x=(-10:10)
y=dnorm(x)
plot(x,y)
x=runif(1000000)
hist(x, freq=FALSE)
x=x+runif(1000000)+runif(1000000)+runif(1000000)
hist(x,freq = FALSE)
curve(dnorm(x,18,10),0,40)
X=c(28,13,16,28,29,12,14,12,10)
hist(X)
mean<-mean(X)
low<-mean-1.96*(10/3)
upper<-mean+1.96*(10/3)
mean
## [1] 18
low
## [1] 11.46667
upper
## [1] 24.53333
library(readxl)
covid <- read_excel("covid.xlsx")
plot(covid$total_cases,covid$total_deaths)
library(readxl)
covid <- read_excel("covid.xlsx")
result<-lm(total_deaths~total_cases,data = covid)
summary(result)
##
## Call:
## lm(formula = total_deaths ~ total_cases, data = covid)
##
## Residuals:
## Min 1Q Median 3Q Max
## -179516 -45731 150 41216 328532
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -4.670e+04 5.107e+04 -0.914 0.379
## total_cases 1.202e-02 1.623e-03 7.406 8.2e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 133600 on 12 degrees of freedom
## Multiple R-squared: 0.8205, Adjusted R-squared: 0.8056
## F-statistic: 54.86 on 1 and 12 DF, p-value: 8.203e-06
plot(covid$total_cases,covid$total_deaths)
abline(result)
上記で、グラフを作成。
ネットの状態により接続が不安定で、うまく行かないことある。
dataはOur World in Data より: https://ourworldindata.org/coronavirus https://github.com/owid/covid-19-data/tree/master/public/data
ggplot
ggplot
ggplot
library(readxl)
covid <- read_excel("covid.xlsx")
df<-covid
## You can use the below code to generate the graph.
## Don't forget to replace the 'df' with the name
## of your dataframe
# You need the following package(s):
library("ggplot2")
# The code below will generate the graph:
graph <- ggplot(df, aes(x = total_cases, y = total_deaths, colour = iso_code)) +
geom_point() +
theme_bw()
graph
# If you want the plot to be interactive,
# you need the following package(s):
library("plotly")
ggplotly(graph)
# If you would like to save your graph, you can use:
ggsave('my_graph.pdf', graph, width = 14, height = 14, units = 'cm')
library(readxl)
covid <- read_excel("covid.xlsx")
covid$cfr<-covid$total_deaths/covid$total_cases
# las = 2によりx軸のラベルを90度回転。
# cex.names = 0.80によりx軸のラベルを小さく。
barplot(covid$cfr,names.arg = covid$iso_code,cex.names = 0.80,las=2)
result<-lm(cfr~gdp_per_capita,data=covid)
summary(result)
##
## Call:
## lm(formula = cfr ~ gdp_per_capita, data = covid)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.007992 -0.004165 -0.001411 0.003943 0.010690
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.823e-02 4.014e-03 4.542 0.000675 ***
## gdp_per_capita -2.848e-07 1.095e-07 -2.602 0.023148 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.006014 on 12 degrees of freedom
## Multiple R-squared: 0.3607, Adjusted R-squared: 0.3074
## F-statistic: 6.769 on 1 and 12 DF, p-value: 0.02315
plot(covid$gdp_per_capita,covid$cfr)
abline(result)