Todas las variables

#factominer
library(bootstrap)
library(factoextra)
## Loading required package: ggplot2
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
library(FactoMineR)
library(haven)
library(ade4)
## 
## Attaching package: 'ade4'
## The following object is masked from 'package:FactoMineR':
## 
##     reconst
library(xtable)
library(readr)
library(data.table)
#library(ff)
#library(ffbase)
library(bigmemory)
library(foreach)
library(doParallel)
## Loading required package: iterators
## Loading required package: parallel
library(biglm)
## Loading required package: DBI
library(Factoshiny)
## Loading required package: shiny
## Loading required package: FactoInvestigate
library(readxl)
CaliyPalmira<-read_excel("C:/LAURA LUCIA/U/9/Tesis/MARZO/CaliyPalmira-TAINA.xlsx")

names(CaliyPalmira)
##  [1] "Total_act_sociales"     "Total_lug_act_sociales" "conoce_enf"            
##  [4] "p26"                    "S_sintomas"             "conoce_preven"         
##  [7] "S_prevención"           "creenvirus"             "contac_covid"          
## [10] "dx_covid"               "conf_presi"             "conf_alcaldia"         
## [13] "conf_gobern"            "conf_mensgobierno"      "p40"                   
## [16] "p42"                    "medios"                 "conf_mediocomu"        
## [19] "p46"                    "p47"                    "p48"                   
## [22] "p49"                    "p50_1"                  "p50_2"                 
## [25] "p50_3"                  "p51"                    "p52"                   
## [28] "p53"                    "p54"                    "p55"                   
## [31] "p56"                    "p57"                    "p58"                   
## [34] "p60"                    "cumple_lavamanos"       "cumple_tapaboca"       
## [37] "cumple_distancia"       "cumple_desinfecmano"    "Total_tapaboca"        
## [40] "Total_distancia"        "ID"                     "Municipio"
CaliyPalmira$creenvirus<-as.factor(CaliyPalmira$creenvirus)
CaliyPalmira$contac_covid<-as.factor(CaliyPalmira$contac_covid)
CaliyPalmira$dx_covid<-as.factor(CaliyPalmira$dx_covid)
names(CaliyPalmira)<-c(
  #1.voluntariedad
  "x11",
  "x12",
  #2.conocimiento
  "x21",
  "x22", #p26
  "x23",
  "x24",
  "x25", #p30
  #3.incertidumbre
  "x31", #p33
  "x32", #p35
  "x33", #p36
  #4.gubernamental
  "x41", 
  "x42", 
  "x43",
  "x44",#"recomen_efectiva",
  #5.salud
  "x51",
  #"p41", #factor
  "x52",
  #6.medios de comunicación
  "x61", #total_medios_comu
  "x62", #p43
  #"mensaje", #categórica p72
  #7.probabilidad de contagio
  "x71",
  "x72",
  "x73",
  "x74",
  "x75", 
  "x76",
  "x77",
  #8.severidad
  "x81",
  "x82",
  "x83",
  "x84",
  #9.susceptibilidad
  "x91", 
  "x92",
  "x93",
  "x94",
  #"p59_1", #factor
  #"p59_2", #factor
  #"p59_3", #factor
  #"p59_4", #factor
  "x95",
  #10.cumplimiento
  "x101", #p61
  "x102",
  "x103",
  "x104",
  "x105", #p76
  "x106",
  #otras
  "id",
  "Municipio"
)
#recodificar la voluntariedad
library(car)
## Loading required package: carData
summary(CaliyPalmira$x11) #de 0 a 5
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   0.000   1.000   1.265   2.000   5.000
CaliyPalmira$x11 <- recode(CaliyPalmira$x11,"5=0; 4=1; 3=2; 2=3; 1=4; 0=5")
summary(CaliyPalmira$x12) #de 0 a 8
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   0.000   1.000   1.000   1.633   2.000   8.000
CaliyPalmira$x12 <- recode(CaliyPalmira$x12,"8=0; 7=1; 6=2; 5=3; 4=4; 3=5; 2=6; 1=7; 0=8")
#x75 [23]
x75N<-as.factor(CaliyPalmira$x75)
summary(x75N)
##   1   2   3   4   5 
## 288  82 104 245 724
#x77 [25]
x77N<-as.factor(CaliyPalmira$x77)
summary(x77N)
##   1   2   3   4   5 
##  43  42 151 269 938

AFM CON TODAS LAS VARIABLES

##Análisis factorial múltiple
CaliyPalmira.FMA<-MFA(CaliyPalmira[,c(19:34)],
                      group=c(#2,
                              #5,
                              #3,
                              #4,
                              #2,
                              #2, #3
                              7,
                              4,
                              5
                              #6
                              ),
                      type=c(#'s',
                             #'s',
                             #'n',
                             #'s', #n
                             #'s',
                             #'s', #n
                             's',
                             's',
                             's'#,
                             #'s'
                             ),
                      name.group=c(#"Voluntariedad",
                                   #"Conocimiento",  
                                   #"Incertidumbre",
                                   #"Confianza gubernamental",
                                   #"Confianza sector salud",
                                   #"Confianza medios",
                                   "Probabilidad de contagio",
                                   "Severidad",
                                   "Susceptibilidad"), #,
                                   #"Cumplimiento"),
                      #num.group.sup=c(3),
                      graph=FALSE)

