833810 |
40 |
District of Columbia |
209464 |
35 |
Hawaii |
309343 |
23 |
Puerto Rico |
26946 |
1 |
black2010 <- filter(pop2010,variable=="Black") %>% arrange(desc(pct))
gt(black2010[,c(2,4,6)]) %>% tab_header(
title = "Black Population _ by percentage",
subtitle = "2010 Census _ all states"
)
NAME |
value |
pct |
District of Columbia |
301053 |
50 |
Mississippi |
1093512 |
37 |
Louisiana |
1442420 |
32 |
Georgia |
2910800 |
30 |
Maryland |
1674229 |
29 |
South Carolina |
1279998 |
28 |
Alabama |
1244437 |
26 |
Delaware |
186782 |
21 |
North Carolina |
2019854 |
21 |
Virginia |
1523704 |
19 |
Tennessee |
1049391 |
17 |
Arkansas |
447102 |
15 |
Florida |
2851100 |
15 |
Illinois |
1832924 |
14 |
Michigan |
1383756 |
14 |
New York |
2783857 |
14 |
New Jersey |
1125401 |
13 |
Ohio |
1389115 |
12 |
Missouri |
687149 |
11 |
Texas |
2886825 |
11 |
Pennsylvania |
1327091 |
10 |
Connecticut |
335119 |
9 |
Indiana |
582140 |
9 |
Kentucky |
333075 |
8 |
Nevada |
208058 |
8 |
Oklahoma |
272071 |
7 |
California |
2163804 |
6 |
Kansas |
162700 |
6 |
Massachusetts |
391693 |
6 |
Wisconsin |
350898 |
6 |
Minnesota |
269141 |
5 |
Rhode Island |
51560 |
5 |
Arizona |
239101 |
4 |
Colorado |
188778 |
4 |
Nebraska |
80959 |
4 |
Alaska |
21949 |
3 |
Iowa |
86906 |
3 |
Washington |
229603 |
3 |
West Virginia |
62122 |
3 |
New Mexico |
35462 |
2 |
Oregon |
64984 |
2 |
Hawaii |
19904 |
1 |
Idaho |
8875 |
1 |
Maine |
15154 |
1 |
New Hampshire |
13625 |
1 |
North Dakota |
7720 |
1 |
South Dakota |
9959 |
1 |
Utah |
25951 |
1 |
Vermont |
5943 |
1 |
Wyoming |
4351 |
1 |
Montana |
3743 |
0 |
Puerto Rico |
4663 |
0 |
pop2010 <- get_acs(geography = "state",
variables = c(Total="B02001_001", White="B02008_001",Hispanic="B03001_003",Asian="B02011_001", Black="B02009_001"),
year = 2010) %>% arrange(as.numeric(GEOID))
## Getting data from the 2006-2010 5-year ACS
pop2020 <- get_acs(geography = "state",
variables = c(Total="B02001_001", White="B02008_001",Hispanic="B03001_003",Asian="B02011_001", Black="B02009_001"),
year = 2020) %>% arrange(as.numeric(GEOID))
## Getting data from the 2016-2020 5-year ACS
pop2020$p2010 <- pop2010$estimate
pop2020$change <- pop2020$estimate - pop2010$estimate
pop2020 <- pop2020[-5]
filter(pop2020,variable=="Total") %>% select(c(2,4,6)) %>% gt() %>%
tab_header(
title = md("Total Population Changes"),
subtitle = md("2020 Census _ Change from 2010"))
NAME |
estimate |
change |
Alabama |
4893186 |
180535 |
Alaska |
736990 |
45801 |
Arizona |
7174064 |
927248 |
Arkansas |
3011873 |
139189 |
California |
39346023 |
2708733 |
Colorado |
5684926 |
797865 |
Connecticut |
3570549 |
24712 |
Delaware |
967679 |
86401 |
District of Columbia |
701974 |
117574 |
Florida |
21216924 |
2705304 |
Georgia |
10516579 |
1047764 |
Hawaii |
1420074 |
86483 |
Idaho |
1754367 |
227570 |
Illinois |
12716164 |
-29195 |
Indiana |
6696893 |
279495 |
Iowa |
3150011 |
133744 |
Kansas |
2912619 |
103290 |
Kentucky |
4461952 |
176124 |
Louisiana |
4664616 |
234676 |
Maine |
1340825 |
13160 |
Maryland |
6037624 |
341201 |
Massachusetts |
6873003 |
395907 |
Michigan |
9973907 |
21220 |
Minnesota |
5600166 |
358252 |
Mississippi |
2981835 |
39844 |
Missouri |
6124160 |
201846 |
Montana |
1061705 |
87966 |
Nebraska |
1923826 |
124701 |
Nevada |
3030281 |
396950 |
New Hampshire |
1355244 |
41305 |
New Jersey |
8885418 |
163841 |
New Mexico |
2097021 |
83899 |
New York |
19514849 |
285097 |
North Carolina |
10386227 |
1115049 |
North Dakota |
760394 |
100536 |
Ohio |
11675275 |
162844 |
Oklahoma |
3949342 |
274003 |
Oregon |
4176346 |
414421 |
Pennsylvania |
12794885 |
182180 |
Rhode Island |
1057798 |
1409 |
South Carolina |
5091517 |
580089 |
South Dakota |
879336 |
79874 |
Tennessee |
6772268 |
537300 |
Texas |
28635442 |
4323551 |
Utah |
3151239 |
494003 |
Vermont |
624340 |
82 |
Virginia |
8509358 |
667604 |
Washington |
7512465 |
951168 |
West Virginia |
1807426 |
-33376 |
Wisconsin |
5806975 |
169028 |
Wyoming |
581348 |
35769 |
Puerto Rico |
3255642 |
-506680 |
total2020 <- filter(pop2020,variable=="Total") %>% select(c(2,4,6))
total2020 %>% group_by(estimate,change) %>%
summarise(total = sum(estimate),change=sum(change))
