setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Colaboraciones/Laura/BD Estadística SGR Santander/data")
datos5<-read.table("veinteboy.csv", header=T, sep=',')
datos5$gen<-as.factor(datos5$gen)
datos5$bloque<-as.factor(datos5$bloque)
datos5$semana<-as.factor(datos5$semana)
attach(datos5)
library(ggplot2)
library(emmeans)
#Gráfica altura
ggplot(datos5, aes(semana, alt, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Altura") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'

# Gráfica diámetro patrón
ggplot(datos5, aes(semana, patrodia, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro del patrón") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )  
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 68 rows containing non-finite values (stat_smooth).

#Gráfica diámetro injerto
ggplot(datos5, aes(semana, injedia, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Diámetro del injerto") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  ) 
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 68 rows containing non-finite values (stat_smooth).

# Gráfica área copa
ggplot(datos5, aes(semana, coparea, group = gen, colour = gen)) +
  geom_smooth(method="lm", se=F) +
  theme_classic() +
  xlab ("Semana") +
  ylab ("Área de la copa") +
  labs(colour = "Genotipo") +
  theme_linedraw() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 16),
    strip.text = element_text(size = 16),
    axis.title.y = element_text(size = 16),
    axis.title.x = element_text(size = 16),
    axis.text.x = element_text(size = 14),
    axis.text.y = element_text(size = 14)
  )
## `geom_smooth()` using formula 'y ~ x'
## Warning: Removed 68 rows containing non-finite values (stat_smooth).

# Anova general
aov.alt<-aov(alt~semana+gen+bloque,na.action=na.exclude)
aov.patrodia<-aov(patrodia~semana+gen+bloque, na.action=na.exclude)
aov.injedia<-aov(injedia~semana+gen+bloque, na.action=na.exclude)
aov.coparea<-aov(coparea~semana+gen+bloque, na.action=na.exclude)

#Análisis para altura
library(nlme)
fit.compsym.alt <- gls(alt ~ semana+gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.alt <- gls(alt ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.alt <- gls(alt ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.alt, fit.ar1.alt, fit.ar1het.alt) #compares the models
##                 Model df      AIC      BIC    logLik   Test  L.Ratio p-value
## fit.compsym.alt     1 23 2156.921 2276.803 -1055.460                        
## fit.ar1.alt         2 23 2091.477 2211.359 -1022.738                        
## fit.ar1het.alt      3 25 2094.943 2225.250 -1022.471 2 vs 3 0.533605  0.7658
anova(fit.ar1.alt)
## Denom. DF: 1356 
##             numDF  F-value p-value
## (Intercept)     1 8866.626  <.0001
## semana          2   37.541  <.0001
## gen            16   16.271  <.0001
## bloque          2    7.103   9e-04
anova(fit.ar1het.alt)
## Denom. DF: 1356 
##             numDF  F-value p-value
## (Intercept)     1 8812.211  <.0001
## semana          2   37.358  <.0001
## gen            16   16.200  <.0001
## bloque          2    7.166   8e-04
# Análisis para diámetro del patrón
fit.compsym.patrodia <- gls(patrodia ~ semana+gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.patrodia <- gls(patrodia ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.patrodia <- gls(patrodia ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.patrodia, fit.ar1.patrodia, fit.ar1het.patrodia) #compares the models
##                      Model df      AIC      BIC    logLik   Test   L.Ratio
## fit.compsym.patrodia     1 23 4234.514 4353.213 -2094.257                 
## fit.ar1.patrodia         2 23 4174.501 4293.200 -2064.251                 
## fit.ar1het.patrodia      3 25 4178.349 4307.371 -2064.175 2 vs 3 0.1514893
##                      p-value
## fit.compsym.patrodia        
## fit.ar1.patrodia            
## fit.ar1het.patrodia   0.9271
anova(fit.ar1.patrodia)
## Denom. DF: 1288 
##             numDF   F-value p-value
## (Intercept)     1 14720.799  <.0001
## semana          2    49.763  <.0001
## gen            16     6.271  <.0001
## bloque          2     0.623  0.5364
anova(fit.ar1het.patrodia)
## Denom. DF: 1288 
##             numDF   F-value p-value
## (Intercept)     1 14748.391  <.0001
## semana          2    49.291  <.0001
## gen            16     6.297  <.0001
## bloque          2     0.625  0.5352
# Análisis para diámetro del injerto
fit.compsym.injedia <- gls(injedia ~ semana+gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.injedia <- gls(injedia ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.injedia <- gls(injedia ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.injedia, fit.ar1.injedia, fit.ar1het.injedia) #compares the models
##                     Model df      AIC      BIC    logLik   Test  L.Ratio
## fit.compsym.injedia     1 23 3706.751 3825.451 -1830.376                
## fit.ar1.injedia         2 23 3647.183 3765.883 -1800.592                
## fit.ar1het.injedia      3 25 3623.453 3752.474 -1786.726 2 vs 3 27.73022
##                     p-value
## fit.compsym.injedia        
## fit.ar1.injedia            
## fit.ar1het.injedia   <.0001
anova(fit.ar1.injedia)
## Denom. DF: 1288 
##             numDF  F-value p-value
## (Intercept)     1 8485.612  <.0001
## semana          2   21.752  <.0001
## gen            16    9.624  <.0001
## bloque          2   10.472  <.0001
anova(fit.ar1het.injedia)
## Denom. DF: 1288 
##             numDF  F-value p-value
## (Intercept)     1 9206.999  <.0001
## semana          2   21.507  <.0001
## gen            16   10.663  <.0001
## bloque          2   10.304  <.0001
# Análisis para área de la copa
fit.compsym.coparea <- gls(coparea ~ semana+gen+bloque, data=datos5, corr=corCompSymm(, form= ~ 1 | gen),na.action=na.exclude)
fit.ar1.coparea <- gls(coparea ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), na.action=na.exclude)
fit.ar1het.coparea <- gls(coparea ~ semana+gen+bloque, data=datos5, corr=corAR1(, form= ~ 1 | gen), weights=varIdent(form = ~ 1 | semana), na.action=na.exclude)
anova(fit.compsym.coparea, fit.ar1.coparea, fit.ar1het.coparea) #compares the models