CaliyPalmira.FMA$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.95371969              37.354849                          37.35485
## comp 2  0.76278418              14.584328                          51.93918
## comp 3  0.46061251               8.806847                          60.74602
## comp 4  0.31307706               5.985990                          66.73201
## comp 5  0.27980231               5.349781                          72.08179
## comp 6  0.24472973               4.679198                          76.76099
## comp 7  0.21919631               4.191003                          80.95200
## comp 8  0.19355882               3.700818                          84.65281
## comp 9  0.16004627               3.060062                          87.71288
## comp 10 0.14217163               2.718302                          90.43118
## comp 11 0.11679648               2.233132                          92.66431
## comp 12 0.10867422               2.077836                          94.74215
## comp 13 0.08312730               1.589382                          96.33153
## comp 14 0.07144414               1.366002                          97.69753
## comp 15 0.06704119               1.281818                          98.97935
## comp 16 0.05338169               1.020651                         100.00000
CaliyPalmira.FMA$group$contrib
##                             Dim.1     Dim.2    Dim.3     Dim.4     Dim.5
## Probabilidad de contagio 22.07821 77.726865 15.65889 91.047532 84.042533
## Severidad                38.70329 13.287416 45.28145  6.939909  9.329046
## Susceptibilidad          39.21850  8.985719 39.05966  2.012559  6.628421
CaliyPalmira.FMA$group$correlation[,1:3]
##                              Dim.1     Dim.2     Dim.3
## Probabilidad de contagio 0.6636843 0.7801080 0.4438594
## Severidad                0.8746823 0.3278311 0.5848514
## Susceptibilidad          0.8775728 0.2757276 0.4690437
Coordenadas<-round(CaliyPalmira.FMA$quanti.var$coord[,c(1,2,3)],3);Coordenadas
##     Dim.1  Dim.2  Dim.3
## x71 0.534  0.705 -0.037
## x72 0.529  0.644 -0.040
## x73 0.531  0.659 -0.043
## x74 0.451  0.444  0.230
## x75 0.178  0.067  0.180
## x76 0.396  0.570  0.063
## x77 0.354 -0.037  0.365
## x81 0.608 -0.274  0.570
## x82 0.792 -0.295 -0.026
## x83 0.641 -0.310  0.494
## x84 0.810 -0.135  0.003
## x91 0.342 -0.197 -0.528
## x92 0.795 -0.165 -0.369
## x93 0.793 -0.182 -0.252
## x94 0.818 -0.177 -0.297
## x95 0.652 -0.300 -0.117
Contribu<-round(CaliyPalmira.FMA$quanti.var$contrib[,c(1,2,3)],3);Contribu
##      Dim.1  Dim.2  Dim.3
## x71  4.620 20.610  0.094
## x72  4.527 17.215  0.109
## x73  4.562 18.004  0.128
## x74  3.287  8.178  3.647
## x75  0.516  0.187  2.237
## x76  2.533 13.476  0.271
## x77  2.034  0.057  9.172
## x81  6.924  3.594 25.829
## x82 11.764  4.187  0.055
## x83  7.713  4.627 19.396
## x84 12.301  0.880  0.001
## x91  1.851  1.583 18.745
## x92 10.029  1.113  9.175
## x93  9.969  1.351  4.290
## x94 10.615  1.276  5.929
## x95  6.755  3.664  0.920
Tabla<-cbind(Coordenadas,Contribu);Tabla
##     Dim.1  Dim.2  Dim.3  Dim.1  Dim.2  Dim.3
## x71 0.534  0.705 -0.037  4.620 20.610  0.094
## x72 0.529  0.644 -0.040  4.527 17.215  0.109
## x73 0.531  0.659 -0.043  4.562 18.004  0.128
## x74 0.451  0.444  0.230  3.287  8.178  3.647
## x75 0.178  0.067  0.180  0.516  0.187  2.237
## x76 0.396  0.570  0.063  2.533 13.476  0.271
## x77 0.354 -0.037  0.365  2.034  0.057  9.172
## x81 0.608 -0.274  0.570  6.924  3.594 25.829
## x82 0.792 -0.295 -0.026 11.764  4.187  0.055
## x83 0.641 -0.310  0.494  7.713  4.627 19.396
## x84 0.810 -0.135  0.003 12.301  0.880  0.001
## x91 0.342 -0.197 -0.528  1.851  1.583 18.745
## x92 0.795 -0.165 -0.369 10.029  1.113  9.175
## x93 0.793 -0.182 -0.252  9.969  1.351  4.290
## x94 0.818 -0.177 -0.297 10.615  1.276  5.929
## x95 0.652 -0.300 -0.117  6.755  3.664  0.920
plot.MFA(CaliyPalmira.FMA, choix="group",title="Representación de grupos")

#plot.MFA(CaliyPalmira.FMA, choix="ind",lab.par=FALSE)
library(ggrepel)
options(ggrepel.max.overlaps = Inf)
#dim 1-2
plot.MFA(CaliyPalmira.FMA, choix="var",habillage='group',title="Círculo de correlación", repel = TRUE)

IPRG

#--------------------------ÍNDICE DE PERCEPCIÓN GLOBAL-----------------------------------------------#####

res.mfa_severidad=CaliyPalmira.FMA

#Datos
Severidad=CaliyPalmira[,c(19:34)]

Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,1];Coord1_severidad
##       x71       x72       x73       x74       x75       x76       x77       x81 
## 0.5341653 0.5287287 0.5308074 0.4505285 0.1784305 0.3955389 0.3544335 0.6076142 
##       x82       x83       x84       x91       x92       x93       x94       x95 
## 0.7919927 0.6412808 0.8098680 0.3415608 0.7949994 0.7926213 0.8178959 0.6524851
lp_severidad<-res.mfa_severidad$eig[1];lp_severidad #VALOR PROPIO
## [1] 1.95372
Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
##       x71       x72       x73       x74       x75       x76       x77       x81 
## 0.3821594 0.3782699 0.3797571 0.3223229 0.1276550 0.2829815 0.2535734 0.4347071 
##       x82       x83       x84       x91       x92       x93       x94       x95 
## 0.5666176 0.4587934 0.5794061 0.2443638 0.5687687 0.5670673 0.5851496 0.4668093
Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
##        x71        x72        x73        x74        x75        x76        x77 
## 0.05791696 0.05732750 0.05755288 0.04884863 0.01934636 0.04288637 0.03842951 
##        x81        x82        x83        x84        x91        x92        x93 
## 0.06588067 0.08587194 0.06953098 0.08781007 0.03703379 0.08619794 0.08594010 
##        x94        x95 
## 0.08868050 0.07074581
sum(Pesos_severidad)
## [1] 1
data.frame(round(Pesos_severidad,3))
##     round.Pesos_severidad..3.
## x71                     0.058
## x72                     0.057
## x73                     0.058
## x74                     0.049
## x75                     0.019
## x76                     0.043
## x77                     0.038
## x81                     0.066
## x82                     0.086
## x83                     0.070
## x84                     0.088
## x91                     0.037
## x92                     0.086
## x93                     0.086
## x94                     0.089
## x95                     0.071
res.mfa_severidad$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.95371969              37.354849                          37.35485
## comp 2  0.76278418              14.584328                          51.93918
## comp 3  0.46061251               8.806847                          60.74602
## comp 4  0.31307706               5.985990                          66.73201
## comp 5  0.27980231               5.349781                          72.08179
## comp 6  0.24472973               4.679198                          76.76099
## comp 7  0.21919631               4.191003                          80.95200
## comp 8  0.19355882               3.700818                          84.65281
## comp 9  0.16004627               3.060062                          87.71288
## comp 10 0.14217163               2.718302                          90.43118
## comp 11 0.11679648               2.233132                          92.66431
## comp 12 0.10867422               2.077836                          94.74215
## comp 13 0.08312730               1.589382                          96.33153
## comp 14 0.07144414               1.366002                          97.69753
## comp 15 0.06704119               1.281818                          98.97935
## comp 16 0.05338169               1.020651                         100.00000
Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
Imin_severidad<-min(Ind_severidad);Imin_severidad
## [1] 0.9629662
Imax_severidad<-max(Ind_severidad);Imax_severidad
## [1] 6.613507
Ind_2_severidad<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
min(Ind_2_severidad)
## [1] 0
max(Ind_2_severidad)
## [1] 100
dim(Ind_2_severidad)
## [1] 1443    1
View(Ind_2_severidad)

C8<-cbind(Ind_2_severidad,CaliyPalmira)

summary(C8)
##  Ind_2_severidad       x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 41.24   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 53.47   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 54.10   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 66.20   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0