## `summarise()` has grouped output by 'estimate'. You can override using the
## `.groups` argument.
## # A tibble: 52 × 3
## # Groups: estimate [52]
## estimate change total
## <dbl> <dbl> <dbl>
## 1 581348 35769 581348
## 2 624340 82 624340
## 3 701974 117574 701974
## 4 736990 45801 736990
## 5 760394 100536 760394
## 6 879336 79874 879336
## 7 967679 86401 967679
## 8 1057798 1409 1057798
## 9 1061705 87966 1061705
## 10 1340825 13160 1340825
## # … with 42 more rows
#----------------------------------------------------
filter(pop2020,variable=="Asian") %>% select(c(2,4,6)) %>% arrange(desc(change)) %>%
gt() %>% tab_header(
title = md("Asian Population Changes"),
subtitle = md("2020 Census _ Change from 2010")
)
NAME |
estimate |
change |
California |
6764118 |
1492806 |
Texas |
1656166 |
651465 |
New York |
1884346 |
392699 |
Washington |
854617 |
295163 |
Florida |
763613 |
232633 |
Virginia |
691449 |
214694 |
New Jersey |
948998 |
202836 |
Illinois |
828847 |
199156 |
Georgia |
515434 |
184564 |
Massachusetts |
538409 |
170224 |
Pennsylvania |
532335 |
161419 |
North Carolina |
377854 |
150808 |
Ohio |
344131 |
122999 |
Maryland |
463308 |
117551 |
Arizona |
326446 |
116968 |
Michigan |
390937 |
112322 |
Minnesota |
330738 |
100768 |
Nevada |
320596 |
100272 |
Oregon |
258188 |
84719 |
Indiana |
195087 |
80378 |
Colorado |
252624 |
79971 |
Wisconsin |
203052 |
61742 |
Tennessee |
155558 |
52661 |
Connecticut |
196347 |
50453 |
Missouri |
161495 |
48239 |
South Carolina |
110663 |
43065 |
Utah |
112368 |
41744 |
Hawaii |
803266 |
39678 |
Iowa |
97896 |
39094 |
Oklahoma |
116701 |
38282 |
Kansas |
110231 |
32698 |
Kentucky |
88096 |
32536 |
Alabama |
89031 |
27528 |
Nebraska |
62516 |
25284 |
Louisiana |
99667 |
22722 |
Arkansas |
59949 |
20224 |
Alaska |
64669 |
18026 |
Idaho |
42595 |
15530 |
New Hampshire |
47713 |
15474 |
District of Columbia |
37847 |
14043 |
Delaware |
45744 |
13962 |
New Mexico |
48942 |
13623 |
Rhode Island |
45472 |
10646 |
Mississippi |
39237 |
10436 |
North Dakota |
16362 |
8297 |
South Dakota |
16062 |
6958 |
West Virginia |
20784 |
6261 |
Maine |
23244 |
6257 |
Montana |
15622 |
5952 |
Vermont |
14972 |
5510 |
Wyoming |
9194 |
3589 |
Puerto Rico |
8450 |
-6579 |
#------------------
filter(pop2020,variable=="Hispanic") %>% select(c(2,4,6)) %>% arrange(desc(change)) %>%
gt() %>% tab_header(
title = md("Hispanic Population Changes"),
subtitle = md("2020 Census _ Change from 2010")
)
NAME |
estimate |
change |
Texas |
11294257 |
2376780 |
California |
15380929 |
1924772 |
Florida |
5468826 |
1473502 |
Arizona |
2260690 |
446016 |
New York |
3720707 |
431827 |
New Jersey |
1815078 |
346902 |
Pennsylvania |
971813 |
315305 |
Washington |
971522 |
279974 |
North Carolina |
991051 |
267643 |
Illinois |
2190696 |
250768 |
Colorado |
1231126 |
247800 |
Massachusetts |
828140 |
243165 |
Virginia |
810770 |
235804 |
Georgia |
1013057 |
228345 |
Nevada |
875798 |
201901 |
Maryland |
619418 |
189472 |
Connecticut |
587212 |
140101 |
Oregon |
552279 |
132084 |
Oklahoma |
431467 |
129300 |
Ohio |
459939 |
126920 |
Utah |
446067 |
119261 |
New Mexico |
1031788 |
117886 |
Tennessee |
377162 |
115714 |
Indiana |
475475 |
114003 |
Michigan |
521203 |
97791 |
Wisconsin |
408267 |
97718 |
South Carolina |
296897 |
88143 |
Kansas |
351602 |
75494 |
Minnesota |
307675 |
73959 |
Louisiana |
243372 |
70618 |
Missouri |
262677 |
64007 |
Nebraska |
214952 |
62981 |
Idaho |
222967 |
61630 |
Arkansas |
229629 |
61202 |
Iowa |
194407 |
57475 |
Kentucky |
167949 |
50601 |
Alabama |
212951 |
50580 |
Rhode Island |
168007 |
43575 |
Hawaii |
152566 |
37133 |
District of Columbia |
77981 |
26680 |
Mississippi |
94342 |
24508 |
Delaware |
91350 |
24435 |
New Hampshire |
52792 |
17454 |
North Dakota |
30325 |
17447 |
South Dakota |
36088 |
15644 |
Alaska |
53059 |
14666 |
Montana |
41501 |
14241 |
Wyoming |
58854 |
13072 |
West Virginia |
28679 |
7724 |
Maine |
23143 |
6100 |
Vermont |
12518 |
3364 |
Puerto Rico |
3212625 |
-504245 |
#------------------
filter(pop2020,variable=="White") %>% select(c(2,4,6)) %>% arrange(desc(change)) %>%
gt() %>% tab_header(
title = md("White Population Changes"),
subtitle = md("2020 Census _ Change from 2010")
)
NAME |
estimate |
change |
Texas |
21681317 |
3752456 |
Florida |
16371086 |
1949076 |
California |
24826054 |
1280089 |
North Carolina |
7348103 |
751495 |
Colorado |
4948790 |
730334 |
Arizona |
5752282 |
724940 |
Washington |
6007728 |
564173 |
Georgia |
6353997 |
447211 |
South Carolina |
3521154 |
428808 |
Tennessee |
5380206 |
382181 |
Utah |
2807476 |
379859 |
Virginia |
6000367 |
368264 |
Oregon |
3692435 |
349194 |
Idaho |
1623030 |
180209 |
Oklahoma |
3129278 |
166716 |
Indiana |
5718307 |
145154 |
New Mexico |
1627090 |
139261 |
Minnesota |
4773429 |
134983 |
Massachusetts |
5546174 |
131523 |
Missouri |
5179826 |
128815 |
Kentucky |
3965298 |
112071 |
Louisiana |
2968078 |
98051 |
Nebraska |
1711828 |
91844 |
District of Columbia |
312609 |
82845 |
Kansas |
2548409 |
82839 |
Arkansas |
2382587 |
80504 |
Wisconsin |
5076630 |
76424 |
Montana |
970545 |
75073 |
Iowa |
2894547 |
73855 |
North Dakota |
674281 |
67040 |
Nevada |
2080484 |
66104 |
Alabama |
3411460 |
64185 |
South Dakota |
762967 |
56879 |
Hawaii |
604632 |
49240 |
Delaware |
684795 |
43408 |
Illinois |
9367474 |
38033 |
Wyoming |
547044 |
35121 |
New Hampshire |
1284067 |
26543 |
Alaska |
529303 |
16373 |
Maine |
1291593 |
3872 |
Michigan |
8082811 |
1088 |
Maryland |
3501814 |
-477 |
Vermont |
600582 |
-6180 |
Rhode Island |
877920 |
-7581 |
Mississippi |
1774378 |
-13368 |
Ohio |
9776587 |
-15331 |
New Jersey |
6188854 |
-23545 |
West Virginia |
1713884 |
-47098 |
Connecticut |
2799956 |
-60568 |
Pennsylvania |
10537652 |
-91106 |
New York |
12894580 |
-175309 |
Puerto Rico |
2246894 |
-817277 |
#------------------
filter(pop2020,variable=="Black") %>% select(c(2,4,6)) %>% arrange(desc(change)) %>%