##                     Model df      AIC      BIC    logLik   Test  L.Ratio
## fit.compsym.coparea     1 23 4249.360 4368.060 -2101.680                
## fit.ar1.coparea         2 23 4240.739 4359.438 -2097.369                
## fit.ar1het.coparea      3 25 3780.911 3909.932 -1865.455 2 vs 3 463.8283
##                     p-value
## fit.compsym.coparea        
## fit.ar1.coparea            
## fit.ar1het.coparea   <.0001
anova(fit.ar1.coparea)
## Denom. DF: 1288 
##             numDF   F-value p-value
## (Intercept)     1 1630.9487  <.0001
## semana          2   36.4956  <.0001
## gen            16    7.8719  <.0001
## bloque          2   10.0542  <.0001
anova(fit.ar1het.coparea)
## Denom. DF: 1288 
##             numDF   F-value p-value
## (Intercept)     1 2162.1154  <.0001
## semana          2   71.4173  <.0001
## gen            16    9.9428  <.0001
## bloque          2   12.6033  <.0001
#Tukey altura
library(multcompView)
gen.tuk.alt<-TukeyHSD(aov.alt, "gen", ordered = TRUE)
#Tukey diámetro del patrón
gen.tuk.patrodia<-TukeyHSD(aov.patrodia, "gen", ordered = TRUE)
#Tukey diámetro del injerto
gen.tuk.injedia<-TukeyHSD(aov.injedia, "gen", ordered = TRUE)
#Tukey área de la copa
gen.tuk.coparea<-TukeyHSD(aov.coparea, "gen", ordered = TRUE)

#Etiquetas Tukey altura
#Genotipos
generate_label_df_gen_alt <- function(gen.tuk.alt, variable){
  Tukey.levels <- gen.tuk.alt[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.alt <- generate_label_df_gen_alt(gen.tuk.alt, "gen")
labels.gen.alt
##       Letters treatment
## TCS01       d     TCS01
## TCS02       a     TCS02
## TCS03       a     TCS03
## TCS04    abcd     TCS04
## TCS05      ab     TCS05
## TCS08       f     TCS08
## TCS10      ab     TCS10
## TCS11      ab     TCS11
## TCS12     bcd     TCS12
## TCS20       d     TCS20
## TCS43      ab     TCS43
## TCS44     abc     TCS44
## TCS45      cd     TCS45
## TCS46       e     TCS46
## TCS47     bcd     TCS47
## TCS48      cd     TCS48
## TCS49     abc     TCS49
#Etiquetas Tukey diámetro del patrón
#Genotipos
generate_label_df_gen_patrodia <- function(gen.tuk.patrodia, variable){
  Tukey.levels <- gen.tuk.patrodia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.patrodia <- generate_label_df_gen_patrodia(gen.tuk.patrodia, "gen")
labels.gen.patrodia
##       Letters treatment
## TCS01     def     TCS01
## TCS02    bcde     TCS02
## TCS03       a     TCS03
## TCS04     def     TCS04
## TCS05     bde     TCS05
## TCS08      ac     TCS08
## TCS10    abcd     TCS10
## TCS11     abc     TCS11
## TCS12     def     TCS12
## TCS20      ef     TCS20
## TCS43    bcde     TCS43
## TCS44     abc     TCS44
## TCS45     def     TCS45
## TCS46       f     TCS46
## TCS47     bde     TCS47
## TCS48     def     TCS48
## TCS49     def     TCS49
#Etiquetas Tukey diámetro del injerto
#Genotipos
generate_label_df_gen_injedia <- function(gen.tuk.injedia, variable){
  Tukey.levels <- gen.tuk.injedia[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.injedia <- generate_label_df_gen_injedia(gen.tuk.injedia, "gen")
labels.gen.injedia
##       Letters treatment
## TCS01      fg     TCS01
## TCS02     acd     TCS02
## TCS03      ab     TCS03
## TCS04    cdef     TCS04
## TCS05      ac     TCS05
## TCS08       b     TCS08
## TCS10    acde     TCS10
## TCS11      ac     TCS11
## TCS12    defg     TCS12
## TCS20     efg     TCS20
## TCS43    acde     TCS43
## TCS44    acde     TCS44
## TCS45    defg     TCS45
## TCS46       g     TCS46
## TCS47    cdef     TCS47
## TCS48    cdef     TCS48
## TCS49    defg     TCS49
#Etiquetas Tukey área de la copa
#Genotipos
generate_label_df_gen_coparea <- function(gen.tuk.coparea, variable){
  Tukey.levels <- gen.tuk.coparea[[variable]][,4]
  Tukey.labels <- data.frame(multcompLetters(Tukey.levels)['Letters'])
  Tukey.labels$treatment=rownames(Tukey.labels)
  Tukey.labels=Tukey.labels[order(Tukey.labels$treatment) , ]
  return(Tukey.labels)
}
labels.gen.coparea <- generate_label_df_gen_coparea(gen.tuk.coparea, "gen")
labels.gen.coparea
##       Letters treatment
## TCS01      cd     TCS01
## TCS02     acd     TCS02
## TCS03     abc     TCS03
## TCS04     acd     TCS04
## TCS05      ab     TCS05
## TCS08       b     TCS08
## TCS10      ac     TCS10
## TCS11     acd     TCS11
## TCS12      de     TCS12
## TCS20     cde     TCS20
## TCS43      ab     TCS43
## TCS44      ac     TCS44
## TCS45     acd     TCS45
## TCS46       e     TCS46
## TCS47     acd     TCS47
## TCS48     acd     TCS48
## TCS49     acd     TCS49
## Gráficas contrastes de medias Altura
#Gen
contrast <- emmeans(aov.alt, ~gen)
plot(contrast, comparisons = TRUE, xlab ="Altura")

medias.gen <- emmeans(aov.alt, pairwise ~ gen)
medias.gen
## $emmeans
##  gen   emmean     SE   df lower.CL upper.CL
##  TCS01  1.908 0.0565 1356    1.797    2.018
##  TCS02  1.401 0.0565 1356    1.290    1.512
##  TCS03  1.408 0.0565 1356    1.297    1.519
##  TCS04  1.631 0.0565 1356    1.520    1.742
##  TCS05  1.503 0.0537 1356    1.397    1.608
##  TCS08  0.872 0.0565 1356    0.762    0.983
##  TCS10  1.508 0.0565 1356    1.397    1.619
##  TCS11  1.515 0.0565 1356    1.404    1.626
##  TCS12  1.732 0.0565 1356    1.621    1.843
##  TCS20  1.895 0.0565 1356    1.784    2.006
##  TCS43  1.497 0.0565 1356    1.386    1.608
##  TCS44  1.542 0.0565 1356    1.431    1.653
##  TCS45  1.811 0.0600 1356    1.693    1.929
##  TCS46  2.173 0.0537 1356    2.068    2.279
##  TCS47  1.738 0.0565 1356    1.627    1.849
##  TCS48  1.825 0.0600 1356    1.707    1.943
##  TCS49  1.546 0.0565 1356    1.435    1.657
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate     SE   df t.ratio p.value
