loading packages
library(tidyverse)
library(here)
library(anomalize)
loading data
d <- read_csv("prosodic-features-filtered-key-vars.csv")
Prepping the data - needs a date-time column
d <- d %>%
select(frame_time_minutes_aligned, pcm_loudness_sma, F0_SMA) %>%
mutate(frame_time = lubridate::ms(frame_time_minutes_aligned * 60)) %>%
mutate(frame_date_time = lubridate::as_datetime(frame_time))
dd <- d %>%
filter(!is.na(pcm_loudness_sma)) %>% # needs no missing vals
select(pcm_loudness_sma, date = frame_date_time)
dd_1 <- dd %>%
time_decompose(pcm_loudness_sma)
a_1 <- anomalize(dd_1, remainder)
a_1$date <- as.vector(as.numeric(a_1$date))
p <- a_1 %>%
as_tibble() %>%
mutate(date = as.vector(as.numeric(date))) %>%
mutate(date = date/60/60) %>%
ggplot(aes(x = date, y = remainder, color = anomaly)) +
geom_point() +
xlab("time stamp (minutes)")
plotly::ggplotly(p)
dd <- d %>%
filter(!is.na(F0_SMA)) %>%
select(F0_SMA, date = frame_date_time)
dd_2 <- dd %>%
time_decompose(F0_SMA)
a_2 <- anomalize(dd_2, remainder)
a_2$date <- as.vector(as.numeric(a_2$date))
p <- a_2 %>%
as_tibble() %>%
mutate(date = as.vector(as.numeric(date))) %>%
mutate(date = date/60/60) %>%
ggplot(aes(x = date, y = remainder, color = anomaly)) +
geom_point() +
xlab("time stamp (minutes)")
plotly::ggplotly(p)