gt() %>% tab_header(
title = md("Black Population Changes"),
subtitle = md("2020 Census _ Change from 2010")
)
NAME |
estimate |
change |
Texas |
3834846 |
815111 |
Florida |
3735264 |
673579 |
Georgia |
3499486 |
551954 |
North Carolina |
2392742 |
321041 |
California |
2806900 |
226228 |
Maryland |
1937445 |
200333 |
New York |
3396120 |
195910 |
Virginia |
1800436 |
184291 |
Pennsylvania |
1634203 |
174119 |
Ohio |
1673910 |
164798 |
Massachusetts |
662313 |
163170 |
Minnesota |
447354 |
142279 |
Arizona |
425315 |
139221 |
Tennessee |
1214063 |
136480 |
Louisiana |
1560682 |
126802 |
Washington |
425653 |
121040 |
South Carolina |
1423031 |
118662 |
Indiana |
735826 |
103856 |
Nevada |
337681 |
101492 |
Alabama |
1349127 |
90795 |
New Jersey |
1335434 |
76479 |
Colorado |
309449 |
75913 |
Connecticut |
456214 |
71342 |
Kentucky |
425351 |
60888 |
Missouri |
784331 |
57879 |
Wisconsin |
441868 |
53336 |
Iowa |
156107 |
50373 |
Oklahoma |
364516 |
48995 |
Mississippi |
1149098 |
46686 |
Delaware |
234353 |
37683 |
Oregon |
124917 |
32384 |
Arkansas |
493883 |
31780 |
Nebraska |
117761 |
23415 |
Michigan |
1524001 |
22463 |
Utah |
59239 |
21078 |
Kansas |
216216 |
21076 |
North Dakota |
28675 |
19231 |
Rhode Island |
91539 |
17572 |
District of Columbia |
333114 |
17513 |
West Virginia |
84768 |
13926 |
Hawaii |
51286 |
13249 |
South Dakota |
25975 |
13067 |
New Hampshire |
32277 |
12432 |
New Mexico |
62321 |
10853 |
Maine |
27832 |
9347 |
Idaho |
21346 |
6775 |
Illinois |
1957092 |
5755 |
Alaska |
37226 |
4882 |
Montana |
12031 |
4720 |
Wyoming |
10732 |
4445 |
Vermont |
12384 |
3921 |
Puerto Rico |
547012 |
-21025 |
U.S. counties with Hispanic Majority ( greater than 50%)
vars20 <- c(Hispanic="P2_002N", Asian="P1_006N",White="P1_003N",Black="P1_004N")
us2020 <- get_decennial(geography = "county", variables = vars20, year = 2020,
summary_var = "P1_001N", geometry = F) %>%
mutate(pct = round(100 * (value / summary_value),digits = 0))
## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
us2020 <- us2020 %>% filter(!str_detect(NAME, regex("\\ Puerto Rico", ignore_case = TRUE)))
us2020$NAME <- gsub(" County","",us2020$NAME)
us2020 <- us2020 %>% separate(NAME,sep = "," , c('County', 'state'))
hispanic2020 <- filter(us2020,variable=="Hispanic") %>% filter(pct>50) %>% arrange(desc(pct))
gt(hispanic2020[,c(2,3,7)]) %>% tab_header(
title = "Hispanic Population _ by county percentage",
subtitle = "2020 Census California"
)
County |
state |
pct |
Starr |
Texas |
98 |
Webb |
Texas |
95 |
Maverick |
Texas |
95 |
Zapata |
Texas |
94 |
Hidalgo |
Texas |
92 |
Zavala |
Texas |
92 |
Cameron |
Texas |
89 |
Brooks |
Texas |
88 |
Jim Hogg |
Texas |
88 |
Dimmit |
Texas |
87 |
Willacy |
Texas |
87 |
Imperial |
California |
85 |
Reeves |
Texas |
85 |
El Paso |
Texas |
83 |
Santa Cruz |
Arizona |
83 |
Duval |
Texas |
81 |
Presidio |
Texas |
81 |
Val Verde |
Texas |
80 |
Jim Wells |
Texas |
79 |
Mora |
New Mexico |
79 |
Frio |
Texas |
77 |
Guadalupe |
New Mexico |
77 |
Culberson |
Texas |
75 |
Deaf Smith |
Texas |
75 |
Kenedy |
Texas |
75 |
San Miguel |
New Mexico |
75 |
La Salle |
Texas |
74 |
Kleberg |
Texas |
71 |
Pecos |
Texas |
71 |
Uvalde |
Texas |
70 |
Miami-Dade |
Florida |
69 |
Crane |
Texas |
68 |
Reagan |
Texas |
67 |
Doña Ana |
New Mexico |
67 |
Rio Arriba |
New Mexico |
67 |
Tulare |
California |
66 |
Bailey |
Texas |
66 |
Parmer |
Texas |
66 |
Luna |
New Mexico |
66 |
Seward |
Kansas |
66 |
Castro |
Texas |
65 |
Yoakum |
Texas |
65 |
Adams |
Washington |
64 |
Atascosa |
Texas |
64 |
Hudspeth |
Texas |
64 |
Yuma |
Arizona |
64 |
Colusa |
California |
62 |
Merced |
California |
62 |
Bee |
Texas |
62 |
Crockett |
Texas |
62 |
Sutton |
Texas |
62 |
San Benito |
California |
61 |
Ector |
Texas |
61 |
Nueces |
Texas |
61 |
Winkler |
Texas |
61 |
Lea |
New Mexico |
61 |
Madera |
California |
60 |
Monterey |
California |
60 |
Hale |
Texas |
60 |
Cochran |
Texas |
60 |
Valencia |
New Mexico |
60 |
Bexar |
Texas |
59 |
Moore |
Texas |
59 |
Kings |
California |
57 |
Costilla |
Colorado |
57 |
Floyd |
Texas |
57 |
Lamb |
Texas |
57 |
Chaves |
New Mexico |
57 |
Hidalgo |
New Mexico |
57 |
Ford |
Kansas |
57 |
Hendry |
Florida |
56 |
Garza |
Texas |
56 |
San Patricio |
Texas |
56 |
Terry |
Texas |
56 |
Andrews |
Texas |
56 |
Caldwell |
Texas |
56 |
Kern |
California |
55 |
Bronx |
New York |
55 |
Crosby |
Texas |
55 |
Ochiltree |
Texas |
55 |
Fresno |
California |
54 |
San Bernardino |
California |
54 |
Franklin |
Washington |
54 |
Osceola |
Florida |
54 |
Dawson |
Texas |
54 |
Upton |
Texas |
54 |
Ward |
Texas |
54 |
Karnes |
Texas |
53 |
Grant |
Kansas |
53 |
Dallam |
Texas |
52 |
Schleicher |
Texas |
52 |
Finney |
Kansas |
52 |
Conejos |
Colorado |
51 |
Yakima |
Washington |
51 |
Texas |
Oklahoma |
51 |
Taos |
New Mexico |
51 |
2010 population data for California counties
vars10 <- c(Hispanic="P005010", Asian="P005006",White="P005003",Black="P005004")
ca2010 <- get_decennial(geography = "county", variables = vars10, year = 2010,
summary_var = "P005001", state = "CA", geometry = F) %>%
mutate(pct = round(100 * (value / summary_value),digits = 0))
## Getting data from the 2010 decennial Census
## Using Census Summary File 1
ca2010$NAME <- gsub(", California","",ca2010$NAME)
hispanic2010 <- filter(ca2010,variable=="Hispanic") %>% arrange(desc(pct))
gt(hispanic2010[,c(2,4,6)]) %>% tab_header(
title = "Hispanic Population _ by county percentage",
subtitle = "2010 Census California"
)
NAME |
value |
pct |
Imperial County |
140271 |
80 |
Tulare County |
268065 |
61 |
San Benito County |
31186 |
56 |
Colusa County |
11804 |
55 |
Merced County |
140485 |
55 |
Monterey County |
230003 |
55 |
Madera County |
80992 |
54 |
Kings County |
77866 |
51 |
Fresno County |
468070 |
50 |
Kern County |
413033 |
49 |
San Bernardino County |
1001145 |
49 |
Los Angeles County |
4687889 |
48 |
Riverside County |