##  TCS01 - TCS02  0.50679 0.0799 1356   6.343  <.0001
##  TCS01 - TCS03  0.49938 0.0799 1356   6.250  <.0001
##  TCS01 - TCS04  0.27667 0.0799 1356   3.463  0.0504
##  TCS01 - TCS05  0.40497 0.0779 1356   5.197  <.0001
##  TCS01 - TCS08  1.03506 0.0799 1356  12.955  <.0001
##  TCS01 - TCS10  0.39951 0.0799 1356   5.000  0.0001
##  TCS01 - TCS11  0.39247 0.0799 1356   4.912  0.0001
##  TCS01 - TCS12  0.17580 0.0799 1356   2.200  0.7265
##  TCS01 - TCS20  0.01272 0.0799 1356   0.159  1.0000
##  TCS01 - TCS43  0.41025 0.0799 1356   5.135  <.0001
##  TCS01 - TCS44  0.36531 0.0799 1356   4.572  0.0007
##  TCS01 - TCS45  0.09656 0.0824 1356   1.171  0.9992
##  TCS01 - TCS46 -0.26580 0.0779 1356  -3.411  0.0593
##  TCS01 - TCS47  0.16951 0.0799 1356   2.121  0.7787
##  TCS01 - TCS48  0.08267 0.0824 1356   1.003  0.9999
##  TCS01 - TCS49  0.36173 0.0799 1356   4.527  0.0008
##  TCS02 - TCS03 -0.00741 0.0799 1356  -0.093  1.0000
##  TCS02 - TCS04 -0.23012 0.0799 1356  -2.880  0.2457
##  TCS02 - TCS05 -0.10182 0.0779 1356  -1.307  0.9971
##  TCS02 - TCS08  0.52827 0.0799 1356   6.612  <.0001
##  TCS02 - TCS10 -0.10728 0.0799 1356  -1.343  0.9961
##  TCS02 - TCS11 -0.11432 0.0799 1356  -1.431  0.9922
##  TCS02 - TCS12 -0.33099 0.0799 1356  -4.143  0.0042
##  TCS02 - TCS20 -0.49407 0.0799 1356  -6.184  <.0001
##  TCS02 - TCS43 -0.09654 0.0799 1356  -1.208  0.9989
##  TCS02 - TCS44 -0.14148 0.0799 1356  -1.771  0.9402
##  TCS02 - TCS45 -0.41023 0.0824 1356  -4.977  0.0001
##  TCS02 - TCS46 -0.77259 0.0779 1356  -9.915  <.0001
##  TCS02 - TCS47 -0.33728 0.0799 1356  -4.221  0.0031
##  TCS02 - TCS48 -0.42412 0.0824 1356  -5.145  <.0001
##  TCS02 - TCS49 -0.14506 0.0799 1356  -1.816  0.9265
##  TCS03 - TCS04 -0.22272 0.0799 1356  -2.787  0.2999
##  TCS03 - TCS05 -0.09441 0.0779 1356  -1.212  0.9988
##  TCS03 - TCS08  0.53568 0.0799 1356   6.704  <.0001
##  TCS03 - TCS10 -0.09988 0.0799 1356  -1.250  0.9983
##  TCS03 - TCS11 -0.10691 0.0799 1356  -1.338  0.9962
##  TCS03 - TCS12 -0.32358 0.0799 1356  -4.050  0.0061
##  TCS03 - TCS20 -0.48667 0.0799 1356  -6.091  <.0001
##  TCS03 - TCS43 -0.08914 0.0799 1356  -1.116  0.9996
##  TCS03 - TCS44 -0.13407 0.0799 1356  -1.678  0.9625
##  TCS03 - TCS45 -0.40282 0.0824 1356  -4.887  0.0001
##  TCS03 - TCS46 -0.76519 0.0779 1356  -9.820  <.0001
##  TCS03 - TCS47 -0.32988 0.0799 1356  -4.129  0.0045
##  TCS03 - TCS48 -0.41671 0.0824 1356  -5.055  0.0001
##  TCS03 - TCS49 -0.13765 0.0799 1356  -1.723  0.9527
##  TCS04 - TCS05  0.12831 0.0779 1356   1.647  0.9684
##  TCS04 - TCS08  0.75840 0.0799 1356   9.492  <.0001
##  TCS04 - TCS10  0.12284 0.0799 1356   1.537  0.9836
##  TCS04 - TCS11  0.11580 0.0799 1356   1.449  0.9910
##  TCS04 - TCS12 -0.10086 0.0799 1356  -1.262  0.9981
##  TCS04 - TCS20 -0.26395 0.0799 1356  -3.304  0.0820
##  TCS04 - TCS43  0.13358 0.0799 1356   1.672  0.9637
##  TCS04 - TCS44  0.08864 0.0799 1356   1.109  0.9996
##  TCS04 - TCS45 -0.18011 0.0824 1356  -2.185  0.7370
##  TCS04 - TCS46 -0.54247 0.0779 1356  -6.961  <.0001
##  TCS04 - TCS47 -0.10716 0.0799 1356  -1.341  0.9961
##  TCS04 - TCS48 -0.19399 0.0824 1356  -2.353  0.6145
##  TCS04 - TCS49  0.08506 0.0799 1356   1.065  0.9998
##  TCS05 - TCS08  0.63009 0.0779 1356   8.086  <.0001
##  TCS05 - TCS10 -0.00547 0.0779 1356  -0.070  1.0000
##  TCS05 - TCS11 -0.01250 0.0779 1356  -0.160  1.0000
##  TCS05 - TCS12 -0.22917 0.0779 1356  -2.941  0.2139
##  TCS05 - TCS20 -0.39226 0.0779 1356  -5.034  0.0001
##  TCS05 - TCS43  0.00527 0.0779 1356   0.068  1.0000
##  TCS05 - TCS44 -0.03966 0.0779 1356  -0.509  1.0000
##  TCS05 - TCS45 -0.30841 0.0806 1356  -3.825  0.0145
##  TCS05 - TCS46 -0.67078 0.0758 1356  -8.849  <.0001
##  TCS05 - TCS47 -0.23547 0.0779 1356  -3.022  0.1761
##  TCS05 - TCS48 -0.32230 0.0806 1356  -3.997  0.0076
##  TCS05 - TCS49 -0.04324 0.0779 1356  -0.555  1.0000
##  TCS08 - TCS10 -0.63556 0.0799 1356  -7.954  <.0001
##  TCS08 - TCS11 -0.64259 0.0799 1356  -8.043  <.0001
##  TCS08 - TCS12 -0.85926 0.0799 1356 -10.754  <.0001
##  TCS08 - TCS20 -1.02235 0.0799 1356 -12.795  <.0001
##  TCS08 - TCS43 -0.62481 0.0799 1356  -7.820  <.0001
##  TCS08 - TCS44 -0.66975 0.0799 1356  -8.382  <.0001
##  TCS08 - TCS45 -0.93850 0.0824 1356 -11.385  <.0001
##  TCS08 - TCS46 -1.30087 0.0779 1356 -16.694  <.0001
##  TCS08 - TCS47 -0.86556 0.0799 1356 -10.833  <.0001
##  TCS08 - TCS48 -0.95239 0.0824 1356 -11.554  <.0001
##  TCS08 - TCS49 -0.67333 0.0799 1356  -8.427  <.0001
##  TCS10 - TCS11 -0.00704 0.0799 1356  -0.088  1.0000
##  TCS10 - TCS12 -0.22370 0.0799 1356  -2.800  0.2923
##  TCS10 - TCS20 -0.38679 0.0799 1356  -4.841  0.0002
##  TCS10 - TCS43  0.01074 0.0799 1356   0.134  1.0000
##  TCS10 - TCS44 -0.03420 0.0799 1356  -0.428  1.0000
##  TCS10 - TCS45 -0.30294 0.0824 1356  -3.675  0.0248
##  TCS10 - TCS46 -0.66531 0.0779 1356  -8.538  <.0001
##  TCS10 - TCS47 -0.23000 0.0799 1356  -2.879  0.2466
##  TCS10 - TCS48 -0.31683 0.0824 1356  -3.844  0.0135
##  TCS10 - TCS49 -0.03778 0.0799 1356  -0.473  1.0000
##  TCS11 - TCS12 -0.21667 0.0799 1356  -2.712  0.3487
##  TCS11 - TCS20 -0.37975 0.0799 1356  -4.753  0.0003
##  TCS11 - TCS43  0.01778 0.0799 1356   0.223  1.0000
##  TCS11 - TCS44 -0.02716 0.0799 1356  -0.340  1.0000
##  TCS11 - TCS45 -0.29591 0.0824 1356  -3.590  0.0332
##  TCS11 - TCS46 -0.65827 0.0779 1356  -8.448  <.0001
##  TCS11 - TCS47 -0.22296 0.0799 1356  -2.791  0.2980
##  TCS11 - TCS48 -0.30980 0.0824 1356  -3.758  0.0185
##  TCS11 - TCS49 -0.03074 0.0799 1356  -0.385  1.0000
##  TCS12 - TCS20 -0.16309 0.0799 1356  -2.041  0.8266
##  TCS12 - TCS43  0.23444 0.0799 1356   2.934  0.2173
##  TCS12 - TCS44  0.18951 0.0799 1356   2.372  0.6004
##  TCS12 - TCS45 -0.07924 0.0824 1356  -0.961  0.9999
##  TCS12 - TCS46 -0.44161 0.0779 1356  -5.667  <.0001
##  TCS12 - TCS47 -0.00630 0.0799 1356  -0.079  1.0000
##  TCS12 - TCS48 -0.09313 0.0824 1356  -1.130  0.9995
##  TCS12 - TCS49  0.18593 0.0799 1356   2.327  0.6345
##  TCS20 - TCS43  0.39753 0.0799 1356   4.975  0.0001
##  TCS20 - TCS44  0.35259 0.0799 1356   4.413  0.0013
##  TCS20 - TCS45  0.08385 0.0824 1356   1.017  0.9999
##  TCS20 - TCS46 -0.27852 0.0779 1356  -3.574  0.0350
##  TCS20 - TCS47  0.15679 0.0799 1356   1.962  0.8675
##  TCS20 - TCS48  0.06996 0.0824 1356   0.849  1.0000
##  TCS20 - TCS49  0.34901 0.0799 1356   4.368  0.0016
##  TCS43 - TCS44 -0.04494 0.0799 1356  -0.562  1.0000
##  TCS43 - TCS45 -0.31369 0.0824 1356  -3.805  0.0156
##  TCS43 - TCS46 -0.67605 0.0779 1356  -8.676  <.0001
##  TCS43 - TCS47 -0.24074 0.0799 1356  -3.013  0.1799
##  TCS43 - TCS48 -0.32757 0.0824 1356  -3.974  0.0083
##  TCS43 - TCS49 -0.04852 0.0799 1356  -0.607  1.0000
##  TCS44 - TCS45 -0.26875 0.0824 1356  -3.260  0.0930
##  TCS44 - TCS46 -0.63111 0.0779 1356  -8.099  <.0001
##  TCS44 - TCS47 -0.19580 0.0799 1356  -2.451  0.5399
##  TCS44 - TCS48 -0.28264 0.0824 1356  -3.429  0.0561
##  TCS44 - TCS49 -0.00358 0.0799 1356  -0.045  1.0000
##  TCS45 - TCS46 -0.36237 0.0806 1356  -4.494  0.0009
##  