library(readxl)
library(tidyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
IVAE_03_22 <- read_excel("C:/Users/lupita nieto/Downloads/IVAE_03_22.xlsx",
skip = 6, n_max = 10)
## New names:
## ⢠`86.73` -> `86.73...2`
## ⢠`86.73` -> `86.73...27`
## ⢠`100.64` -> `100.64...72`
## ⢠`100.64` -> `100.64...82`
## ⢠`110.71` -> `110.71...91`
## ⢠`110.71` -> `110.71...144`
data.ivae<-pivot_longer (data = IVAE_03_22[1,],names_to = "vars",cols = 2:160,values_to = "indice") %>% select("indice")
data.ivae.ts<- data.ivae %>% ts(start = c(2009,1),frequency = 12)
data.ivae.ts %>%
autoplot(main ="IVAE ENE 2009- MAR 2022",
xlab="AƱos/Meses",
ylab="Indice")

Descomposicion Aditiva
library(forecast)
#Descomposición aditiva IVAE
descompocicion_aditiva<-decompose(data.ivae.ts,type = "additive")
#grÔfico de la descompocición
autoplot(descompocicion_aditiva, main="Descomposición de la serie aditiva")

#grƔfico de la serie original y el componente tendencia ciclo
Yt<-descompocicion_aditiva$x
TC<-descompocicion_aditiva$trend
autoplot(Yt,
main = "Descomposición IVAE ENE 2009 - MAR 2022")+
autolayer(TC)
## Warning: Removed 12 row(s) containing missing values (geom_path).

library(tidyr)
library(dplyr)
library(forecast)
data.ivae_agricultura<-pivot_longer(data = IVAE_03_22[2,],names_to = "vars",cols = 2:160,values_to = "indice") %>% select("indice")
data.ivae.ts_agricultura<- data.ivae_agricultura %>% ts(start = c(2009,1),frequency = 12)
data.ivae.ts_agricultura %>%
autoplot(main ="Agricultura, GanaderĆa, Silvicultura y Pesca ENE 2009 - MAR 2022",
xlab="AƱos/Meses",
ylab="Indice")

library(forecast)
#Descomposición aditiva
descompocicion_aditiva_agricultura<-decompose(data.ivae.ts,type = "additive")
#grÔfico de la descompocición
autoplot(descompocicion_aditiva_agricultura, main="Agricultura, GanaderĆa, Silvicultura y Pesca ENE 2009 - MAR 2022")

#grƔfico de la serie original y el componente tendencia ciclo
Yt_agricultura<-descompocicion_aditiva_agricultura$x
TC_agricultura<-descompocicion_aditiva_agricultura$trend
autoplot(Yt_agricultura,
main = "Agricultura, GanaderĆa, Silvicultura y Pesca ENE 2009 - MAR 2022")+
autolayer(TC_agricultura)
## Warning: Removed 12 row(s) containing missing values (geom_path).

Indice De Produccion Industrial
library(tidyr)
library(dplyr)
library(forecast)
data.ivae_IPI<-pivot_longer(data = IVAE_03_22[3,],names_to = "vars",cols = 2:160,values_to = "indice") %>% select("indice")
data.ivae.ts_IPI<- data.ivae_IPI %>% ts(start = c(2009,1),frequency = 12)
data.ivae.ts_IPI %>%
autoplot(main ="Indice de Produccion Industrial ENE 2009 - MAR 2022",
xlab="AƱos/Meses",
ylab="Indice")

library(forecast)
#Descomposición aditiva
descompocicion_aditiva_IPI<-decompose(data.ivae.ts_IPI,type = "additive")
#grÔfico de la descompocición
autoplot(descompocicion_aditiva_IPI, main="Indice de Produccion Industrial")

#grƔfico de la serie original y el componente tendencia ciclo
Yt_IPI<-descompocicion_aditiva_IPI$x
TC_IPI<-descompocicion_aditiva_IPI$trend
autoplot(Yt_IPI,
main = "Indice de Produccion Industrial 2009- MAR 2022")+
autolayer(TC_IPI)
## Warning: Removed 12 row(s) containing missing values (geom_path).

Descomposicion De Series Temporales
library(readxl)
library(tidyr)
library(dplyr)
library(forecast)
data.ivae_seriet<-pivot_longer(data = IVAE_03_22[4,],names_to = "vars",cols = 2:160,values_to = "indice") %>% select("indice")
data.ivae.ts_seriet<- data.ivae %>% ts(start = c(2009,1),frequency = 12)
data.ivae.ts_seriet %>%
autoplot(main ="Construcción ENE 2009- MAR 2022",
xlab="AƱos/Meses",
ylab="Indice")

library(forecast)
#Descomposición aditiva
descompocicion_aditiva_seriet<-decompose(data.ivae.ts_seriet,type = "additive")
#grÔfico de la descompocición
autoplot(descompocicion_aditiva_seriet, main="Indice de producción Industrial (IPI) ENE 2009- MAR 2022")

#grƔfico de la serie original y el componente tendencia ciclo
Yt_seriet<-descompocicion_aditiva_seriet$x
TC_seriet<-descompocicion_aditiva_seriet$trend
autoplot(Yt_seriet,
main = "Indice de producción Industrial (IPI) ENE 2009- MAR 2022")+
autolayer(TC_seriet)
## Warning: Removed 12 row(s) containing missing values (geom_path).

Comercio, Actividades, Transporte y Almacenamiento
library(readxl)
library(tidyr)
library(dplyr)
library(forecast)
data.ivae_cata<-pivot_longer(data = IVAE_03_22[5,],names_to = "vars",cols = 2:160,values_to = "indice") %>% select("indice")
data.ivae.ts_cata<- data.ivae %>% ts(start = c(2009,1),frequency = 12)
data.ivae.ts_cata %>%
autoplot(main ="Comercio, Actividades, Transporte y Almacenamiento ENE 2009- MAR 2022",
xlab="AƱos/Meses",
ylab="Indice")

library(forecast)
#Descomposición aditiva
descompocicion_aditiva_cata<-decompose(data.ivae.ts_cata,type = "additive")
#grÔfico de la descompocición
autoplot(descompocicion_aditiva_cata, main="Indice de Produccion Industrial")

#grƔfico de la serie original y el componente tendencia ciclo
Yt_cata<-descompocicion_aditiva_cata$x
TC_cata<-descompocicion_aditiva_cata$trend
autoplot(Yt_cata,
main = "Comercio, Actividades, Transporte y Almacenamiento ENE 2009- MAR 2022")+
autolayer(TC_cata)
## Warning: Removed 12 row(s) containing missing values (geom_path).

library(readxl)
library(tidyr)
library(dplyr)
library(forecast)
data.ivae__ic<-pivot_longer(data = IVAE_03_22[6,],names_to = "vars",cols = 2:160,values_to = "indice") %>% select("indice")
data.ivae.ts_ic<- data.ivae %>% ts(start = c(2009,1),frequency = 12)
data.ivae.ts_ic %>%
autoplot(main ="Comercio, Actividades, Transporte y Almacenamiento ENE 2009- MAR 2022",
xlab="AƱos/Meses",
ylab="Indice")