K-means

set.seed(1234)
kmeans <- kmeans(C8$Ind_2_severidad, 3, iter.max = 1000, nstart = 10);kmeans
## K-means clustering with 3 clusters of sizes 646, 433, 364
## 
## Cluster means:
##       [,1]
## 1 54.69625
## 2 33.72363
## 3 77.28025
## 
## Clustering vector:
##    [1] 2 2 1 1 1 3 2 1 1 2 1 2 1 1 1 1 2 1 3 1 3 2 2 2 1 2 2 1 2 1 1 1 2 3 1 2 1
##   [38] 3 3 1 3 2 1 1 1 2 2 2 2 1 2 2 2 3 1 1 2 1 2 2 3 2 2 2 1 1 1 1 3 3 1 2 1 2
##   [75] 2 1 2 1 3 1 3 1 1 1 2 3 2 2 3 1 2 1 1 1 2 3 1 2 2 1 3 2 2 1 3 3 3 3 1 1 3
##  [112] 3 1 3 2 2 2 1 2 1 3 3 1 1 2 1 3 1 3 2 3 1 3 2 1 2 2 3 1 2 3 1 1 1 2 1 1 2
##  [149] 1 1 2 2 3 1 3 2 1 1 1 3 1 3 1 1 1 3 1 2 3 2 3 3 1 2 1 1 2 1 1 1 3 2 3 2 3
##  [186] 1 2 1 1 1 1 1 2 2 3 2 1 1 2 1 2 1 1 3 1 3 1 1 2 3 3 2 1 1 1 1 1 3 2 3 1 1
##  [223] 1 1 1 2 1 2 2 1 3 1 1 1 1 2 2 1 2 2 1 1 1 2 2 2 1 3 2 3 2 2 1 1 1 2 1 2 3
##  [260] 1 3 1 1 2 2 1 2 1 1 2 3 2 2 2 2 1 1 3 3 1 1 1 3 1 2 1 3 2 1 1 1 1 2 1 2 2
##  [297] 2 1 1 3 2 1 2 2 3 1 2 1 1 3 1 3 2 2 1 1 1 2 3 2 1 1 2 2 1 3 3 2 1 2 1 1 3
##  [334] 3 1 2 1 3 2 2 2 1 1 2 1 2 2 1 1 3 3 1 2 1 1 2 3 2 2 3 1 3 2 2 1 2 3 2 3 2
##  [371] 1 1 3 1 3 1 3 2 2 1 1 3 2 3 3 1 3 2 2 1 2 2 1 2 1 1 2 1 2 2 1 2 2 2 1 2 2
##  [408] 2 1 1 3 1 2 1 1 3 1 1 2 1 1 2 3 3 3 1 3 1 1 1 1 3 2 2 3 3 1 2 1 2 2 2 1 3
##  [445] 2 2 3 1 3 3 1 3 3 1 1 1 1 3 1 3 2 1 1 2 1 1 1 1 3 1 3 1 2 3 1 1 3 1 1 1 2
##  [482] 3 1 1 1 2 3 3 3 2 1 1 2 2 3 1 1 1 1 3 2 3 1 2 1 1 1 2 2 2 2 1 1 1 2 2 3 1
##  [519] 2 2 2 3 2 2 1 1 3 2 2 1 1 2 1 1 1 2 2 2 1 2 2 1 3 1 3 1 1 1 1 2 1 3 1 2 2
##  [556] 3 2 2 1 2 2 2 1 2 1 2 1 2 1 2 1 3 1 1 2 1 2 1 1 1 1 1 1 2 2 2 2 1 2 1 1 2
##  [593] 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 2 1 3 2 1 1 3 1 3 2 3 3 2 3 3 2 1 1 1 1 3 2
##  [630] 2 3 1 2 3 1 1 2 3 2 2 2 2 1 1 2 1 1 1 2 3 3 3 1 1 1 3 1 3 1 1 3 2 3 1 3 1
##  [667] 2 1 2 1 3 1 3 1 3 1 1 2 3 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 3 1 3 1 3 2 2 1 1
##  [704] 1 3 3 1 1 2 1 1 3 2 2 1 1 2 1 1 1 1 2 1 1 1 3 1 2 1 2 2 1 2 1 1 2 2 1 1 1
##  [741] 1 3 3 3 1 3 1 3 1 1 3 1 3 3 1 1 3 1 1 1 1 1 2 2 1 2 1 2 1 2 1 3 3 3 2 1 2
##  [778] 1 1 3 3 1 1 1 3 2 1 1 2 3 1 1 1 3 2 3 2 1 2 2 1 3 2 2 1 1 3 3 2 2 2 1 3 3
##  [815] 1 1 3 1 1 1 2 1 2 2 1 1 1 1 3 1 2 1 3 1 3 3 2 3 1 1 1 2 3 1 1 1 1 1 1 3 1
##  [852] 1 2 3 3 1 2 1 1 2 3 2 1 3 3 2 1 3 1 2 1 1 1 2 3 3 2 3 2 1 1 3 1 2 1 1 1 3
##  [889] 1 2 2 2 1 3 1 2 1 2 2 1 1 2 2 2 3 3 2 3 2 1 1 1 2 1 1 3 1 3 1 1 1 1 2 1 1
##  [926] 3 1 1 2 3 1 2 1 3 1 2 3 1 2 3 2 2 3 3 3 1 1 2 2 3 3 3 3 1 1 3 2 3 2 1 3 1
##  [963] 2 2 2 2 1 1 1 3 3 1 1 3 3 2 3 1 3 1 1 2 2 2 2 2 1 1 3 3 3 3 2 2 1 2 1 3 1
## [1000] 1 2 2 3 3 3 1 3 1 1 1 2 1 2 3 3 1 2 2 3 3 2 3 1 3 1 1 2 3 3 2 1 3 3 2 3 1
## [1037] 2 2 1 2 2 3 1 3 3 3 3 1 2 3 1 2 1 1 3 1 3 1 1 1 1 2 1 2 3 2 3 3 1 1 3 1 2
## [1074] 2 1 2 1 3 1 2 3 1 1 1 3 3 1 1 2 2 1 1 3 2 3 2 2 2 2 3 2 1 3 2 1 2 1 3 1 3
## [1111] 1 1 1 1 3 1 3 2 2 1 1 1 2 3 1 3 1 1 1 1 2 1 1 1 3 1 3 3 1 1 2 2 2 1 1 3 2
## [1148] 3 1 3 2 1 1 3 1 2 2 1 1 2 1 3 1 1 2 2 1 3 3 2 2 2 1 2 1 2 1 3 1 1 2 1 2 2
## [1185] 2 2 3 2 1 1 3 1 2 2 1 1 1 1 1 1 3 1 2 3 3 2 2 3 3 2 3 2 1 1 3 2 3 3 2 3 2
## [1222] 2 2 3 3 3 3 1 1 1 1 3 1 3 1 1 1 1 2 1 1 3 3 3 2 3 3 3 1 1 3 1 3 1 3 1 2 1
## [1259] 1 1 2 3 3 3 3 3 2 1 1 1 2 1 2 1 2 1 3 2 3 2 2 2 3 3 2 3 1 2 3 1 3 3 1 3 2
## [1296] 1 3 1 2 3 1 2 2 1 1 3 3 1 3 1 3 1 1 1 1 3 1 3 2 2 3 2 3 1 3 1 1 3 3 3 3 2
## [1333] 3 3 3 3 1 3 2 3 1 1 1 3 1 2 3 1 3 2 3 1 2 1 2 2 3 3 2 1 3 2 3 1 1 2 2 3 1
## [1370] 1 2 2 1 1 2 1 1 1 1 2 3 3 3 3 2 1 3 2 1 2 1 1 1 1 1 2 1 1 3 2 3 2 2 1 2 3
## [1407] 1 1 2 1 1 1 1 1 2 3 3 1 1 2 3 1 1 1 1 1 3 3 1 1 3 1 3 1 1 3 1 2 1 1 1 3 1
## 
## Within cluster sum of squares by cluster:
## [1] 23747.37 32212.71 27070.04
##  (between_SS / total_SS =  81.9 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
#windows();fviz_cluster(kmeans, data = C8)

C8$cluster <- kmeans$cluster
summary(C8)
##  Ind_2_severidad       x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 41.24   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 53.47   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 54.10   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 66.20   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster     
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :1.805  
##  3rd Qu.:3.000  
##  Max.   :3.000
kmeans$centers
##       [,1]
## 1 54.69625
## 2 33.72363
## 3 77.28025
sum(kmeans$cluster==1)/1443#bajo
## [1] 0.4476784
sum(kmeans$cluster==2)/1443#alto
## [1] 0.3000693
sum(kmeans$cluster==3)/1443#medio
## [1] 0.2522523
tapply(Ind_2_severidad,kmeans$cluster,summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   44.26   49.44   54.52   54.70   59.80   65.94 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   29.76   35.91   33.72   40.02   44.17 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   66.05   70.30   75.33   77.28   82.27  100.00

Sin x75

AFM sin x75 [23]