TCS45 - TCS47  0.07294 0.0824 1356   0.885  1.0000
##  TCS45 - TCS48 -0.01389 0.0847 1356  -0.164  1.0000
##  TCS45 - TCS49  0.26517 0.0824 1356   3.217  0.1052
##  TCS46 - TCS47  0.43531 0.0779 1356   5.586  <.0001
##  TCS46 - TCS48  0.34848 0.0806 1356   4.322  0.0020
##  TCS46 - TCS49  0.62753 0.0779 1356   8.053  <.0001
##  TCS47 - TCS48 -0.08683 0.0824 1356  -1.053  0.9998
##  TCS47 - TCS49  0.19222 0.0799 1356   2.406  0.5744
##  TCS48 - TCS49  0.27906 0.0824 1356   3.385  0.0641
## 
## Results are averaged over the levels of: semana, bloque 
## P value adjustment: tukey method for comparing a family of 17 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean     SE   df lower.CL upper.CL .group 
##  TCS46  2.173 0.0537 1356    2.068    2.279  A     
##  TCS01  1.908 0.0565 1356    1.797    2.018  AB    
##  TCS20  1.895 0.0565 1356    1.784    2.006   B    
##  TCS48  1.825 0.0600 1356    1.707    1.943   BC   
##  TCS45  1.811 0.0600 1356    1.693    1.929   BC   
##  TCS47  1.738 0.0565 1356    1.627    1.849   BCD  
##  TCS12  1.732 0.0565 1356    1.621    1.843   BCD  
##  TCS04  1.631 0.0565 1356    1.520    1.742   BCDE 
##  TCS49  1.546 0.0565 1356    1.435    1.657    CDE 
##  TCS44  1.542 0.0565 1356    1.431    1.653    CDE 
##  TCS11  1.515 0.0565 1356    1.404    1.626     DE 
##  TCS10  1.508 0.0565 1356    1.397    1.619     DE 
##  TCS05  1.503 0.0537 1356    1.397    1.608     DE 
##  TCS43  1.497 0.0565 1356    1.386    1.608     DE 
##  TCS03  1.408 0.0565 1356    1.297    1.519      E 
##  TCS02  1.401 0.0565 1356    1.290    1.512      E 
##  TCS08  0.872 0.0565 1356    0.762    0.983       F
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 17 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias diámetro del patrón
#Gen
contrast <- emmeans(aov.patrodia, ~gen)
plot(contrast, comparisons = TRUE, xlab ="Diámetro del patrón")

medias.gen <- emmeans(aov.patrodia, pairwise ~ gen)
medias.gen
## $emmeans
##  gen   emmean    SE   df lower.CL upper.CL
##  TCS01   5.23 0.132 1288     4.98     5.49
##  TCS02   4.91 0.133 1288     4.65     5.17
##  TCS03   4.24 0.134 1288     3.98     4.50
##  TCS04   5.14 0.133 1288     4.87     5.40
##  TCS05   4.97 0.129 1288     4.72     5.22
##  TCS08   4.19 0.163 1288     3.87     4.51
##  TCS10   4.75 0.135 1288     4.48     5.01
##  TCS11   4.34 0.134 1288     4.07     4.60
##  TCS12   5.08 0.133 1288     4.82     5.34
##  TCS20   5.42 0.133 1288     5.16     5.68
##  TCS43   4.92 0.133 1288     4.66     5.18
##  TCS44   4.37 0.133 1288     4.11     4.63
##  TCS45   5.31 0.141 1288     5.03     5.59
##  TCS46   5.64 0.125 1288     5.40     5.89
##  TCS47   4.98 0.134 1288     4.72     5.25
##  TCS48   5.25 0.140 1288     4.97     5.52
##  TCS49   5.20 0.142 1288     4.92     5.48
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate    SE   df t.ratio p.value
##  TCS01 - TCS02  0.32223 0.187 1288   1.725  0.9521
##  TCS01 - TCS03  0.99264 0.188 1288   5.280  <.0001
##  TCS01 - TCS04  0.09680 0.187 1288   0.517  1.0000
##  TCS01 - TCS05  0.26198 0.184 1288   1.422  0.9927
##  TCS01 - TCS08  1.04685 0.210 1288   4.994  0.0001
##  TCS01 - TCS10  0.48491 0.189 1288   2.571  0.4489
##  TCS01 - TCS11  0.89509 0.188 1288   4.761  0.0003
##  TCS01 - TCS12  0.15527 0.187 1288   0.829  1.0000
##  TCS01 - TCS20 -0.18925 0.187 1288  -1.010  0.9999
##  TCS01 - TCS43  0.31620 0.187 1288   1.687  0.9606
##  TCS01 - TCS44  0.86252 0.187 1288   4.617  0.0005
##  TCS01 - TCS45 -0.07580 0.193 1288  -0.393  1.0000
##  TCS01 - TCS46 -0.40766 0.182 1288  -2.244  0.6953
##  TCS01 - TCS47  0.25044 0.188 1288   1.332  0.9964
##  TCS01 - TCS48 -0.01473 0.192 1288  -0.077  1.0000
##  TCS01 - TCS49  0.03116 0.193 1288   0.161  1.0000
##  TCS02 - TCS03  0.67041 0.189 1288   3.555  0.0374
##  TCS02 - TCS04 -0.22543 0.188 1288  -1.199  0.9989
##  TCS02 - TCS05 -0.06025 0.185 1288  -0.326  1.0000
##  TCS02 - TCS08  0.72462 0.210 1288   3.449  0.0527
##  TCS02 - TCS10  0.16268 0.189 1288   0.860  1.0000
##  TCS02 - TCS11  0.57287 0.189 1288   3.038  0.1693
##  TCS02 - TCS12 -0.16696 0.188 1288  -0.888  1.0000
##  TCS02 - TCS20 -0.51147 0.188 1288  -2.721  0.3427
##  TCS02 - TCS43 -0.00603 0.188 1288  -0.032  1.0000
##  TCS02 - TCS44  0.54029 0.187 1288   2.883  0.2441
##  TCS02 - TCS45 -0.39803 0.193 1288  -2.058  0.8171
##  TCS02 - TCS46 -0.72988 0.182 1288  -4.006  0.0073
##  TCS02 - TCS47 -0.07179 0.189 1288  -0.381  1.0000
##  TCS02 - TCS48 -0.33696 0.193 1288  -1.749  0.9462
##  TCS02 - TCS49 -0.29106 0.194 1288  -1.500  0.9872
##  TCS03 - TCS04 -0.89584 0.189 1288  -4.735  0.0003
##  TCS03 - TCS05 -0.73066 0.186 1288  -3.929  0.0099
##  TCS03 - TCS08  0.05421 0.211 1288   0.257  1.0000
##  TCS03 - TCS10 -0.50773 0.190 1288  -2.666  0.3798
##  TCS03 - TCS11 -0.09754 0.190 1288  -0.514  1.0000
##  TCS03 - TCS12 -0.83737 0.189 1288  -4.427  0.0013
##  TCS03 - TCS20 -1.18188 0.189 1288  -6.247  <.0001
##  TCS03 - TCS43 -0.67644 0.189 1288  -3.576  0.0349
##  TCS03 - TCS44 -0.13011 0.189 1288  -0.690  1.0000
##  TCS03 - TCS45 -1.06844 0.195 1288  -5.491  <.0001
##  TCS03 - TCS46 -1.40029 0.183 1288  -7.634  <.0001
##  TCS03 - TCS47 -0.74220 0.190 1288  -3.911  0.0106
##  TCS03 - TCS48 -1.00737 0.194 1288  -5.196  <.0001
##  TCS03 - TCS49 -0.96147 0.195 1288  -4.927  0.0001
##  TCS04 - TCS05  0.16518 0.185 1288   0.891  1.0000
##  TCS04 - TCS08  0.95005 0.211 1288   4.510  0.0009
##  TCS04 - TCS10  0.38811 0.190 1288   2.045  0.8246
##  TCS04 - TCS11  0.79830 0.189 1288   4.220  0.0031
##  TCS04 - TCS12  0.05847 0.189 1288   0.310  1.0000
##  TCS04 - TCS20 -0.28604 0.189 1288  -1.517  0.9857
##  TCS04 - TCS43  0.21940 0.189 1288   1.163  0.9993
##  TCS04 - TCS44  0.76572 0.188 1288   4.073  0.0056
##  TCS04 - TCS45 -0.17260 0.194 1288  -0.890  1.0000
##  TCS04 - TCS46 -0.50445 0.183 1288  -2.760  0.3175
##  TCS04 - TCS47  0.15364 0.189 1288   0.812  1.0000
##  TCS04 - TCS48 -0.11153 0.193 1288  -0.577  1.0000
##  TCS04 - TCS49 -0.06564 0.195 1288  -0.337  1.0000
##  TCS05 - TCS08  0.78487 0.208 1288   3.777  0.0173
##  TCS05 - TCS10  0.22293 0.187 1288   1.194  0.9990
##  TCS05 - TCS11  0.63311 0.186 1288   3.404  0.0607
##  TCS05 - TCS12 -0.10671 0.185 1288  -0.576  1.0000
##  TCS05 - TCS20 -0.45122 