| tle: ‘Assignment #9’ |
| btitle: ‘Chapter 11’ |
| thor: “Yuan Ji” |
| te: “2022-06-14” |
| tput: html_document |
This chapter described some of the most common generalized linear models, those used to model counts. It is important to never convert counts to proportions before analysis, because doing so destroys information about sample size. A fundamental difficulty with these models is that parameters are on a different scale, typically log-odds (for binomial) or log-rate (for Poisson), than the outcome variable they describe. Therefore computing implied predictions is even more important than before.
Place each answer inside the code chunk (grey box). The code chunks should contain a text response or a code that completes/answers the question or activity requested. Make sure to include plots if the question requests them.
Finally, upon completion, name your final output .html
file as: YourName_ANLY505-Year-Semester.html and publish
the assignment to your R Pubs account and submit the link to Canvas.
Each question is worth 5 points.
11-1. As explained in the chapter, binomial data can be organized in aggregated and disaggregated forms, without any impact on inference. But the likelihood of the data does change when the data are converted between the two formats. Can you explain why?
# The likelihood of the data changes when data is converted between two formats. This is because the aggregated form involves an extra log-odd factor.
11-2. Use quap to construct a quadratic approximate posterior distribution for the chimpanzee model that includes a unique intercept for each actor, m11.4 (page 330). Plot and compare the quadratic approximation to the posterior distribution produced instead from MCMC. Can you explain both the differences and the similarities between the approximate and the MCMC distributions? Relax the prior on the actor intercepts to Normal(0,10). Re-estimate the posterior using both ulam and quap. Plot and compare the posterior distributions. Do the differences increase or decrease? Why?
data("chimpanzees")
d <- chimpanzees
d$recipient <- NULL
# map
q2 <- map(alist(
pulled_left ~ dbinom( 1 , p ) ,
logit(p) <- a[actor] + (bp + bpC*condition)*prosoc_left ,
a[actor] ~ dnorm(0,10),
bp ~ dnorm(0,10),
bpC ~ dnorm(0,10)
) ,
data=d)
pairs(q2)
# Comment: There is no significant difference between the both
11-3. Revisit the data(Kline) islands example. This time drop Hawaii from the sample and refit the models. What changes do you observe?
data(Kline)
d <- Kline
d$P <- scale( log(d$population) )
d$contact_id <- ifelse( d$contact=="high" , 2 , 1 )
d
## culture population contact total_tools mean_TU P contact_id
## 1 Malekula 1100 low 13 3.2 -1.291473310 1
## 2 Tikopia 1500 low 22 4.7 -1.088550750 1
## 3 Santa Cruz 3600 low 24 4.0 -0.515764892 1
## 4 Yap 4791 high 43 5.0 -0.328773359 2
## 5 Lau Fiji 7400 high 33 5.0 -0.044338980 2
## 6 Trobriand 8000 high 19 4.0 0.006668287 2
## 7 Chuuk 9200 high 40 3.8 0.098109204 2
## 8 Manus 13000 low 28 6.6 0.324317564 1
## 9 Tonga 17500 high 55 5.4 0.518797917 2
## 10 Hawaii 275000 low 71 6.6 2.321008320 1
d <- subset(d, d$culture != "Hawaii")
d$P <- scale( log(d$population) )
d$id <- ifelse( d$contact=="high" , 2 , 1 )
d
## culture population contact total_tools mean_TU P contact_id id
## 1 Malekula 1100 low 13 3.2 -1.6838108 1 1
## 2 Tikopia 1500 low 22 4.7 -1.3532297 1 1
## 3 Santa Cruz 3600 low 24 4.0 -0.4201043 1 1
## 4 Yap 4791 high 43 5.0 -0.1154764 2 2
## 5 Lau Fiji 7400 high 33 5.0 0.3478956 2 2
## 6 Trobriand 8000 high 19 4.0 0.4309916 2 2
## 7 Chuuk 9200 high 40 3.8 0.5799580 2 2
## 8 Manus 13000 low 28 6.6 0.9484740 1 1
## 9 Tonga 17500 high 55 5.4 1.2653019 2 2
# The coefficient lowers for with Hawaii to without Hawaii.
11-4. Use WAIC or PSIS to compare the chimpanzee model that includes a unique intercept for each actor, m11.4 (page 330), to the simpler models fit in the same section. Interpret the results.
data("chimpanzees")
d <- chimpanzees
m11.1 <- map(
alist(
pulled_left ~ dbinom(1, p),
logit(p) <- a ,
a ~ dnorm(0,10)
),
data=d )
## 10.4
m11.2 <- map(
alist(
pulled_left ~ dbinom(1, p) ,
logit(p) <- a + bp*prosoc_left ,
a ~ dnorm(0,10) ,
bp ~ dnorm(0,10)
),
data=d )
m11.3 <- map(
alist(
pulled_left ~ dbinom(1, p) ,
logit(p) <- a + (bp + bpC*condition)*prosoc_left ,
a ~ dnorm(0,10) ,
bp ~ dnorm(0,10) ,
bpC ~ dnorm(0,10)
), data=d )
m11.4 <- map(
alist(
pulled_left ~ dbinom(1, p),
logit(p) <- a[actor] + (bp + bpC*condition)*prosoc_left,
a[actor] ~ dnorm(0, 10),
bp ~ dnorm(0, 10),
bpC ~ dnorm(0, 10)
),
data = d)
# compare
compare(m11.1,m11.2,m11.3,m11.4)
## WAIC SE dWAIC dSE pWAIC weight
## m11.4 548.7789 18.700317 0.0000 NA 14.9125010 1.000000e+00
## m11.2 680.6813 9.281964 131.9024 18.11626 2.0910265 2.279087e-29
## m11.3 682.5221 9.331638 133.7432 18.05547 3.0880193 9.078823e-30
## m11.1 687.9274 7.160567 139.1486 18.95539 0.9935197 6.085213e-31
#The results indicate that m11.4 with unique intercept for each actor has the least WAIC value with a weight of 1 whereas other models have a much closer WAIC values and weight of 0. The standard error value is higher for m11.4 than that of other models. Based on pWAIC values, m11.4 appears to be more flexible to fit the data.