##Análisis factorial múltiple
CaliyPalmira.FMA<-MFA(CaliyPalmira[,c(19:22,24:34)],
                      group=c(#2,
                        #5,
                        #3,
                        #4,
                        #2,
                        #2, #3
                        6, #7
                        4,
                        5 #6
                      ),
                         type=c(#'s',
                             #'s',
                             #'n',
                             #'s', #n
                             #'s',
                             #'s', #n
                             's',
                             's',
                             's'#,
                             #'s'
                             ),
                      name.group=c(#"Voluntariedad",
                                   #"Conocimiento",  
                                   #"Incertidumbre",
                                   #"Confianza gubernamental",
                                   #"Confianza sector salud",
                                   #"Confianza medios",
                                   "Probabilidad de contagio",
                                   "Severidad",
                                   "Susceptibilidad"), #,
                                   #"Cumplimiento"),
                      #num.group.sup=c(3),
                      graph=FALSE)

CaliyPalmira.FMA$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.94865806              39.532688                          39.53269
## comp 2  0.76674789              15.555118                          55.08781
## comp 3  0.45760806               9.283556                          64.37136
## comp 4  0.28914893               5.866003                          70.23737
## comp 5  0.24548788               4.980246                          75.21761
## comp 6  0.22110364               4.485559                          79.70317
## comp 7  0.19526277               3.961322                          83.66449
## comp 8  0.16029229               3.251871                          86.91636
## comp 9  0.14254013               2.891731                          89.80809
## comp 10 0.11731053               2.379895                          92.18799
## comp 11 0.10916646               2.214675                          94.40266
## comp 12 0.08324968               1.688898                          96.09156
## comp 13 0.07152339               1.451005                          97.54257
## comp 14 0.06767919               1.373017                          98.91558
## comp 15 0.05345343               1.084417                         100.00000
CaliyPalmira.FMA$group$contrib
##                             Dim.1     Dim.2    Dim.3     Dim.4    Dim.5
## Probabilidad de contagio 21.85591 77.770448 13.53163 79.883870 26.68765
## Severidad                38.76336 13.335142 46.75953 14.329403 18.06880
## Susceptibilidad          39.38073  8.894409 39.70884  5.786728 55.24355
CaliyPalmira.FMA$group$correlation[,1:3]
##                              Dim.1     Dim.2     Dim.3
## Probabilidad de contagio 0.6593827 0.7815111 0.4180963
## Severidad                0.8742936 0.3292176 0.5899898
## Susceptibilidad          0.8782315 0.2750706 0.4726707
Coordenadas<-round(CaliyPalmira.FMA$quanti.var$coord[,c(1,2,3)],3);Coordenadas
##     Dim.1  Dim.2  Dim.3
## x71 0.536  0.706 -0.026
## x72 0.530  0.645 -0.032
## x73 0.532  0.659 -0.034
## x74 0.451  0.443  0.240
## x76 0.395  0.568  0.061
## x77 0.353 -0.041  0.361
## x81 0.607 -0.275  0.577
## x82 0.792 -0.295 -0.022
## x83 0.640 -0.312  0.500
## x84 0.810 -0.136  0.005
## x91 0.342 -0.196 -0.534
## x92 0.796 -0.165 -0.369
## x93 0.794 -0.182 -0.249
## x94 0.818 -0.177 -0.299
## x95 0.653 -0.300 -0.116
Contribu<-round(CaliyPalmira.FMA$quanti.var$contrib[,c(1,2,3)],3);Contribu
##      Dim.1  Dim.2  Dim.3
## x71  4.702 20.725  0.046
## x72  4.597 17.284  0.069
## x73  4.635 18.085  0.081
## x74  3.329  8.172  4.004
## x76  2.555 13.435  0.262
## x77  2.037  0.069  9.069
## x81  6.920  3.627 26.693
## x82 11.806  4.164  0.039
## x83  7.708  4.659 20.026
## x84 12.329  0.885  0.002
## x91  1.862  1.552 19.331
## x92 10.077  1.096  9.212
## x93 10.019  1.333  4.212
## x94 10.644  1.271  6.042
## x95  6.778  3.642  0.911
Tabla<-cbind(Coordenadas,Contribu);Tabla
##     Dim.1  Dim.2  Dim.3  Dim.1  Dim.2  Dim.3
## x71 0.536  0.706 -0.026  4.702 20.725  0.046
## x72 0.530  0.645 -0.032  4.597 17.284  0.069
## x73 0.532  0.659 -0.034  4.635 18.085  0.081
## x74 0.451  0.443  0.240  3.329  8.172  4.004
## x76 0.395  0.568  0.061  2.555 13.435  0.262
## x77 0.353 -0.041  0.361  2.037  0.069  9.069
## x81 0.607 -0.275  0.577  6.920  3.627 26.693
## x82 0.792 -0.295 -0.022 11.806  4.164  0.039
## x83 0.640 -0.312  0.500  7.708  4.659 20.026
## x84 0.810 -0.136  0.005 12.329  0.885  0.002
## x91 0.342 -0.196 -0.534  1.862  1.552 19.331
## x92 0.796 -0.165 -0.369 10.077  1.096  9.212
## x93 0.794 -0.182 -0.249 10.019  1.333  4.212
## x94 0.818 -0.177 -0.299 10.644  1.271  6.042
## x95 0.653 -0.300 -0.116  6.778  3.642  0.911
plot.MFA(CaliyPalmira.FMA, choix="group",title="Representación de grupos")

#plot.MFA(CaliyPalmira.FMA, choix="ind",lab.par=FALSE)
library(ggrepel)
options(ggrepel.max.overlaps = Inf)
#dim 1-2
plot.MFA(CaliyPalmira.FMA, choix="var",habillage='group',title="Círculo de correlación", repel = TRUE)

IPRG

#--------------------------ÍNDICE DE PERCEPCIÓN GLOBAL-----------------------------------------------#####

res.mfa_severidad=CaliyPalmira.FMA

#Datos
Severidad=CaliyPalmira[,c(19:22,24:34)]

Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,1];Coord1_severidad
##       x71       x72       x73       x74       x76       x77       x81       x82 
## 0.5360222 0.5299913 0.5321828 0.4510423 0.3951212 0.3528036 0.6066522 0.7923790 
##       x83       x84       x91       x92       x93       x94       x95 
## 0.6402254 0.8097176 0.3421249 0.7958928 0.7935924 0.8179807 0.6527216
lp_severidad<-res.mfa_severidad$eig[1];lp_severidad #VALOR PROPIO
## [1] 1.948658
Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
##       x71       x72       x73       x74       x76       x77       x81       x82 
## 0.3839856 0.3796653 0.3812352 0.3231093 0.2830496 0.2527349 0.4345822 0.5676298 
##       x83       x84       x91       x92       x93       x94       x95 
## 0.4586328 0.5800504 0.2450851 0.5701469 0.5684989 0.5859698 0.4675846
Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
##        x71        x72        x73        x74        x76        x77        x81 
## 0.05923912 0.05857261 0.05881480 0.04984747 0.04366728 0.03899051 0.06704488 
##        x82        x83        x84        x91        x92        x93        x94 
## 0.08757069 0.07075526 0.08948688 0.03781033 0.08795902 0.08770478 0.09040009 
##        x95 
## 0.07213629
sum(Pesos_severidad)
## [1] 1
data.frame(round(Pesos_severidad,3))
##     round.Pesos_severidad..3.
## x71                     0.059
## x72                     0.059
## x73                     0.059
## x74                     0.050
## x76                     0.044
## x77                     0.039
## x81                     0.067
## x82                     0.088
## x83                     0.071
## x84                     0.089
## x91                     0.038
## x92                     0.088
## x93                     0.088
## x94                     0.090
## x95                     0.072
res.mfa_severidad$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.94865806              39.532688                          39.53269
## comp 2  0.76674789              15.555118                          55.08781
## comp 3  0.45760806               9.283556                          64.37136
## comp 4  0.28914893               5.866003                          70.23737
## comp 5  0.24548788               4.980246                          75.21761
## comp 6  0.22110364               4.485559                          79.70317
## comp 7  0.19526277               3.961322                          83.66449
## comp 8  0.16029229               3.251871                          86.91636
## comp 9  0.14254013               2.891731                          89.80809
## comp 10 0.11731053               2.379895                          92.18799
## comp 11 0.10916646               2.214675                          94.40266
## comp 12 0.08324968               1.688898                          96.09156
## comp 13 0.07152339               1.451005                          97.54257
## comp 14 0.06767919               1.373017                          98.91558
## comp 15 0.05345343               1.084417                         100.00000
Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
Imin_severidad<-min(Ind_severidad);Imin_severidad
## [1] 0.9621897
Imax_severidad<-max(Ind_severidad);Imax_severidad
## [1] 6.645633
Ind_2_severidad<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
min(Ind_2_severidad)
## [1] 0
max(Ind_2_severidad)
## [1] 100
dim(Ind_2_severidad)
## [1] 1443    1
View(Ind_2_severidad)

C8<-cbind(Ind_2_severidad,CaliyPalmira)

summary(C8)
##  Ind_2_severidad       x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 41.16   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 53.17   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 53.90   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 65.97   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0