0.185 1288  -2.434  0.5528
##  TCS05 - TCS43  0.05422 0.185 1288   0.292  1.0000
##  TCS05 - TCS44  0.60054 0.185 1288   3.250  0.0958
##  TCS05 - TCS45 -0.33778 0.191 1288  -1.767  0.9413
##  TCS05 - TCS46 -0.66963 0.179 1288  -3.735  0.0201
##  TCS05 - TCS47 -0.01154 0.186 1288  -0.062  1.0000
##  TCS05 - TCS48 -0.27671 0.191 1288  -1.453  0.9908
##  TCS05 - TCS49 -0.23082 0.191 1288  -1.206  0.9989
##  TCS08 - TCS10 -0.56194 0.212 1288  -2.654  0.3884
##  TCS08 - TCS11 -0.15175 0.211 1288  -0.719  1.0000
##  TCS08 - TCS12 -0.89158 0.211 1288  -4.233  0.0029
##  TCS08 - TCS20 -1.23609 0.211 1288  -5.866  <.0001
##  TCS08 - TCS43 -0.73065 0.211 1288  -3.469  0.0495
##  TCS08 - TCS44 -0.18433 0.210 1288  -0.877  1.0000
##  TCS08 - TCS45 -1.12265 0.215 1288  -5.211  <.0001
##  TCS08 - TCS46 -1.45450 0.206 1288  -7.074  <.0001
##  TCS08 - TCS47 -0.79641 0.211 1288  -3.772  0.0176
##  TCS08 - TCS48 -1.06158 0.215 1288  -4.942  0.0001
##  TCS08 - TCS49 -1.01568 0.216 1288  -4.704  0.0004
##  TCS10 - TCS11  0.41018 0.190 1288   2.154  0.7577
##  TCS10 - TCS12 -0.32964 0.190 1288  -1.737  0.9492
##  TCS10 - TCS20 -0.67416 0.190 1288  -3.552  0.0378
##  TCS10 - TCS43 -0.16871 0.190 1288  -0.889  1.0000
##  TCS10 - TCS44  0.37761 0.189 1288   1.996  0.8509
##  TCS10 - TCS45 -0.56071 0.195 1288  -2.874  0.2493
##  TCS10 - TCS46 -0.89256 0.184 1288  -4.847  0.0002
##  TCS10 - TCS47 -0.23447 0.190 1288  -1.231  0.9986
##  TCS10 - TCS48 -0.49964 0.194 1288  -2.570  0.4493
##  TCS10 - TCS49 -0.45375 0.196 1288  -2.317  0.6420
##  TCS11 - TCS12 -0.73983 0.189 1288  -3.911  0.0106
##  TCS11 - TCS20 -1.08434 0.189 1288  -5.732  <.0001
##  TCS11 - TCS43 -0.57890 0.189 1288  -3.060  0.1600
##  TCS11 - TCS44 -0.03257 0.189 1288  -0.173  1.0000
##  TCS11 - TCS45 -0.97089 0.195 1288  -4.990  0.0001
##  TCS11 - TCS46 -1.30275 0.183 1288  -7.101  <.0001
##  TCS11 - TCS47 -0.64465 0.190 1288  -3.397  0.0620
##  TCS11 - TCS48 -0.90983 0.194 1288  -4.693  0.0004
##  TCS11 - TCS49 -0.86393 0.195 1288  -4.427  0.0013
##  TCS12 - TCS20 -0.34451 0.189 1288  -1.827  0.9227
##  TCS12 - TCS43  0.16093 0.189 1288   0.853  1.0000
##  TCS12 - TCS44  0.70725 0.188 1288   3.762  0.0183
##  TCS12 - TCS45 -0.23107 0.194 1288  -1.191  0.9990
##  TCS12 - TCS46 -0.56292 0.183 1288  -3.079  0.1523
##  TCS12 - TCS47  0.09517 0.189 1288   0.503  1.0000
##  TCS12 - TCS48 -0.17000 0.193 1288  -0.879  1.0000
##  TCS12 - TCS49 -0.12411 0.195 1288  -0.638  1.0000
##  TCS20 - TCS43  0.50544 0.189 1288   2.680  0.3701
##  TCS20 - TCS44  1.05177 0.188 1288   5.595  <.0001
##  TCS20 - TCS45  0.11345 0.194 1288   0.585  1.0000
##  TCS20 - TCS46 -0.21841 0.183 1288  -1.195  0.9990
##  TCS20 - TCS47  0.43968 0.189 1288   2.324  0.6367
##  TCS20 - TCS48  0.17451 0.193 1288   0.903  1.0000
##  TCS20 - TCS49  0.22041 0.195 1288   1.132  0.9995
##  TCS43 - TCS44  0.54632 0.188 1288   2.906  0.2317
##  TCS43 - TCS45 -0.39200 0.194 1288  -2.021  0.8377
##  TCS43 - TCS46 -0.72385 0.183 1288  -3.959  0.0088
##  TCS43 - TCS47 -0.06576 0.189 1288  -0.348  1.0000
##  TCS43 - TCS48 -0.33093 0.193 1288  -1.712  0.9551
##  TCS43 - TCS49 -0.28503 0.195 1288  -1.465  0.9900
##  TCS44 - TCS45 -0.93832 0.193 1288  -4.852  0.0002
##  TCS44 - TCS46 -1.27018 0.182 1288  -6.970  <.0001
##  TCS44 - TCS47 -0.61208 0.189 1288  -3.245  0.0971
##  TCS44 - TCS48 -0.87725 0.193 1288  -4.553  0.0007
##  TCS44 - TCS49 -0.83136 0.194 1288  -4.284  0.0024
##  TCS45 - TCS46 -0.33185 0.189 1288  -1.759  0.9434
##  TCS45 - TCS47  0.32624 0.195 1288   1.676  0.9628
##  TCS45 - TCS48  0.06107 0.198 1288   0.308  1.0000
##  TCS45 - TCS49  0.10696 0.200 1288   0.535  1.0000
##  TCS46 - TCS47  0.65809 0.183 1288   3.588  0.0335
##  TCS46 - TCS48  0.39292 0.188 1288   2.090  0.7979
##  TCS46 - TCS49  0.43882 0.189 1288   2.322  0.6386
##  TCS47 - TCS48 -0.26517 0.194 1288  -1.367  0.9952
##  TCS47 - TCS49 -0.21928 0.195 1288  -1.124  0.9995
##  TCS48 - TCS49  0.04590 0.199 1288   0.230  1.0000
## 
## Results are averaged over the levels of: semana, bloque 
## P value adjustment: tukey method for comparing a family of 17 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean    SE   df lower.CL upper.CL .group 
##  TCS46   5.64 0.125 1288     5.40     5.89  A     
##  TCS20   5.42 0.133 1288     5.16     5.68  AB    
##  TCS45   5.31 0.141 1288     5.03     5.59  ABC   
##  TCS48   5.25 0.140 1288     4.97     5.52  ABC   
##  TCS01   5.23 0.132 1288     4.98     5.49  ABC   
##  TCS49   5.20 0.142 1288     4.92     5.48  ABC   
##  TCS04   5.14 0.133 1288     4.87     5.40  ABC   
##  TCS12   5.08 0.133 1288     4.82     5.34  ABC   
##  TCS47   4.98 0.134 1288     4.72     5.25   BCD  
##  TCS05   4.97 0.129 1288     4.72     5.22   BCD  
##  TCS43   4.92 0.133 1288     4.66     5.18   BCD  
##  TCS02   4.91 0.133 1288     4.65     5.17   BCDE 
##  TCS10   4.75 0.135 1288     4.48     5.01    CDEF
##  TCS44   4.37 0.133 1288     4.11     4.63     DEF
##  TCS11   4.34 0.134 1288     4.07     4.60     DEF
##  TCS03   4.24 0.134 1288     3.98     4.50       F
##  TCS08   4.19 0.163 1288     3.87     4.51      EF
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 17 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias diámetro del injerto
#Gen
contrast <- emmeans(aov.injedia, ~gen)
plot(contrast, comparisons = TRUE, xlab ="Diámetro del injerto")

medias.gen <- emmeans(aov.injedia, pairwise ~ gen)
medias.gen
## $emmeans
##  gen   emmean    SE   df lower.CL upper.CL
##  TCS01   3.57 0.107 1288     3.36     3.78
##  TCS02   2.86 0.108 1288     2.65     3.08
##  TCS03   2.47 0.109 1288     2.25     2.68
##  TCS04   3.14 0.109 1288     2.93     3.35
##  TCS05   2.71 0.105 1288     2.51     2.92
##  TCS08   1.96 0.133 1288     1.70     2.22
##  TCS10   2.88 0.110 1288     2.66     3.09
##  TCS11   2.70 0.109 1288     2.48     2.91
##  TCS12   3.34 0.109 1288     3.12     3.55
##  TCS20   3.40 0.109 1288     3.19     3.62
##  TCS43   2.89 0.109 1288     2.68     3.10
##  TCS44   2.89 0.108 1288     2.68     3.11
##  TCS45   3.40 0.115 1288     3.17     3.62
##  TCS46   3.85 0.102 1288     3.65     4.05
##  TCS47   3.11 0.109 1288     2.90     3.33
##  TCS48   3.16 0.114 1288     2.93     3.38
##  TCS49   3.30 0.115 1288     3.07     3.53
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate    SE   df t.ratio p.value