995257 |
45 |
Santa Barbara County |
181687 |
43 |
Stanislaus County |
215658 |
42 |
Ventura County |
331567 |
40 |
San Joaquin County |
266341 |
39 |
Glenn County |
10539 |
37 |
Orange County |
1012973 |
34 |
Napa County |
44010 |
32 |
San Diego County |
991348 |
32 |
Santa Cruz County |
84092 |
32 |
Yolo County |
60953 |
30 |
Sutter County |
27251 |
29 |
Santa Clara County |
479210 |
27 |
Mono County |
3762 |
26 |
San Mateo County |
182502 |
25 |
Yuba County |
18051 |
25 |
Sonoma County |
120430 |
25 |
Contra Costa County |
255560 |
24 |
Solano County |
99356 |
24 |
Alameda County |
339889 |
23 |
Mendocino County |
19505 |
22 |
Sacramento County |
306196 |
22 |
Tehama County |
13906 |
22 |
San Luis Obispo County |
55973 |
21 |
Inyo County |
3597 |
19 |
Del Norte County |
5093 |
18 |
Lassen County |
6117 |
18 |
Lake County |
11088 |
17 |
Marin County |
39069 |
15 |
San Francisco County |
121774 |
15 |
Butte County |
31116 |
14 |
Modoc County |
1342 |
14 |
Placer County |
44710 |
13 |
Amador County |
4756 |
12 |
El Dorado County |
21875 |
12 |
Tuolumne County |
5918 |
11 |
Calaveras County |
4703 |
10 |
Humboldt County |
13211 |
10 |
Siskiyou County |
4615 |
10 |
Mariposa County |
1676 |
9 |
Nevada County |
8439 |
9 |
Plumas County |
1605 |
8 |
Shasta County |
14878 |
8 |
Sierra County |
269 |
8 |
Alpine County |
84 |
7 |
Trinity County |
959 |
7 |
#-------------------------------------
asian2010 <- filter(ca2010,variable=="Asian") %>% arrange(desc(pct))
gt(asian2010[,c(2,4,6)]) %>% tab_header(
title = "Asian Population _ by county percentage",
subtitle = "2010 Census California"
)
NAME |
value |
pct |
San Francisco County |
265700 |
33 |
Santa Clara County |
565466 |
32 |
Alameda County |
390524 |
26 |
San Mateo County |
175934 |
24 |
Orange County |
532477 |
18 |
Contra Costa County |
148881 |
14 |
Los Angeles County |
1325671 |
14 |
Sacramento County |
198944 |
14 |
San Joaquin County |
94547 |
14 |
Solano County |
59027 |
14 |
Sutter County |
13442 |
14 |
Yolo County |
25640 |
13 |
San Diego County |
328058 |
11 |
Fresno County |
86856 |
9 |
Merced County |
18183 |
7 |
Napa County |
8986 |
7 |
Yuba County |
4710 |
7 |
Ventura County |
54099 |
7 |
Monterey County |
23777 |
6 |
San Bernardino County |
123978 |
6 |
Placer County |
19963 |
6 |
Riverside County |
125921 |
6 |
Marin County |
13577 |
5 |
Santa Barbara County |
19591 |
5 |
Stanislaus County |
24712 |
5 |
Butte County |
8921 |
4 |
Kern County |
33100 |
4 |
Santa Cruz County |
10658 |
4 |
Sonoma County |
17777 |
4 |
Del Norte County |
938 |
3 |
Kings County |
5339 |
3 |
El Dorado County |
6143 |
3 |
San Luis Obispo County |
8106 |
3 |
Tulare County |
14204 |
3 |
Glenn County |
674 |
2 |
Humboldt County |
2854 |
2 |
Madera County |
2533 |
2 |
Mendocino County |
1402 |
2 |
San Benito County |
1298 |
2 |
Shasta County |
4297 |
2 |
Colusa County |
267 |
1 |
Alpine County |
7 |
1 |
Amador County |
396 |
1 |
Calaveras County |
529 |
1 |
Imperial County |
2201 |
1 |
Inyo County |
229 |
1 |
Mariposa County |
201 |
1 |
Lake County |
695 |
1 |
Lassen County |
337 |
1 |
Modoc County |
70 |
1 |
Mono County |
191 |
1 |
Nevada County |
1124 |
1 |
Plumas County |
127 |
1 |
Siskiyou County |
528 |
1 |
Tehama County |
625 |
1 |
Trinity County |
93 |
1 |
Tuolumne County |
530 |
1 |
Sierra County |
12 |
0 |
white2010 <- filter(ca2010,variable=="White") %>% arrange(desc(pct))
gt(white2010[,c(2,4,6)]) %>% tab_header(
title = "White Population _ by county percentage",
subtitle = "2010 Census California"
)
NAME |
value |
pct |
Sierra County |
2855 |
88 |
Nevada County |
85477 |
87 |
Plumas County |
17015 |
85 |
Calaveras County |
38074 |
84 |
Trinity County |
11518 |
84 |
Mariposa County |
15192 |
83 |
Shasta County |
146044 |
82 |
Tuolumne County |
45325 |
82 |
Amador County |
30325 |
80 |
El Dorado County |
144689 |
80 |
Modoc County |
7649 |
79 |
Siskiyou County |
35683 |
79 |
Humboldt County |
103958 |
77 |
Placer County |
265294 |
76 |
Butte County |
165416 |
75 |
Lake County |
47938 |
74 |
Alpine County |
852 |
73 |
Marin County |
183830 |
73 |
Tehama County |
45603 |
72 |
San Luis Obispo County |
191696 |
71 |
Mendocino County |
60249 |
69 |
Mono County |
9687 |
68 |
Lassen County |
23270 |
67 |
Inyo County |
12296 |
66 |
Sonoma County |
320027 |
66 |
Del Norte County |
18513 |
65 |
Santa Cruz County |
156397 |
60 |
Yuba County |
42416 |
59 |
Glenn County |
15717 |
56 |
Napa County |
76967 |
56 |
Sutter County |
47782 |
50 |
Yolo County |
100240 |
50 |
Ventura County |
400868 |
49 |
Contra Costa County |
500923 |
48 |
Sacramento County |
687166 |
48 |
San Diego County |
1500047 |
48 |
Santa Barbara County |
203122 |
48 |
Stanislaus County |
240423 |
47 |
Orange County |
1328499 |
44 |
San Francisco County |
337451 |
42 |
San Mateo County |
303609 |
42 |
Solano County |
168628 |
41 |
Colusa County |
8524 |
40 |
Riverside County |
869068 |
40 |
Kern County |
323794 |
39 |
Madera County |
57380 |
38 |
San Benito County |
21154 |
38 |
San Joaquin County |
245919 |
36 |
Kings County |
53879 |
35 |
Santa Clara County |
626909 |
35 |
Alameda County |
514559 |
34 |
Fresno County |
304522 |
33 |
Monterey County |
136435 |
33 |
San Bernardino County |
677598 |
33 |
Tulare County |
143935 |
33 |
Merced County |
81599 |
32 |
Los Angeles County |
2728321 |
28 |
Imperial County |
23927 |
14 |
black2010 <- filter(ca2010,variable=="Black") %>% arrange(desc(pct))
gt(black2010[,c(2,4,6)]) %>% tab_header(
title = "Black Population _ by county percentage",
subtitle = "2010 Census California"
)
NAME |
value |
pct |
Solano County |
58743 |
14 |
Alameda County |
184126 |
12 |
Sacramento County |
139949 |
10 |
Contra Costa County |
93604 |
9 |
Lassen County |
2790 |
8 |
Los Angeles County |
815086 |
8 |
San Bernardino County |
170700 |
8 |
Kings County |
10314 |
7 |
San Joaquin County |
48540 |
7 |
Riverside County |
130823 |
6 |
San Francisco County |
46781 |
6 |
Fresno County |