K-means

set.seed(1234)
kmeans <- kmeans(C8$Ind_2_severidad, 3, iter.max = 1000, nstart = 10);kmeans
## K-means clustering with 3 clusters of sizes 642, 451, 350
## 
## Cluster means:
##       [,1]
## 1 55.04913
## 2 33.77845
## 3 77.72700
## 
## Clustering vector:
##    [1] 2 2 1 1 1 3 2 1 1 2 1 2 1 1 1 1 2 1 3 1 3 2 2 2 1 2 2 1 2 1 1 1 2 3 1 2 1
##   [38] 3 3 1 3 2 1 1 1 2 2 2 2 1 2 2 2 3 1 1 2 1 2 2 3 2 2 2 1 2 1 1 3 3 1 2 1 2
##   [75] 2 1 2 1 3 1 3 1 1 1 2 3 2 2 3 1 2 1 1 1 2 3 1 2 2 1 3 2 2 1 3 3 3 3 1 1 3
##  [112] 3 1 3 2 2 2 1 2 1 3 3 1 1 2 1 3 1 3 2 3 1 3 2 1 2 2 3 1 2 3 1 1 1 2 1 1 2
##  [149] 1 1 2 2 3 1 3 2 1 1 1 3 1 3 1 1 1 3 1 2 3 2 3 3 1 2 1 1 2 1 1 1 3 2 3 2 3
##  [186] 1 2 1 1 1 1 1 2 2 3 2 1 1 2 1 2 1 1 3 1 3 1 1 2 3 3 2 1 1 1 1 1 3 2 3 1 1
##  [223] 1 1 1 2 1 2 2 1 3 1 1 1 1 2 2 1 2 2 1 1 1 2 2 2 1 3 2 3 2 2 1 1 1 2 1 2 3
##  [260] 1 3 1 1 2 2 1 2 1 1 2 1 2 2 2 2 1 1 3 3 1 1 1 3 1 2 1 3 2 1 1 1 1 2 1 2 2
##  [297] 2 1 1 3 2 1 2 2 3 1 2 1 1 3 1 3 2 2 1 1 1 2 3 2 1 1 2 2 1 3 3 2 1 2 1 1 3
##  [334] 3 1 2 1 3 2 2 2 1 1 2 1 2 2 1 1 3 3 1 2 1 1 2 3 2 2 3 1 3 2 2 1 2 3 2 3 2
##  [371] 1 1 3 1 3 1 3 2 2 1 1 3 2 3 3 1 3 2 2 1 2 2 1 2 1 1 2 1 2 2 1 2 2 2 1 2 2
##  [408] 2 3 1 3 1 2 1 1 3 1 1 2 1 1 2 3 3 3 1 3 1 1 1 1 3 2 2 3 3 1 2 1 2 2 2 1 3
##  [445] 2 2 3 1 3 3 1 3 3 1 1 1 1 3 1 3 2 1 1 2 1 1 2 1 3 1 3 1 2 3 2 1 3 1 2 1 2
##  [482] 3 1 1 1 2 3 3 3 2 1 1 2 2 3 1 1 1 1 3 2 3 1 2 1 1 1 2 2 2 2 1 1 1 2 2 3 1
##  [519] 2 2 2 3 2 2 1 1 3 2 2 1 1 2 1 2 1 2 2 2 1 2 2 1 3 1 3 1 1 1 1 2 1 3 1 2 2
##  [556] 3 2 2 1 2 2 2 1 2 1 2 1 2 1 2 1 3 1 1 2 1 2 1 1 1 1 1 1 2 2 2 2 1 2 1 1 2
##  [593] 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 2 1 3 2 1 1 3 1 1 2 3 1 2 3 3 2 1 1 1 1 3 2
##  [630] 2 3 1 2 3 1 1 2 3 2 2 2 2 1 1 2 2 1 1 2 3 3 3 1 1 1 3 1 3 1 1 3 2 3 1 3 1
##  [667] 2 1 2 1 3 1 1 1 3 1 1 2 3 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 3 1 3 1 3 2 2 1 1
##  [704] 1 3 3 1 1 2 1 1 3 2 2 1 1 2 1 1 1 1 2 1 1 1 3 2 2 1 2 2 1 2 1 1 2 2 1 1 2
##  [741] 1 1 3 3 1 3 1 3 1 1 3 1 3 3 1 1 3 1 1 1 1 1 2 2 1 2 1 2 1 2 1 3 3 3 2 1 2
##  [778] 1 1 3 3 1 1 1 3 2 1 1 2 3 1 1 1 3 2 3 2 1 2 2 1 3 2 2 1 1 3 3 2 2 2 1 3 3
##  [815] 1 1 3 1 1 1 2 1 2 2 1 1 1 1 3 1 2 1 3 1 3 3 2 3 1 1 1 2 3 1 1 1 1 1 1 3 1
##  [852] 1 2 3 3 1 2 2 1 2 3 2 1 3 3 2 2 3 2 2 1 1 1 2 3 3 2 3 2 1 1 3 1 2 1 1 1 3
##  [889] 1 2 2 2 1 3 1 2 1 2 2 1 1 2 2 2 3 3 2 3 2 1 1 1 2 1 1 3 1 3 1 1 1 1 2 1 1
##  [926] 3 1 1 2 3 1 2 1 3 1 2 3 1 2 3 2 2 3 3 3 1 1 2 2 3 3 3 3 1 1 1 2 3 2 1 3 1
##  [963] 2 2 2 2 1 1 1 3 3 1 1 3 3 2 3 1 3 1 1 2 2 2 2 2 1 1 3 3 3 1 2 2 1 2 1 3 1
## [1000] 1 2 2 3 3 3 1 3 1 1 1 2 1 2 3 3 1 2 2 3 3 2 3 1 3 1 2 2 3 3 2 1 3 3 2 3 1
## [1037] 2 2 1 2 2 3 1 3 3 3 1 1 2 3 1 2 1 1 3 1 3 1 1 1 1 2 1 2 3 2 3 3 1 1 3 1 2
## [1074] 2 1 2 1 3 2 2 3 1 1 1 3 3 1 1 2 2 1 1 3 2 3 2 2 2 2 3 2 2 3 2 1 2 1 3 1 3
## [1111] 1 1 1 1 3 1 3 2 2 1 1 1 2 3 1 3 2 1 1 1 2 1 1 1 3 1 3 3 1 1 2 2 2 1 1 3 2
## [1148] 1 1 3 2 1 1 3 1 2 2 1 1 2 1 3 1 1 2 2 1 3 3 2 2 2 1 2 2 2 1 3 1 1 2 1 2 2
## [1185] 2 2 3 2 1 1 3 1 2 2 1 1 1 1 1 1 3 1 2 3 3 2 2 3 3 2 1 2 1 2 3 2 3 3 2 3 2
## [1222] 2 2 3 3 3 3 1 1 1 1 3 1 3 1 1 1 1 2 1 1 3 1 3 2 3 3 3 1 1 3 1 3 1 3 1 2 1
## [1259] 1 1 2 3 3 3 3 3 2 1 1 1 2 1 2 1 2 1 3 2 1 2 2 2 3 3 2 3 1 2 3 1 3 3 1 3 2
## [1296] 1 3 1 2 1 1 2 2 2 1 3 3 1 3 1 3 1 1 1 1 3 1 3 2 2 3 2 3 1 3 1 1 3 3 3 3 2
## [1333] 3 3 3 3 1 3 2 3 1 1 1 3 1 2 3 1 3 2 3 1 2 1 2 2 3 3 2 1 3 2 3 1 1 2 2 3 1
## [1370] 1 2 2 1 1 2 1 1 1 1 2 3 3 3 3 2 1 1 2 1 2 1 1 1 1 1 2 1 1 3 2 3 2 2 1 2 3
## [1407] 1 1 2 1 1 1 1 1 2 3 3 1 1 2 3 1 1 1 1 1 3 3 1 1 3 1 3 1 1 3 1 2 1 1 1 1 1
## 
## Within cluster sum of squares by cluster:
## [1] 24012.53 34717.25 25942.18
##  (between_SS / total_SS =  81.9 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
#windows();fviz_cluster(kmeans, data = C8)