##  TCS01 - TCS02  0.70349 0.152 1288   4.622  0.0005
##  TCS01 - TCS03  1.10043 0.153 1288   7.184  <.0001
##  TCS01 - TCS04  0.42577 0.153 1288   2.789  0.2993
##  TCS01 - TCS05  0.85384 0.150 1288   5.689  <.0001
##  TCS01 - TCS08  1.61114 0.171 1288   9.434  <.0001
##  TCS01 - TCS10  0.69221 0.154 1288   4.504  0.0009
##  TCS01 - TCS11  0.86911 0.153 1288   5.674  <.0001
##  TCS01 - TCS12  0.23150 0.153 1288   1.516  0.9857
##  TCS01 - TCS20  0.16442 0.153 1288   1.077  0.9997
##  TCS01 - TCS43  0.67892 0.153 1288   4.447  0.0012
##  TCS01 - TCS44  0.67383 0.152 1288   4.427  0.0013
##  TCS01 - TCS45  0.17070 0.157 1288   1.087  0.9997
##  TCS01 - TCS46 -0.28626 0.148 1288  -1.934  0.8804
##  TCS01 - TCS47  0.45574 0.153 1288   2.975  0.1974
##  TCS01 - TCS48  0.41019 0.157 1288   2.620  0.4124
##  TCS01 - TCS49  0.26685 0.158 1288   1.693  0.9594
##  TCS02 - TCS03  0.39694 0.154 1288   2.583  0.4394
##  TCS02 - TCS04 -0.27772 0.153 1288  -1.813  0.9272
##  TCS02 - TCS05  0.15034 0.151 1288   0.999  0.9999
##  TCS02 - TCS08  0.90765 0.171 1288   5.302  <.0001
##  TCS02 - TCS10 -0.01128 0.154 1288  -0.073  1.0000
##  TCS02 - TCS11  0.16562 0.154 1288   1.078  0.9997
##  TCS02 - TCS12 -0.47199 0.153 1288  -3.082  0.1513
##  TCS02 - TCS20 -0.53907 0.153 1288  -3.520  0.0420
##  TCS02 - TCS43 -0.02457 0.153 1288  -0.160  1.0000
##  TCS02 - TCS44 -0.02966 0.153 1288  -0.194  1.0000
##  TCS02 - TCS45 -0.53279 0.158 1288  -3.381  0.0651
##  TCS02 - TCS46 -0.98975 0.148 1288  -6.667  <.0001
##  TCS02 - TCS47 -0.24775 0.154 1288  -1.612  0.9740
##  TCS02 - TCS48 -0.29330 0.157 1288  -1.868  0.9080
##  TCS02 - TCS49 -0.43664 0.158 1288  -2.762  0.3158
##  TCS03 - TCS04 -0.67466 0.154 1288  -4.377  0.0016
##  TCS03 - TCS05 -0.24660 0.152 1288  -1.628  0.9716
##  TCS03 - TCS08  0.51071 0.172 1288   2.969  0.2005
##  TCS03 - TCS10 -0.40822 0.155 1288  -2.631  0.4046
##  TCS03 - TCS11 -0.23133 0.155 1288  -1.496  0.9875
##  TCS03 - TCS12 -0.86893 0.154 1288  -5.638  <.0001
##  TCS03 - TCS20 -0.93601 0.154 1288  -6.073  <.0001
##  TCS03 - TCS43 -0.42151 0.154 1288  -2.735  0.3335
##  TCS03 - TCS44 -0.42661 0.154 1288  -2.776  0.3068
##  TCS03 - TCS45 -0.92973 0.159 1288  -5.864  <.0001
##  TCS03 - TCS46 -1.38670 0.149 1288  -9.278  <.0001
##  TCS03 - TCS47 -0.64469 0.155 1288  -4.170  0.0038
##  TCS03 - TCS48 -0.69024 0.158 1288  -4.369  0.0016
##  TCS03 - TCS49 -0.83358 0.159 1288  -5.243  <.0001
##  TCS04 - TCS05  0.42807 0.151 1288   2.835  0.2716
##  TCS04 - TCS08  1.18537 0.172 1288   6.906  <.0001
##  TCS04 - TCS10  0.26644 0.155 1288   1.723  0.9526
##  TCS04 - TCS11  0.44334 0.154 1288   2.876  0.2480
##  TCS04 - TCS12 -0.19427 0.154 1288  -1.264  0.9980
##  TCS04 - TCS20 -0.26135 0.154 1288  -1.701  0.9576
##  TCS04 - TCS43  0.25315 0.154 1288   1.648  0.9682
##  TCS04 - TCS44  0.24806 0.153 1288   1.620  0.9729
##  TCS04 - TCS45 -0.25506 0.158 1288  -1.614  0.9738
##  TCS04 - TCS46 -0.71203 0.149 1288  -4.781  0.0002
##  TCS04 - TCS47  0.02997 0.154 1288   0.194  1.0000
##  TCS04 - TCS48 -0.01558 0.157 1288  -0.099  1.0000
##  TCS04 - TCS49 -0.15892 0.159 1288  -1.002  0.9999
##  TCS05 - TCS08  0.75730 0.169 1288   4.473  0.0010
##  TCS05 - TCS10 -0.16162 0.152 1288  -1.063  0.9998
##  TCS05 - TCS11  0.01527 0.152 1288   0.101  1.0000
##  TCS05 - TCS12 -0.62233 0.151 1288  -4.121  0.0046
##  TCS05 - TCS20 -0.68941 0.151 1288  -4.564  0.0007
##  TCS05 - TCS43 -0.17491 0.151 1288  -1.158  0.9993
##  TCS05 - TCS44 -0.18001 0.151 1288  -1.196  0.9990
##  TCS05 - TCS45 -0.68313 0.156 1288  -4.385  0.0015
##  TCS05 - TCS46 -1.14010 0.146 1288  -7.806  <.0001
##  TCS05 - TCS47 -0.39809 0.151 1288  -2.628  0.4071
##  TCS05 - TCS48 -0.44365 0.155 1288  -2.858  0.2580
##  TCS05 - TCS49 -0.58698 0.156 1288  -3.763  0.0182
##  TCS08 - TCS10 -0.91893 0.173 1288  -5.327  <.0001
##  TCS08 - TCS11 -0.74203 0.172 1288  -4.313  0.0021
##  TCS08 - TCS12 -1.37964 0.172 1288  -8.040  <.0001
##  TCS08 - TCS20 -1.44672 0.172 1288  -8.427  <.0001
##  TCS08 - TCS43 -0.93222 0.172 1288  -5.432  <.0001
##  TCS08 - TCS44 -0.93731 0.171 1288  -5.475  <.0001
##  TCS08 - TCS45 -1.44044 0.176 1288  -8.206  <.0001
##  TCS08 - TCS46 -1.89740 0.168 1288 -11.327  <.0001
##  TCS08 - TCS47 -1.15540 0.172 1288  -6.716  <.0001
##  TCS08 - TCS48 -1.20095 0.175 1288  -6.862  <.0001
##  TCS08 - TCS49 -1.34429 0.176 1288  -7.642  <.0001
##  TCS10 - TCS11  0.17689 0.155 1288   1.140  0.9994
##  TCS10 - TCS12 -0.46071 0.155 1288  -2.979  0.1955
##  TCS10 - TCS20 -0.52779 0.155 1288  -3.413  0.0590
##  TCS10 - TCS43 -0.01329 0.155 1288  -0.086  1.0000
##  TCS10 - TCS44 -0.01839 0.154 1288  -0.119  1.0000
##  TCS10 - TCS45 -0.52151 0.159 1288  -3.281  0.0877
##  TCS10 - TCS46 -0.97848 0.150 1288  -6.521  <.0001
##  TCS10 - TCS47 -0.23647 0.155 1288  -1.524  0.9850
##  TCS10 - TCS48 -0.28202 0.158 1288  -1.781  0.9373
##  TCS10 - TCS49 -0.42536 0.160 1288  -2.666  0.3801
##  TCS11 - TCS12 -0.63761 0.154 1288  -4.137  0.0043
##  TCS11 - TCS20 -0.70468 0.154 1288  -4.572  0.0007
##  TCS11 - TCS43 -0.19018 0.154 1288  -1.234  0.9985
##  TCS11 - TCS44 -0.19528 0.154 1288  -1.271  0.9979
##  TCS11 - TCS45 -0.69840 0.159 1288  -4.406  0.0014
##  TCS11 - TCS46 -1.15537 0.149 1288  -7.729  <.0001
##  TCS11 - TCS47 -0.41336 0.155 1288  -2.673  0.3750
##  TCS11 - TCS48 -0.45892 0.158 1288  -2.905  0.2323
##  TCS11 - TCS49 -0.60225 0.159 1288  -3.788  0.0167
##  TCS12 - TCS20 -0.06708 0.154 1288  -0.437  1.0000
##  TCS12 - TCS43  0.44742 0.154 1288   2.912  0.2287
##  TCS12 - TCS44  0.44233 0.153 1288   2.888  0.2415
##  TCS12 - TCS45 -0.06080 0.158 1288  -0.385  1.0000
##  TCS12 - TCS46 -0.51776 0.149 1288  -3.476  0.0483
##  TCS12 - TCS47  0.22424 0.154 1288   1.455  0.9907
##  TCS12 - TCS48  0.17869 0.158 1288   1.135  0.9995
##  TCS12 - TCS49  0.03535 0.159 1288   0.223  1.0000
##  TCS20 - TCS43  0.51450 0.154 1288   3.349  0.0718
##  TCS20 - TCS44  0.50940 0.153 1288   3.326  0.0768
##  TCS20 - TCS45  0.00628 0.158 1288   0.040  1.0000
##  TCS20 - TCS46 -0.45068 0.149 1288  -3.026  0.1745
##  TCS20 - TCS47  0.29132 0.154 1288   1.890  0.8994
##  TCS20 - TCS48  0.24577 0.157 1288   1.561  0.9810
##  TCS20 - TCS49  0.10243 