45005 |
5 |
Kern County |
45377 |
5 |
San Diego County |
146600 |
5 |
Del Norte County |
967 |
3 |
Imperial County |
5114 |
3 |
Madera County |
5009 |
3 |
Marin County |
6621 |
3 |
Merced County |
8785 |
3 |
Monterey County |
11300 |
3 |
San Mateo County |
18763 |
3 |
Yuba County |
2122 |
3 |
Stanislaus County |
13065 |
3 |
Amador County |
938 |
2 |
Lake County |
1186 |
2 |
Napa County |
2440 |
2 |
San Luis Obispo County |
5128 |
2 |
Santa Barbara County |
7242 |
2 |
Santa Clara County |
42331 |
2 |
Sutter County |
1713 |
2 |
Ventura County |
13082 |
2 |
Yolo County |
4752 |
2 |
Tuolumne County |
1114 |
2 |
Colusa County |
168 |
1 |
Butte County |
3133 |
1 |
Calaveras County |
355 |
1 |
Glenn County |
192 |
1 |
Humboldt County |
1393 |
1 |
El Dorado County |
1296 |
1 |
Inyo County |
102 |
1 |
Mariposa County |
129 |
1 |
Orange County |
44000 |
1 |
Mendocino County |
544 |
1 |
Modoc County |
77 |
1 |
San Benito County |
355 |
1 |
Placer County |
4427 |
1 |
Plumas County |
181 |
1 |
Siskiyou County |
552 |
1 |
Santa Cruz County |
2304 |
1 |
Shasta County |
1438 |
1 |
Sonoma County |
6769 |
1 |
Tehama County |
349 |
1 |
Tulare County |
5497 |
1 |
Alpine County |
0 |
0 |
Mono County |
42 |
0 |
Nevada County |
341 |
0 |
Sierra County |
5 |
0 |
Trinity County |
45 |
0 |
2020 population data for CA counties
vars20 <- c(Hispanic="P2_002N", Asian="P1_006N",White="P1_003N",Black="P1_004N")
ca2020 <- get_decennial(geography = "county", variables = vars20, year = 2020,
summary_var = "P1_001N", state = "CA", geometry = F) %>%
mutate(pct = round(100 * (value / summary_value),digits = 0))
## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
ca2020$NAME <- gsub(", California","",ca2020$NAME)
hispanic2020 <- filter(ca2020,variable=="Hispanic") %>% arrange(desc(pct))
gt(hispanic2020[,c(2,4,6)]) %>% tab_header(
title = "Hispanic Population _ by county percentage",
subtitle = "2020 Census California"
)
NAME |
value |
pct |
Imperial County |
153027 |
85 |
Tulare County |
309895 |
66 |
Colusa County |
13476 |
62 |
Merced County |
173857 |
62 |
San Benito County |
39241 |
61 |
Madera County |
93178 |
60 |
Monterey County |
265321 |
60 |
Kings County |
86607 |
57 |
Kern County |
499158 |
55 |
Fresno County |
540743 |
54 |
San Bernardino County |
1170913 |
54 |
Riverside County |
1202295 |
50 |
Los Angeles County |
4804763 |
48 |
Stanislaus County |
265978 |
48 |
Santa Barbara County |
210584 |
47 |
Glenn County |
12541 |
43 |
Ventura County |
365285 |
43 |
San Joaquin County |
325725 |
42 |
Napa County |
48829 |
35 |
Santa Cruz County |
94299 |
35 |
Orange County |
1086834 |
34 |
San Diego County |
1119629 |
34 |
Yolo County |
71700 |
33 |
Sutter County |
31568 |
32 |
Sonoma County |
141438 |
29 |
Yuba County |
23520 |
29 |
Solano County |
128155 |
28 |
Contra Costa County |
314900 |
27 |
Tehama County |
17938 |
27 |
Mono County |
3507 |
27 |
Mendocino County |
23933 |
26 |
San Mateo County |
191386 |
25 |
Santa Clara County |
487357 |
25 |
Sacramento County |
374434 |
24 |
San Luis Obispo County |
67921 |
24 |
Alameda County |
393749 |
23 |
Lassen County |
7531 |
23 |
Inyo County |
4399 |
23 |
Lake County |
15442 |
23 |
Butte County |
40112 |
19 |
Marin County |
49410 |
19 |
Del Norte County |
5321 |
19 |
San Francisco County |
136761 |
16 |
Placer County |
60628 |
15 |
Amador County |
6014 |
15 |
El Dorado County |
26459 |
14 |
Humboldt County |
18535 |
14 |
Modoc County |
1259 |
14 |
Tuolumne County |
7124 |
13 |
Calaveras County |
5865 |
13 |
Siskiyou County |
5527 |
13 |
Mariposa County |
2140 |
12 |
Sierra County |
377 |
12 |
Shasta County |
19730 |
11 |
Nevada County |
10416 |
10 |
Plumas County |
1897 |
10 |
Alpine County |
84 |
7 |
Trinity County |
937 |
6 |
hispanic2020 <- filter(ca2020,variable=="Hispanic") %>% arrange(desc(value))
gt(hispanic2020[,c(2,4,6)]) %>% tab_header(
title = "Hispanic Population _ by population",
subtitle = "2020 Census California"
)
NAME |
value |
pct |
Los Angeles County |
4804763 |
48 |
Riverside County |
1202295 |
50 |
San Bernardino County |
1170913 |
54 |
San Diego County |
1119629 |
34 |
Orange County |
1086834 |
34 |
Fresno County |
540743 |
54 |
Kern County |
499158 |
55 |
Santa Clara County |
487357 |
25 |
Alameda County |
393749 |
23 |
Sacramento County |
374434 |
24 |
Ventura County |
365285 |
43 |
San Joaquin County |
325725 |
42 |
Contra Costa County |
314900 |
27 |
Tulare County |
309895 |
66 |
Stanislaus County |
265978 |
48 |
Monterey County |
265321 |
60 |
Santa Barbara County |
210584 |
47 |
San Mateo County |
191386 |
25 |
Merced County |
173857 |
62 |
Imperial County |
153027 |
85 |
Sonoma County |
141438 |
29 |
San Francisco County |
136761 |
16 |
Solano County |
128155 |
28 |
Santa Cruz County |
94299 |
35 |
Madera County |
93178 |
60 |
Kings County |
86607 |
57 |
Yolo County |
71700 |
33 |
San Luis Obispo County |
67921 |
24 |
Placer County |
60628 |
15 |
Marin County |
49410 |
19 |
Napa County |
48829 |
35 |
Butte County |
40112 |
19 |
San Benito County |
39241 |
61 |
Sutter County |
31568 |
32 |
El Dorado County |
26459 |
14 |
Mendocino County |
23933 |
26 |
Yuba County |
23520 |
29 |
Shasta County |
19730 |
11 |
Humboldt County |
18535 |
14 |
Tehama County |
17938 |
27 |
Lake County |
15442 |
23 |
Colusa County |
13476 |
62 |
Glenn County |
12541 |
43 |
Nevada County |
10416 |
10 |
Lassen County |
7531 |
23 |
Tuolumne County |
7124 |
13 |
Amador County |
6014 |
15 |
Calaveras County |
5865 |
13 |
Siskiyou County |
5527 |
13 |
Del Norte County |
5321 |
19 |
Inyo County |
4399 |
23 |
Mono County |
3507 |
27 |
Mariposa County |
2140 |
12 |
Plumas County |
1897 |
10 |
Modoc County |
1259 |
14 |
Trinity County |
937 |
6 |
Sierra County |
377 |
12 |
Alpine County |
84 |
7 |
#-----------------------
asian2020 <- filter(ca2020,variable=="Asian") %>% arrange(desc(pct))
gt(asian2020[,c(2,4,6)]) %>% tab_header(
title = "Asian Population _ by county percentage",
