Cluster 1

pal <- brewer.pal(8,"Dark2")
cluster_1 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))

Cluster 2

cluster_2 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL2") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))

Cluster 3

cluster_3 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL3") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): mangroves could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): implications could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): services could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): assessment could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): planning could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): effects could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): florida could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): forests could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): natural could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): spatial could not be fit on page. It will not be plotted.

Cluster 4

cluster_4 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL4") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 5

cluster_5 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL5") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 6

cluster_6 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL6") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 7

cluster_7 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL7") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): engineering could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): geomorphology could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): development could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): sensing could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): planning could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): evolution could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): portugal could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): processes could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): mediterranean could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): modelling could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): natural could not be fit on page. It will not be plotted.

Cluster 8

cluster_8 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL8") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 9

cluster_9 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL9") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 10

cluster_10 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL10") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 11

cluster_11 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL11") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 12

cluster_12 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL12") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 13

cluster_13 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL13") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 14

cluster_14 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL14") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 15

cluster_15 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL15") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 16

cluster_16 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL16") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 17

cluster_17 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL17") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): development could not be fit on page. It will not be plotted.

Cluster 18

cluster_18 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL18") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 19

cluster_19 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL19") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 20

cluster_20 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL20") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): environment could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): monitoring could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): research could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): structure could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): biological could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): breeding could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): indicators could not be fit on page. It will not be plotted.

Cluster 21

cluster_21 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL21") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 22

cluster_22 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL22") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 23

cluster_23 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL23") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 24

cluster_24 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL24") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 25

cluster_25 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL25") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"

Cluster 26

cluster_26 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL26") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): groundwater could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): harmonizing could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): hydrogeol could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): hydrogeological could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): hydrological could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): hydrologiques could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): region could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): schultz could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): social could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): stressed could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): technology could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): tolmach could not be fit on page. It will not be plotted.
## Warning in wordcloud(word, n, random.order = FALSE, max.words = 50, colors =
## pal): urban could not be fit on page. It will not be plotted.

Cluster 27

cluster_27 <- 
  read_excel("~/Library/CloudStorage/GoogleDrive-sebastian.robledogi@amigo.edu.co/My Drive/A. RESEARCH/Papers Luis Amigo/Botero et al 2022/data/coastal_man(19may).xlsx", sheet = "CL27") |> 
  unnest_tokens(output = word,
                input = full_name) |> 
  dplyr::anti_join(stop_words) |> 
  count(word, sort = TRUE) |> 
  filter(word == str_remove(word, pattern = "coast.*"),
         word == str_remove(word, pattern = "manag.*"), 
         word == str_remove(word, pattern = "pp"),
         word == str_remove(word, pattern = "1"),
         word == str_remove(word, pattern = "[0-9]"),
         word == str_remove(word, pattern = "\\."),
         word == str_remove(word, pattern = "ocean"),
         word == str_remove(word, pattern = "zone"),
         word == str_remove(word, pattern = "integrat.*"),
         word == str_remove(word, pattern = "marine"),
         word == str_remove(word, pattern = "journal"), 
         word == str_remove(word, pattern = "http.*"),
         word == str_remove(word, pattern = "doi"),
         word != str_remove(word, pattern = "[a-z]{4}")) |> 
  with(wordcloud(word,
                 n, random.order = FALSE, 
                 max.words = 50,
                 colors = pal))
## New names:Joining, by = "word"