11-5. The data contained in data(salamanders) are counts of salamanders (Plethodon elongatus) from 47 different 49-m2 plots in northern California. The column SALAMAN is the count in each plot, and the columns PCTCOVER and FORESTAGE are percent of ground cover and age of trees in the plot, respectively. You will model SALAMAN as a Poisson variable. (a) Model the relationship between density and percent cover, using a log-link (same as the example in the book and lecture). Use weakly informative priors of your choosing. Check the quadratic approximation again, by comparing quap to ulam. Then plot the expected counts and their 89% interval against percent cover. In which ways does the model do a good job? A bad job? (b) Can you improve the model by using the other predictor, FORESTAGE? Try any models you think useful. Can you explain why FORESTAGE helps or does not help with prediction?
data(salamanders)
d <- salamanders
d$C <- standardize(d$PCTCOVER)
d$A <- standardize(d$FORESTAGE)
f <- alist(
SALAMAN ~ dpois(lambda),
log(lambda) <- a + bC * C,
a ~ dnorm(0, 1),
bC ~ dnorm(0, 1)
)
N <- 50 # 50 samples from prior
a <- rnorm(N, 0, 1)
bC <- rnorm(N, 0, 1)
C_seq <- seq(from = -2, to = 2, length.out = 30)
plot(NULL,
xlim = c(-2, 2), ylim = c(0, 20),
xlab = "cover(stanardized)", ylab = "salamanders"
)
for (i in 1:N) {
lines(C_seq, exp(a[i] + bC[i] * C_seq), col = grau(), lwd = 1.5)
}
bC <- rnorm(N, 0, 0.5)
plot(NULL,
xlim = c(-2, 2), ylim = c(0, 20),
xlab = "cover(stanardized)", ylab = "salamanders"
)
for (i in 1:N) {
lines(C_seq, exp(a[i] + bC[i] * C_seq), col = grau(), lwd = 1.5)
}
f <- alist(
SALAMAN ~ dpois(lambda),
log(lambda) <- a + bC * C,
a ~ dnorm(0, 1),
bC ~ dnorm(0, 0.5)
)
mH4a <- ulam(f, data = d, chains = 4)
## Running MCMC with 4 sequential chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.1 seconds.
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 finished in 0.1 seconds.
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 finished in 0.1 seconds.
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 finished in 0.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 1.0 seconds.
plot(d$C, d$SALAMAN,
col = rangi2, lwd = 2,
xlab = "cover(standardized)", ylab = "salamanders observed"
)
C_seq <- seq(from = -2, to = 2, length.out = 30)
l <- link(mH4a, data = list(C = C_seq))
lines(C_seq, colMeans(l))
shade(apply(l, 2, PI), C_seq)
#We can see, the model does not fit very well and the data appears to be over-dispersed.
f2 <- alist(
SALAMAN ~ dpois(lambda),
log(lambda) <- a + bC * C + bA * A,
a ~ dnorm(0, 1),
c(bC, bA) ~ dnorm(0, 0.5)
)
mH4b <- ulam(f2, data = d, chains = 4)
## Running MCMC with 4 sequential chains, with 1 thread(s) per chain...
##
## Chain 1 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 1 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 1 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 1 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 1 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 1 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 1 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 1 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 1 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 1 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 1 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 1 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 1 finished in 0.1 seconds.
## Chain 2 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 2 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 2 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 2 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 2 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 2 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 2 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 2 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 2 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 2 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 2 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 2 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 2 finished in 0.1 seconds.
## Chain 3 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 3 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 3 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 3 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 3 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 3 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 3 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 3 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 3 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 3 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 3 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 3 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 3 finished in 0.1 seconds.
## Chain 4 Iteration: 1 / 1000 [ 0%] (Warmup)
## Chain 4 Iteration: 100 / 1000 [ 10%] (Warmup)
## Chain 4 Iteration: 200 / 1000 [ 20%] (Warmup)
## Chain 4 Iteration: 300 / 1000 [ 30%] (Warmup)
## Chain 4 Iteration: 400 / 1000 [ 40%] (Warmup)
## Chain 4 Iteration: 500 / 1000 [ 50%] (Warmup)
## Chain 4 Iteration: 501 / 1000 [ 50%] (Sampling)
## Chain 4 Iteration: 600 / 1000 [ 60%] (Sampling)
## Chain 4 Iteration: 700 / 1000 [ 70%] (Sampling)
## Chain 4 Iteration: 800 / 1000 [ 80%] (Sampling)
## Chain 4 Iteration: 900 / 1000 [ 90%] (Sampling)
## Chain 4 Iteration: 1000 / 1000 [100%] (Sampling)
## Chain 4 finished in 0.1 seconds.
##
## All 4 chains finished successfully.
## Mean chain execution time: 0.1 seconds.
## Total execution time: 1.1 seconds.
precis(mH4b)
## mean sd 5.5% 94.5% n_eff Rhat4
## a 0.48109496 0.14628365 0.2333771 0.7029524 974.2927 0.9995375
## bA 0.01712298 0.09464357 -0.1368545 0.1673355 1062.0584 1.0013310
## bC 1.04466886 0.17785855 0.7651719 1.3364619 892.6766 0.9998418
#The estimate for bA is close to zero. While conditioning on percent cover, forest age does not influence salamander count. This appears to be a post-treatment effect.