subtitle = "2020 Census California"
)
NAME |
value |
pct |
Santa Clara County |
759030 |
39 |
San Francisco County |
296505 |
34 |
Alameda County |
545261 |
32 |
San Mateo County |
230242 |
30 |
Orange County |
706813 |
22 |
Contra Costa County |
217823 |
19 |
Sacramento County |
281733 |
18 |
San Joaquin County |
139323 |
18 |
Sutter County |
18234 |
18 |
Solano County |
72766 |
16 |
Los Angeles County |
1499984 |
15 |
Yolo County |
30392 |
14 |
Trinity County |
2222 |
14 |
San Diego County |
410752 |
12 |
Fresno County |
113328 |
11 |
Placer County |
35500 |
9 |
Napa County |
10753 |
8 |
San Bernardino County |
182287 |
8 |
Ventura County |
64923 |
8 |
Merced County |
20715 |
7 |
Riverside County |
171243 |
7 |
Yuba County |
5774 |
7 |
Marin County |
16431 |
6 |
Monterey County |
26680 |
6 |
Santa Barbara County |
26549 |
6 |
Stanislaus County |
34778 |
6 |
Butte County |
10533 |
5 |
El Dorado County |
9200 |
5 |
Kern County |
46777 |
5 |
Santa Cruz County |
12553 |
5 |
Sonoma County |
22845 |
5 |
Kings County |
5923 |
4 |
San Benito County |
2423 |
4 |
San Luis Obispo County |
10402 |
4 |
Tulare County |
17194 |
4 |
Humboldt County |
3615 |
3 |
Madera County |
3907 |
3 |
Del Norte County |
840 |
3 |
Shasta County |
5978 |
3 |
Imperial County |
3049 |
2 |
Lassen County |
494 |
2 |
Mariposa County |
298 |
2 |
Mendocino County |
1788 |
2 |
Tehama County |
1027 |
2 |
Calaveras County |
743 |
2 |
Glenn County |
647 |
2 |
Siskiyou County |
888 |
2 |
Alpine County |
12 |
1 |
Colusa County |
276 |
1 |
Modoc County |
61 |
1 |
Nevada County |
1427 |
1 |
Plumas County |
152 |
1 |
Tuolumne County |
816 |
1 |
Mono County |
163 |
1 |
Amador County |
582 |
1 |
Inyo County |
282 |
1 |
Lake County |
1004 |
1 |
Sierra County |
7 |
0 |
white2020 <- filter(ca2020,variable=="White") %>% arrange(desc(pct))
gt(white2020[,c(2,4)]) %>% tab_header(
title = "White Population _ by county percentage",
subtitle = "2020 Census California"
)
NAME |
value |
Nevada County |
85604 |
Plumas County |
16608 |
Sierra County |
2703 |
Calaveras County |
36315 |
Tuolumne County |
44207 |
Mariposa County |
13385 |
Modoc County |
6772 |
Shasta County |
142899 |
El Dorado County |
146624 |
Amador County |
31104 |
Siskiyou County |
33597 |
Humboldt County |
98095 |
Trinity County |
11627 |
Butte County |
149557 |
Placer County |
288586 |
Mono County |
9349 |
San Luis Obispo County |
198338 |
Lake County |
46858 |
Alpine County |
814 |
Marin County |
179377 |
Tehama County |
44926 |
Mendocino County |
59510 |
Lassen County |
21066 |
Sonoma County |
306684 |
Del Norte County |
17193 |
Inyo County |
11752 |
Santa Cruz County |
160565 |
Yuba County |
46590 |
Napa County |
76158 |
Glenn County |
15753 |
Ventura County |
428677 |
San Diego County |
1633129 |
Yolo County |
107304 |
Santa Barbara County |
224748 |
Sutter County |
46810 |
Stanislaus County |
256602 |
Sacramento County |
715722 |
Colusa County |
9364 |
Contra Costa County |
501697 |
Orange County |
1383257 |
Madera County |
65248 |
San Benito County |
27230 |
Kern County |
371734 |
Riverside County |
995627 |
San Francisco County |
361382 |
Kings County |
61226 |
San Mateo County |
300188 |
Solano County |
175768 |
Tulare County |
186255 |
Fresno County |
374678 |
Merced County |
104534 |
Monterey County |
158879 |
San Bernardino County |
782691 |
San Joaquin County |
267339 |
Los Angeles County |
3259427 |
Santa Clara County |
622617 |
Alameda County |
523836 |
Imperial County |
47537 |
black2020 <- filter(ca2020,variable=="Black") %>% arrange(desc(pct))
gt(black2020[,c(2,4,6)]) %>% tab_header(
title = "Black Population _ by county percentage",
subtitle = "2020 Census California"
)
NAME |
value |
pct |
Solano County |
62157 |
14 |
Alameda County |
164879 |
10 |
Sacramento County |
152795 |
10 |
Contra Costa County |
101485 |
9 |
San Bernardino County |
184558 |
8 |
San Joaquin County |
60351 |
8 |
Los Angeles County |
794364 |
8 |
Lassen County |
2277 |
7 |
Kern County |
50130 |
6 |
Kings County |
9023 |
6 |
Riverside County |
156477 |
6 |
Fresno County |
48707 |
5 |
San Diego County |
155813 |
5 |
San Francisco County |
46725 |
5 |
Yuba County |
3052 |
4 |
Madera County |
4596 |
3 |
Merced County |
9158 |
3 |
Yolo County |
6164 |
3 |
Amador County |
1236 |
3 |
Del Norte County |
855 |
3 |
Stanislaus County |
15913 |
3 |
Butte County |
3644 |
2 |
Imperial County |
4362 |
2 |
Marin County |
6339 |
2 |
Monterey County |
9943 |
2 |
Napa County |
2443 |
2 |
Orange County |
53842 |
2 |
Placer County |
6890 |
2 |
San Luis Obispo County |
4610 |
2 |
San Mateo County |
15707 |
2 |
Santa Clara County |
44966 |
2 |
Sonoma County |
7615 |
2 |
Sutter County |
1982 |
2 |
Tuolumne County |
1009 |
2 |
Lake County |
1199 |
2 |
Santa Barbara County |
7374 |
2 |
Ventura County |
15330 |
2 |
Alpine County |
10 |
1 |
Colusa County |
198 |
1 |
El Dorado County |
1537 |
1 |
Humboldt County |
1879 |
1 |
Mariposa County |
108 |
1 |
Mendocino County |
642 |
1 |
Modoc County |
67 |
1 |
Plumas County |
103 |
1 |
San Benito County |
634 |
1 |
Santa Cruz County |
3150 |
1 |
Tehama County |
420 |
1 |
Tulare County |
6668 |
1 |
Mono County |
74 |
1 |
Calaveras County |
364 |
1 |
Glenn County |
177 |
1 |
Inyo County |
97 |
1 |
Shasta County |
1912 |
1 |
Siskiyou County |
496 |
1 |
Nevada County |
460 |
0 |
Sierra County |
7 |
0 |
Trinity County |
71 |
0 |
Population shifts by county
a2020 <- arrange(asian2020,as.numeric(GEOID))
h2020 <- arrange(hispanic2020,as.numeric(GEOID))
w2020 <- arrange(white2020,as.numeric(GEOID))
b2020 <- arrange(black2020,as.numeric(GEOID))
#--------------------------
a2010 <- arrange(asian2010,as.numeric(GEOID))
h2010 <- arrange(hispanic2010,as.numeric(GEOID))
w2010 <- arrange(white2010,as.numeric(GEOID))
b2010 <- arrange(black2010,as.numeric(GEOID))
#--------------------------
a_change <- a2010[,c(1:2,4)]
a_change$year2020 <- a2020$value
colnames(a_change) <- c("GEOID","County","Y2010","Y2020")