0.159 1288   0.646  1.0000
##  TCS43 - TCS44 -0.00510 0.153 1288  -0.033  1.0000
##  TCS43 - TCS45 -0.50822 0.158 1288  -3.216  0.1056
##  TCS43 - TCS46 -0.96518 0.149 1288  -6.480  <.0001
##  TCS43 - TCS47 -0.22318 0.154 1288  -1.448  0.9911
##  TCS43 - TCS48 -0.26873 0.157 1288  -1.707  0.9564
##  TCS43 - TCS49 -0.41207 0.159 1288  -2.599  0.4280
##  TCS44 - TCS45 -0.50312 0.158 1288  -3.193  0.1124
##  TCS44 - TCS46 -0.96009 0.148 1288  -6.466  <.0001
##  TCS44 - TCS47 -0.21808 0.154 1288  -1.419  0.9928
##  TCS44 - TCS48 -0.26364 0.157 1288  -1.679  0.9622
##  TCS44 - TCS49 -0.40697 0.158 1288  -2.574  0.4462
##  TCS45 - TCS46 -0.45697 0.154 1288  -2.973  0.1985
##  TCS45 - TCS47  0.28504 0.159 1288   1.798  0.9322
##  TCS45 - TCS48  0.23948 0.161 1288   1.483  0.9886
##  TCS45 - TCS49  0.09615 0.163 1288   0.590  1.0000
##  TCS46 - TCS47  0.74200 0.149 1288   4.965  0.0001
##  TCS46 - TCS48  0.69645 0.153 1288   4.548  0.0007
##  TCS46 - TCS49  0.55311 0.154 1288   3.592  0.0331
##  TCS47 - TCS48 -0.04555 0.158 1288  -0.288  1.0000
##  TCS47 - TCS49 -0.18889 0.159 1288  -1.188  0.9991
##  TCS48 - TCS49 -0.14334 0.162 1288  -0.883  1.0000
## 
## Results are averaged over the levels of: semana, bloque 
## P value adjustment: tukey method for comparing a family of 17 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean    SE   df lower.CL upper.CL .group  
##  TCS46   3.85 0.102 1288     3.65     4.05  A      
##  TCS01   3.57 0.107 1288     3.36     3.78  AB     
##  TCS20   3.40 0.109 1288     3.19     3.62  ABC    
##  TCS45   3.40 0.115 1288     3.17     3.62  ABCD   
##  TCS12   3.34 0.109 1288     3.12     3.55   BCD   
##  TCS49   3.30 0.115 1288     3.07     3.53   BCD   
##  TCS48   3.16 0.114 1288     2.93     3.38   BCDE  
##  TCS04   3.14 0.109 1288     2.93     3.35   BCDE  
##  TCS47   3.11 0.109 1288     2.90     3.33   BCDE  
##  TCS44   2.89 0.108 1288     2.68     3.11    CDEF 
##  TCS43   2.89 0.109 1288     2.68     3.10    CDEF 
##  TCS10   2.88 0.110 1288     2.66     3.09    CDEF 
##  TCS02   2.86 0.108 1288     2.65     3.08     DEF 
##  TCS05   2.71 0.105 1288     2.51     2.92      EF 
##  TCS11   2.70 0.109 1288     2.48     2.91      EF 
##  TCS03   2.47 0.109 1288     2.25     2.68       FG
##  TCS08   1.96 0.133 1288     1.70     2.22        G
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 17 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
## Gráficas contrastes de medias área de la copa
#Gen
contrast <- emmeans(aov.coparea, ~gen)
plot(contrast, comparisons = TRUE, xlab ="Área de la copa")

medias.gen <- emmeans(aov.coparea, pairwise ~ gen)
medias.gen
## $emmeans
##  gen   emmean    SE   df lower.CL upper.CL
##  TCS01  1.645 0.132 1288    1.386    1.905
##  TCS02  1.428 0.133 1288    1.167    1.690
##  TCS03  1.198 0.135 1288    0.933    1.462
##  TCS04  1.377 0.134 1288    1.114    1.640
##  TCS05  0.934 0.130 1288    0.679    1.188
##  TCS08  0.486 0.164 1288    0.164    0.807
##  TCS10  1.242 0.136 1288    0.975    1.508
##  TCS11  1.336 0.135 1288    1.072    1.601
##  TCS12  1.993 0.134 1288    1.730    2.256
##  TCS20  1.736 0.134 1288    1.473    1.999
##  TCS43  0.949 0.134 1288    0.686    1.212
##  TCS44  1.279 0.133 1288    1.018    1.541
##  TCS45  1.579 0.142 1288    1.301    1.857
##  TCS46  2.341 0.126 1288    2.094    2.588
##  TCS47  1.528 0.135 1288    1.264    1.793
##  TCS48  1.550 0.141 1288    1.274    1.826
##  TCS49  1.461 0.143 1288    1.182    1.741
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast      estimate    SE   df t.ratio p.value
##  TCS01 - TCS02   0.2171 0.188 1288   1.156  0.9993
##  TCS01 - TCS03   0.4478 0.189 1288   2.368  0.6032
##  TCS01 - TCS04   0.2683 0.188 1288   1.424  0.9926
##  TCS01 - TCS05   0.7119 0.185 1288   3.842  0.0136
##  TCS01 - TCS08   1.1599 0.211 1288   5.501  <.0001
##  TCS01 - TCS10   0.4038 0.190 1288   2.128  0.7745
##  TCS01 - TCS11   0.3090 0.189 1288   1.634  0.9705
##  TCS01 - TCS12  -0.3472 0.188 1288  -1.842  0.9174
##  TCS01 - TCS20  -0.0910 0.188 1288  -0.483  1.0000
##  TCS01 - TCS43   0.6968 0.188 1288   3.697  0.0230
##  TCS01 - TCS44   0.3660 0.188 1288   1.948  0.8742
##  TCS01 - TCS45   0.0666 0.194 1288   0.344  1.0000
##  TCS01 - TCS46  -0.6953 0.183 1288  -3.806  0.0156
##  TCS01 - TCS47   0.1170 0.189 1288   0.619  1.0000
##  TCS01 - TCS48   0.0956 0.193 1288   0.495  1.0000
##  TCS01 - TCS49   0.1841 0.195 1288   0.946  0.9999
##  TCS02 - TCS03   0.2307 0.190 1288   1.216  0.9988
##  TCS02 - TCS04   0.0512 0.189 1288   0.271  1.0000
##  TCS02 - TCS05   0.4947 0.186 1288   2.662  0.3826
##  TCS02 - TCS08   0.9427 0.211 1288   4.461  0.0011
##  TCS02 - TCS10   0.1866 0.190 1288   0.981  0.9999
##  TCS02 - TCS11   0.0919 0.190 1288   0.485  1.0000
##  TCS02 - TCS12  -0.5644 0.189 1288  -2.985  0.1927
##  TCS02 - TCS20  -0.3081 0.189 1288  -1.629  0.9713
##  TCS02 - TCS43   0.4797 0.189 1288   2.537  0.4738
##  TCS02 - TCS44   0.1489 0.188 1288   0.790  1.0000
##  TCS02 - TCS45  -0.1505 0.195 1288  -0.774  1.0000
##  TCS02 - TCS46  -0.9125 0.183 1288  -4.979  0.0001
##  TCS02 - TCS47  -0.1001 0.190 1288  -0.528  1.0000
##  TCS02 - TCS48  -0.1215 0.194 1288  -0.627  1.0000
##  TCS02 - TCS49  -0.0330 0.195 1288  -0.169  1.0000
##  TCS03 - TCS04  -0.1795 0.190 1288  -0.943  1.0000
##  TCS03 - TCS05   0.2640 0.187 1288   1.412  0.9932
##  TCS03 - TCS08   0.7120 0.212 1288   3.353  0.0709
##  TCS03 - TCS10  -0.0441 0.192 1288  -0.230  1.0000
##  TCS03 - TCS11  -0.1388 0.191 1288  -0.727  1.0000
##  TCS03 - TCS12  -0.7951 0.190 1288  -4.179  0.0037
##  TCS03 - TCS20  -0.5388 0.190 1288  -2.831  0.2734
##  TCS03 - TCS43   0.2490 0.190 1288   1.309  0.9971
##  TCS03 - TCS44  -0.0818 0.190 1288  -0.431  1.0000
##  TCS03 - TCS45  -0.3812 0.196 1288  -1.948  0.8744
##  TCS03 - TCS46  -1.1432 0.184 1288  -6.196  <.0001
##  TCS03 - TCS47  -0.3308 0.191 1288  -1.733  0.9501
##  TCS03 - TCS48  -0.3522 0.195 1288  -1.806  0.9295
##  TCS03 - TCS49  -0.2637 0.196 1288  -1.344  0.9961
##  TCS04 - TCS05   0.4435 0.186 1288   2.379  0.5948
##  TCS04 - TCS08   0.8915 0.212 1288   4.208  0.0032
##  TCS04 - TCS10   0.1354 0.191 1288   0.709  1.0000
##  TCS04 - TCS11   0.0407 0.190 1288   0.214  1.0000
##  TCS04 - TCS12  -0.6156 