a_change$change <- round( 100 * (a_change$Y2020 - a_change$Y2010)/a_change$Y2010,digits=0)
a_change <- a_change %>% filter(Y2010 >1000 ) %>% arrange(desc(change))
a_change[-1] %>% kbl(caption = "Asian Population Trends\n, cities with more than 1000 population") %>% kable_styling(latex_options = "center_position")
Asian Population Trends , cities with more than 1000 population
County
|
Y2010
|
Y2020
|
change
|
San Benito County
|
1298
|
2423
|
87
|
Placer County
|
19963
|
35500
|
78
|
Madera County
|
2533
|
3907
|
54
|
El Dorado County
|
6143
|
9200
|
50
|
San Bernardino County
|
123978
|
182287
|
47
|
San Joaquin County
|
94547
|
139323
|
47
|
Contra Costa County
|
148881
|
217823
|
46
|
Sacramento County
|
198944
|
281733
|
42
|
Kern County
|
33100
|
46777
|
41
|
Stanislaus County
|
24712
|
34778
|
41
|
Alameda County
|
390524
|
545261
|
40
|
Imperial County
|
2201
|
3049
|
39
|
Shasta County
|
4297
|
5978
|
39
|
Riverside County
|
125921
|
171243
|
36
|
Santa Barbara County
|
19591
|
26549
|
36
|
Sutter County
|
13442
|
18234
|
36
|
Santa Clara County
|
565466
|
759030
|
34
|
Orange County
|
532477
|
706813
|
33
|
San Mateo County
|
175934
|
230242
|
31
|
Fresno County
|
86856
|
113328
|
30
|
Sonoma County
|
17777
|
22845
|
29
|
Mendocino County
|
1402
|
1788
|
28
|
San Luis Obispo County
|
8106
|
10402
|
28
|
Humboldt County
|
2854
|
3615
|
27
|
Nevada County
|
1124
|
1427
|
27
|
San Diego County
|
328058
|
410752
|
25
|
Solano County
|
59027
|
72766
|
23
|
Yuba County
|
4710
|
5774
|
23
|
Marin County
|
13577
|
16431
|
21
|
Tulare County
|
14204
|
17194
|
21
|
Napa County
|
8986
|
10753
|
20
|
Ventura County
|
54099
|
64923
|
20
|
Yolo County
|
25640
|
30392
|
19
|
Butte County
|
8921
|
10533
|
18
|
Santa Cruz County
|
10658
|
12553
|
18
|
Merced County
|
18183
|
20715
|
14
|
Los Angeles County
|
1325671
|
1499984
|
13
|
Monterey County
|
23777
|
26680
|
12
|
San Francisco County
|
265700
|
296505
|
12
|
Kings County
|
5339
|
5923
|
11
|
#---------------------------
h_change <- h2010[,c(1:2,4)]
h_change$y2020 <- h2020$value
colnames(h_change) <- c("GEOID","County","Y2010","Y2020")
h_change$change <- round(100 * (h_change$Y2020 - h_change$Y2010)/h_change$Y2010, digits = 0)
h_change <- h_change %>% filter(Y2010 >1000 )%>% arrange(desc(change))
h_change[-1] %>% kbl(caption = "Hispanic Population Trends\n, cities with more than 1000 population") %>% kable_styling(latex_options = "center_position")
Hispanic Population Trends , cities with more than 1000 population
County
|
Y2010
|
Y2020
|
change
|
Humboldt County
|
13211
|
18535
|
40
|
Lake County
|
11088
|
15442
|
39
|
Placer County
|
44710
|
60628
|
36
|
Shasta County
|
14878
|
19730
|
33
|
Yuba County
|
18051
|
23520
|
30
|
Butte County
|
31116
|
40112
|
29
|
Solano County
|
99356
|
128155
|
29
|
Tehama County
|
13906
|
17938
|
29
|
Mariposa County
|
1676
|
2140
|
28
|
Amador County
|
4756
|
6014
|
26
|
Marin County
|
39069
|
49410
|
26
|
San Benito County
|
31186
|
39241
|
26
|
Calaveras County
|
4703
|
5865
|
25
|
Merced County
|
140485
|
173857
|
24
|
Contra Costa County
|
255560
|
314900
|
23
|
Lassen County
|
6117
|
7531
|
23
|
Mendocino County
|
19505
|
23933
|
23
|
Nevada County
|
8439
|
10416
|
23
|
Stanislaus County
|
215658
|
265978
|
23
|
Inyo County
|
3597
|
4399
|
22
|
Sacramento County
|
306196
|
374434
|
22
|
San Joaquin County
|
266341
|
325725
|
22
|
El Dorado County
|
21875
|
26459
|
21
|
Kern County
|
413033
|
499158
|
21
|
Riverside County
|
995257
|
1202295
|
21
|
San Luis Obispo County
|
55973
|
67921
|
21
|
Siskiyou County
|
4615
|
5527
|
20
|
Tuolumne County
|
5918
|
7124
|
20
|
Glenn County
|
10539
|
12541
|
19
|
Plumas County
|
1605
|
1897
|
18
|
Yolo County
|
60953
|
71700
|
18
|
San Bernardino County
|
1001145
|
1170913
|
17
|
Sonoma County
|
120430
|
141438
|
17
|
Alameda County
|
339889
|
393749
|
16
|
Fresno County
|
468070
|
540743
|
16
|
Santa Barbara County
|
181687
|
210584
|
16
|
Sutter County
|
27251
|
31568
|
16
|
Tulare County
|
268065
|
309895
|
16
|
Madera County
|
80992
|
93178
|
15
|
Monterey County
|
230003
|
265321
|
15
|
Colusa County
|
11804
|
13476
|
14
|
San Diego County
|
991348
|
1119629
|
13
|
San Francisco County
|
121774
|
136761
|
12
|
Santa Cruz County
|
84092
|
94299
|
12
|
Kings County
|
77866
|
86607
|
11
|
Napa County
|
44010
|
48829
|
11
|
Ventura County
|
331567
|
365285
|
10
|
Imperial County
|
140271
|
153027
|
9
|
Orange County
|
1012973
|
1086834
|
7
|
San Mateo County
|
182502
|
191386
|
5
|
Del Norte County
|
5093
|
5321
|
4
|
Los Angeles County
|
4687889
|
4804763
|
2
|
Santa Clara County
|
479210
|
487357
|
2
|
Modoc County
|
1342
|
1259
|
-6
|
Mono County
|
3762
|
3507
|
-7
|
#----------------------------
w_change <- w2010[,c(1:2,4)]
w_change$year2020 <- w2020$value
colnames(w_change) <- c("GEOID","County","Y2010","Y2020")
w_change$change <- round( 100 * (w_change$Y2020 - w_change$Y2010)/w_change$Y2010, digits = 0)
w_change <- w_change %>% filter(Y2010 >1000 )%>% arrange(desc(change))
w_change[-1] %>% kbl(caption = "White Population Trends\n, cities with more than 1000 population") %>% kable_styling(latex_options = "center_position")
White Population Trends , cities with more than 1000 population
County
|
Y2010
|
Y2020
|
change
|
Imperial County
|
23927
|
47537
|
99
|
San Benito County
|
21154
|
27230
|
29
|
Tulare County
|
143935
|
186255
|
29
|
Merced County
|
81599
|
104534
|
28
|
Fresno County
|
304522
|
374678
|
23
|
Los Angeles County
|
2728321
|
3259427
|
19
|
Monterey County
|
136435
|
158879
|
16
|
San Bernardino County
|
677598
|
782691
|
16
|
Kern County
|
323794
|
371734
|
15
|
Riverside County
|
869068
|
995627
|
15
|
Kings County
|
53879
|
61226
|
14
|
Madera County
|
57380
|
65248
|
14
|
Santa Barbara County
|
203122
|
224748
|
11
|
Colusa County
|
8524
|
9364
|
10
|
Yuba County
|
42416
|
46590
|
10
|
Placer County
|
265294
|
288586
|
9
|
San Diego County
|
1500047
|
1633129
|
9
|
San Joaquin County
|
245919
|
267339
|
9
|
San Francisco County
|
337451
|
361382
|
7
|
Stanislaus County
|
240423
|
256602
|
7
|
Ventura County
|
400868
|
428677
|
7
|
Yolo County
|
100240
|
107304
|
7
|
Orange County
|
1328499
|
1383257
|
4
|
Sacramento County
|
687166
|
715722
|
4
|
Solano County
|
168628
|
175768
|
4
|
Amador County
|
30325
|
31104
|
3
|
San Luis Obispo County
|
191696
|
198338
|
3
|
Santa Cruz County
|
156397
|
160565
|
3
|
Alameda County
|
514559
|
523836
|
2
|
El Dorado County
|
144689
|
146624
|
1
|
Trinity County
|
11518
|
11627
|
1
|
Contra Costa County
|
500923
|
501697
|
0
|
Glenn County
|
15717
|
15753
|
0
|
Nevada County
|
85477
|
85604
|
0
|
Mendocino County
|
60249
|
59510
|
-1
|
Napa County
|
76967
|
76158
|
-1
|
San Mateo County
|
303609
|
300188
|
-1
|
Santa Clara County
|
626909
|
622617
|
-1
|
Tehama County
|
45603
|
44926
|
-1
|
Lake County
|
47938
|
46858
|
-2
|
Marin County
|
183830
|
179377
|
-2
|
Plumas County
|
17015
|
16608
|
-2
|
Shasta County
|
146044
|
142899
|
-2
|
Sutter County
|
47782
|
46810
|
-2
|
Tuolumne County
|
45325
|
44207
|
-2
|
Mono County
|
9687
|
9349
|
-3
|
Inyo County
|
12296
|
11752
|
-4
|
Sonoma County
|
320027
|
306684
|
-4
|
Calaveras County
|
38074
|
36315
|
-5
|
Sierra County
|
2855
|
2703
|
-5
|
Humboldt County
|
103958
|
98095
|
-6
|
Siskiyou County
|
35683
|
33597
|
-6
|
Del Norte County
|
18513
|
17193
|
-7
|
Lassen County
|
23270
|
21066
|
-9
|
Butte County
|
165416
|
149557
|
-10
|
Modoc County
|
7649
|
6772
|
-11
|
Mariposa County
|
15192
|
13385
|
-12
|
#----------------------------
b_change <- b2010[,c(1:2,4)]
b_change$year2020 <- b2020$value
b_change$change <- round(100 * (b_change$year2020 - b_change$value)/b_change$year2020, digits = 0)
colnames(b_change) <- c("GEOID","County","Y2010","Y2020","Change")
b_change <- b_change %>% filter(Y2010 >1000 )%>% arrange(desc(Change))
b_change[-1] %>% kbl(caption = "Black Population Trends\n, cities with more than 1000 population") %>% kable_styling(latex_options = "center_position")
Black Population Trends , cities with more than 1000 population
County
|
Y2010
|
Y2020
|
Change
|
Placer County
|
4427
|
6890
|
36
|
Yuba County
|
2122
|
3052
|
30
|
Santa Cruz County
|
2304
|
3150
|
27
|
Humboldt County
|
1393
|
1879
|
26
|
Shasta County
|
1438
|
1912
|
25
|
Yolo County
|
4752
|
6164
|
23
|
San Joaquin County
|
48540
|
60351
|
20
|
Orange County
|
44000
|
53842
|
18
|
Stanislaus County
|
13065
|
15913
|
18
|
Tulare County
|
5497
|
6668
|
18
|
El Dorado County
|
1296
|
1537
|
16
|
Riverside County
|
130823
|
156477
|
16
|
Ventura County
|
13082
|
15330
|
15
|
Butte County
|
3133
|
3644
|
14
|
Sutter County
|
1713
|
1982
|
14
|
Sonoma County
|
6769
|
7615
|
11
|
Kern County
|
45377
|
50130
|
9
|
Contra Costa County
|
93604
|
101485
|
8
|
Fresno County
|
45005
|
48707
|
8
|
Sacramento County
|
139949
|
152795
|
8
|
San Bernardino County
|
170700
|
184558
|
8
|
San Diego County
|
146600
|
155813
|
6
|
Santa Clara County
|
42331
|
44966
|
6
|
Solano County
|
58743
|
62157
|
5
|
Merced County
|
8785
|
9158
|
4
|
Santa Barbara County
|
7242
|
7374
|
2
|
Lake County
|
1186
|
1199
|
1
|
Napa County
|
2440
|
2443
|
0
|
San Francisco County
|
46781
|
46725
|
0
|
Los Angeles County
|
815086
|
794364
|
-3
|
Marin County
|
6621
|
6339
|
-4
|
Madera County
|
5009
|
4596
|
-9
|
Tuolumne County
|
1114
|
1009
|
-10
|
San Luis Obispo County
|
5128
|
4610
|
-11
|
Alameda County
|
184126
|
164879
|
-12
|
Kings County
|
10314
|
9023
|
-14
|
Monterey County
|
11300
|
9943
|
-14
|
Imperial County
|
5114
|
4362
|
-17
|
San Mateo County
|
18763
|
15707
|
-19
|
Lassen County
|
2790
|
2277
|
-23
|
racevars <- c(White = "P2_005N",
Black = "P2_006N",
Asian = "P2_008N",
Hispanic = "P2_002N")
ca <- get_decennial(
geography = "county",
variables = racevars,
state = "06",
geometry = TRUE,
summary_var = "P2_001N",
year = 2020
)
## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
ca %>% filter(variable=="Hispanic") %>%
mutate(percent = 100 * (value / summary_value)) %>%
ggplot(aes(fill = percent)) +
geom_sf(color = "white") +
theme_void() +
scale_fill_viridis_c() +
labs(fill = "Hispanic % of population\nCalifornia County\n(2020 Census )")

ca %>% filter(variable=="White") %>%
mutate(percent = 100 * (value / summary_value)) %>%
ggplot(aes(fill = percent)) +
geom_sf(color = "white") +
theme_void() +
scale_fill_viridis_c() +
labs(fill = "White % of population\nCalifornia county\n(2020 Census )")

ca %>% filter(variable=="Asian") %>%
mutate(percent = 100 * (value / summary_value)) %>%
ggplot(aes(fill = percent)) +
geom_sf(color = "white") +
theme_void() +
scale_fill_viridis_c() +
labs(fill = "Asian % of population\nCalifornia County\n(2020 Census)")

racevars <- c(White = "P2_005N",
Black = "P2_006N",
Asian = "P2_008N",
Hispanic = "P2_002N")
oc <- get_decennial(
geography = "tract",
variables = racevars,
state = "06",
county = "059",
geometry = TRUE,
summary_var = "P2_001N",
year = 2020
)
## Getting data from the 2020 decennial Census
## Using the PL 94-171 Redistricting Data summary file
oc %>% filter(variable=="Hispanic") %>%
mutate(percent = 100 * (value / summary_value)) %>%
ggplot(aes(fill = percent)) +
geom_sf(color = "white") +
theme_void() +
scale_fill_viridis_c() +
labs(fill = "Hispanic % of population\nOrange County, CA\n(2020 Census tracts)")

oc %>% filter(variable=="White") %>%
mutate(percent = 100 * (value / summary_value)) %>%
ggplot(aes(fill = percent)) +
geom_sf(color = "white") +
theme_void() +
scale_fill_viridis_c() +
labs(fill = "White % of population\nOrange County, CA\n(2020 Census tracts)")

oc %>% filter(variable=="Asian") %>%
mutate(percent = 100 * (value / summary_value)) %>%
ggplot(aes(fill = percent)) +
geom_sf(color = "white") +
theme_void() +
scale_fill_viridis_c() +
labs(fill = "Asian % of population\nOrange County, CA\n(2020 Census tracts)")