0.190 1288  -3.246  0.0970
##  TCS04 - TCS20  -0.3593 0.190 1288  -1.894  0.8976
##  TCS04 - TCS43   0.4285 0.190 1288   2.259  0.6847
##  TCS04 - TCS44   0.0977 0.189 1288   0.517  1.0000
##  TCS04 - TCS45  -0.2017 0.195 1288  -1.034  0.9998
##  TCS04 - TCS46  -0.9637 0.184 1288  -5.241  <.0001
##  TCS04 - TCS47  -0.1513 0.190 1288  -0.795  1.0000
##  TCS04 - TCS48  -0.1728 0.194 1288  -0.889  1.0000
##  TCS04 - TCS49  -0.0843 0.196 1288  -0.431  1.0000
##  TCS05 - TCS08   0.4480 0.209 1288   2.144  0.7646
##  TCS05 - TCS10  -0.3081 0.188 1288  -1.641  0.9694
##  TCS05 - TCS11  -0.4028 0.187 1288  -2.153  0.7582
##  TCS05 - TCS12  -1.0591 0.186 1288  -5.682  <.0001
##  TCS05 - TCS20  -0.8028 0.186 1288  -4.306  0.0021
##  TCS05 - TCS43  -0.0150 0.186 1288  -0.081  1.0000
##  TCS05 - TCS44  -0.3458 0.186 1288  -1.861  0.9107
##  TCS05 - TCS45  -0.6452 0.192 1288  -3.355  0.0704
##  TCS05 - TCS46  -1.4072 0.180 1288  -7.805  <.0001
##  TCS05 - TCS47  -0.5948 0.187 1288  -3.181  0.1163
##  TCS05 - TCS48  -0.6163 0.192 1288  -3.216  0.1053
##  TCS05 - TCS49  -0.5278 0.193 1288  -2.741  0.3296
##  TCS08 - TCS10  -0.7561 0.213 1288  -3.551  0.0379
##  TCS08 - TCS11  -0.8508 0.212 1288  -4.006  0.0073
##  TCS08 - TCS12  -1.5071 0.212 1288  -7.114  <.0001
##  TCS08 - TCS20  -1.2508 0.212 1288  -5.902  <.0001
##  TCS08 - TCS43  -0.4630 0.212 1288  -2.186  0.7365
##  TCS08 - TCS44  -0.7938 0.211 1288  -3.756  0.0187
##  TCS08 - TCS45  -1.0932 0.217 1288  -5.045  0.0001
##  TCS08 - TCS46  -1.8552 0.207 1288  -8.971  <.0001
##  TCS08 - TCS47  -1.0428 0.212 1288  -4.911  0.0001
##  TCS08 - TCS48  -1.0643 0.216 1288  -4.926  0.0001
##  TCS08 - TCS49  -0.9758 0.217 1288  -4.494  0.0009
##  TCS10 - TCS11  -0.0947 0.192 1288  -0.495  1.0000
##  TCS10 - TCS12  -0.7510 0.191 1288  -3.934  0.0097
##  TCS10 - TCS20  -0.4947 0.191 1288  -2.591  0.4335
##  TCS10 - TCS43   0.2931 0.191 1288   1.535  0.9838
##  TCS10 - TCS44  -0.0377 0.190 1288  -0.198  1.0000
##  TCS10 - TCS45  -0.3371 0.196 1288  -1.718  0.9538
##  TCS10 - TCS46  -1.0991 0.185 1288  -5.934  <.0001
##  TCS10 - TCS47  -0.2868 0.192 1288  -1.497  0.9875
##  TCS10 - TCS48  -0.3082 0.196 1288  -1.576  0.9791
##  TCS10 - TCS49  -0.2197 0.197 1288  -1.115  0.9996
##  TCS11 - TCS12  -0.6563 0.190 1288  -3.449  0.0527
##  TCS11 - TCS20  -0.4000 0.190 1288  -2.102  0.7908
##  TCS11 - TCS43   0.3878 0.190 1288   2.038  0.8282
##  TCS11 - TCS44   0.0570 0.190 1288   0.300  1.0000
##  TCS11 - TCS45  -0.2424 0.196 1288  -1.239  0.9985
##  TCS11 - TCS46  -1.0044 0.185 1288  -5.443  <.0001
##  TCS11 - TCS47  -0.1920 0.191 1288  -1.006  0.9999
##  TCS11 - TCS48  -0.2135 0.195 1288  -1.095  0.9997
##  TCS11 - TCS49  -0.1249 0.196 1288  -0.637  1.0000
##  TCS12 - TCS20   0.2563 0.190 1288   1.351  0.9958
##  TCS12 - TCS43   1.0441 0.190 1288   5.505  <.0001
##  TCS12 - TCS44   0.7133 0.189 1288   3.773  0.0176
##  TCS12 - TCS45   0.4139 0.195 1288   2.121  0.7790
##  TCS12 - TCS46  -0.3481 0.184 1288  -1.893  0.8980
##  TCS12 - TCS47   0.4643 0.190 1288   2.440  0.5481
##  TCS12 - TCS48   0.4428 0.194 1288   2.278  0.6713
##  TCS12 - TCS49   0.5313 0.196 1288   2.715  0.3467
##  TCS20 - TCS43   0.7878 0.190 1288   4.154  0.0041
##  TCS20 - TCS44   0.4570 0.189 1288   2.417  0.5658
##  TCS20 - TCS45   0.1576 0.195 1288   0.808  1.0000
##  TCS20 - TCS46  -0.6044 0.184 1288  -3.287  0.0862
##  TCS20 - TCS47   0.2080 0.190 1288   1.093  0.9997
##  TCS20 - TCS48   0.1865 0.194 1288   0.960  0.9999
##  TCS20 - TCS49   0.2750 0.196 1288   1.405  0.9936
##  TCS43 - TCS44  -0.3308 0.189 1288  -1.750  0.9459
##  TCS43 - TCS45  -0.6302 0.195 1288  -3.230  0.1014
##  TCS43 - TCS46  -1.3922 0.184 1288  -7.571  <.0001
##  TCS43 - TCS47  -0.5798 0.190 1288  -3.047  0.1652
##  TCS43 - TCS48  -0.6013 0.194 1288  -3.093  0.1470
##  TCS43 - TCS49  -0.5128 0.196 1288  -2.620  0.4129
##  TCS44 - TCS45  -0.2994 0.195 1288  -1.539  0.9834
##  TCS44 - TCS46  -1.0614 0.183 1288  -5.791  <.0001
##  TCS44 - TCS47  -0.2490 0.190 1288  -1.313  0.9970
##  TCS44 - TCS48  -0.2704 0.194 1288  -1.396  0.9940
##  TCS44 - TCS49  -0.1819 0.195 1288  -0.932  1.0000
##  TCS45 - TCS46  -0.7620 0.190 1288  -4.016  0.0070
##  TCS45 - TCS47   0.0504 0.196 1288   0.257  1.0000
##  TCS45 - TCS48   0.0289 0.199 1288   0.145  1.0000
##  TCS45 - TCS49   0.1174 0.201 1288   0.584  1.0000
##  TCS46 - TCS47   0.8124 0.184 1288   4.403  0.0014
##  TCS46 - TCS48   0.7909 0.189 1288   4.184  0.0036
##  TCS46 - TCS49   0.8794 0.190 1288   4.626  0.0005
##  TCS47 - TCS48  -0.0214 0.195 1288  -0.110  1.0000
##  TCS47 - TCS49   0.0671 0.196 1288   0.342  1.0000
##  TCS48 - TCS49   0.0885 0.200 1288   0.442  1.0000
## 
## Results are averaged over the levels of: semana, bloque 
## P value adjustment: tukey method for comparing a family of 17 estimates
cld_gen <-multcomp::cld(contrast, alpha = 0.05, Letters = LETTERS, reversed=T)
cld_gen
##  gen   emmean    SE   df lower.CL upper.CL .group
##  TCS46  2.341 0.126 1288    2.094    2.588  A    
##  TCS12  1.993 0.134 1288    1.730    2.256  AB   
##  TCS20  1.736 0.134 1288    1.473    1.999  ABC  
##  TCS01  1.645 0.132 1288    1.386    1.905   BC  
##  TCS45  1.579 0.142 1288    1.301    1.857   BCD 
##  TCS48  1.550 0.141 1288    1.274    1.826   BCD 
##  TCS47  1.528 0.135 1288    1.264    1.793   BCD 
##  TCS49  1.461 0.143 1288    1.182    1.741   BCD 
##  TCS02  1.428 0.133 1288    1.167    1.690   BCD 
##  TCS04  1.377 0.134 1288    1.114    1.640   BCD 
##  TCS11  1.336 0.135 1288    1.072    1.601   BCD 
##  TCS44  1.279 0.133 1288    1.018    1.541    CD 
##  TCS10  1.242 0.136 1288    0.975    1.508    CD 
##  TCS03  1.198 0.135 1288    0.933    1.462    CDE
##  TCS43  0.949 0.134 1288    0.686    1.212     DE
##  TCS05  0.934 0.130 1288    0.679    1.188     DE
##  TCS08  0.486 0.164 1288    0.164    0.807      E
## 
## Results are averaged over the levels of: semana, bloque 
## Confidence level used: 0.95 
## P value adjustment: tukey method for comparing a family of 17 estimates 
## significance level used: alpha = 0.05 
## NOTE: Compact letter displays can be misleading
##       because they show NON-findings rather than findings.
##       Consider using 'pairs()', 'pwpp()', or 'pwpm()' instead.
detach(datos5)