C8$cluster <- kmeans$cluster
summary(C8)
##  Ind_2_severidad       x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 41.16   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 53.17   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 53.90   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 65.97   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster     
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :1.798  
##  3rd Qu.:2.000  
##  Max.   :3.000
kmeans$centers
##       [,1]
## 1 55.04913
## 2 33.77845
## 3 77.72700
sum(kmeans$cluster==1)/1443#bajo
## [1] 0.4449064
sum(kmeans$cluster==2)/1443#alto
## [1] 0.3125433
sum(kmeans$cluster==3)/1443#medio
## [1] 0.2425502
tapply(Ind_2_severidad,kmeans$cluster,summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   44.43   49.67   54.74   55.05   60.31   66.35 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   29.34   36.06   33.78   40.28   44.39 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   66.45   70.73   75.56   77.73   82.70  100.00

Sin x75 y x77

AFM sin x75 [23] y x77 [25]

##Análisis factorial múltiple
CaliyPalmira.FMA<-MFA(CaliyPalmira[,c(19:22,24,26:34)],
                      group=c(#2,
                        #5,
                        #3,
                        #4,
                        #2,
                        #2, #3
                        5, #7
                        4,
                        5 #6
                      ),
                         type=c(#'s',
                             #'s',
                             #'n',
                             #'s', #n
                             #'s',
                             #'s', #n
                             's',
                             's',
                             's'#,
                             #'s'
                             ),
                      name.group=c(#"Voluntariedad",
                                   #"Conocimiento",  
                                   #"Incertidumbre",
                                   #"Confianza gubernamental",
                                   #"Confianza sector salud",
                                   #"Confianza medios",
                                   "Probabilidad de contagio",
                                   "Severidad",
                                   "Susceptibilidad"), #,
                                   #"Cumplimiento"),
                      #num.group.sup=c(3),
                      graph=FALSE)

CaliyPalmira.FMA$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.92075448              41.445703                          41.44570
## comp 2  0.77532670              16.729864                          58.17557
## comp 3  0.44107863               9.517517                          67.69308
## comp 4  0.24670485               5.323354                          73.01644
## comp 5  0.22646400               4.886600                          77.90304
## comp 6  0.19852715               4.283784                          82.18682
## comp 7  0.16336268               3.525011                          85.71183
## comp 8  0.15646009               3.376068                          89.08790
## comp 9  0.11867588               2.560767                          91.64867
## comp 10 0.10988535               2.371087                          94.01976
## comp 11 0.08344743               1.800614                          95.82037
## comp 12 0.07156271               1.544168                          97.36454
## comp 13 0.06860665               1.480382                          98.84492
## comp 14 0.05353089               1.155080                         100.00000
CaliyPalmira.FMA$group$contrib
##                             Dim.1     Dim.2     Dim.3    Dim.4    Dim.5
## Probabilidad de contagio 20.86834 76.906147  4.648738 27.07576 79.18873
## Severidad                39.01107 13.630131 55.701557 17.58221  3.16972
## Susceptibilidad          40.12059  9.463722 39.649705 55.34203 17.64155
CaliyPalmira.FMA$group$correlation[,1:3]
##                              Dim.1     Dim.2     Dim.3
## Probabilidad de contagio 0.6338206 0.7730918 0.2634208
## Severidad                0.8712772 0.3338554 0.6133721
## Susceptibilidad          0.8799128 0.2838135 0.4633125
Coordenadas<-round(CaliyPalmira.FMA$quanti.var$coord[,c(1,2,3)],3);Coordenadas
##     Dim.1  Dim.2  Dim.3
## x71 0.544  0.700  0.014
## x72 0.537  0.640  0.027
## x73 0.542  0.653  0.011
## x74 0.452  0.441 -0.247
## x76 0.395  0.567 -0.033
## x81 0.597 -0.276 -0.602
## x82 0.790 -0.303  0.004
## x83 0.636 -0.315 -0.553
## x84 0.812 -0.145 -0.045
## x91 0.347 -0.203  0.531
## x92 0.800 -0.175  0.357
## x93 0.795 -0.191  0.238
## x94 0.822 -0.188  0.278
## x95 0.646 -0.305  0.143
Contribu<-round(CaliyPalmira.FMA$quanti.var$contrib[,c(1,2,3)],3);Contribu
##      Dim.1  Dim.2  Dim.3
## x71  4.989 20.487  0.015
## x72  4.852 17.079  0.054
## x73  4.948 17.817  0.009
## x74  3.446  8.120  4.491
## x76  2.633 13.403  0.080
## x81  6.799  3.606 30.140
## x82 11.921  4.329  0.002
## x83  7.708  4.701 25.390
## x84 12.583  0.994  0.170
## x91  1.949  1.645 19.825
## x92 10.322  1.228  8.978
## x93 10.209  1.460  3.996
## x94 10.902  1.413  5.418
## x95  6.739  3.719  1.433
Tabla<-cbind(Coordenadas,Contribu);Tabla
##     Dim.1  Dim.2  Dim.3  Dim.1  Dim.2  Dim.3
## x71 0.544  0.700  0.014  4.989 20.487  0.015
## x72 0.537  0.640  0.027  4.852 17.079  0.054
## x73 0.542  0.653  0.011  4.948 17.817  0.009
## x74 0.452  0.441 -0.247  3.446  8.120  4.491
## x76 0.395  0.567 -0.033  2.633 13.403  0.080
## x81 0.597 -0.276 -0.602  6.799  3.606 30.140
## x82 0.790 -0.303  0.004 11.921  4.329  0.002
## x83 0.636 -0.315 -0.553  7.708  4.701 25.390
## x84 0.812 -0.145 -0.045 12.583  0.994  0.170
## x91 0.347 -0.203  0.531  1.949  1.645 19.825
## x92 0.800 -0.175  0.357 10.322  1.228  8.978
## x93 0.795 -0.191  0.238 10.209  1.460  3.996
## x94 0.822 -0.188  0.278 10.902  1.413  5.418
## x95 0.646 -0.305  0.143  6.739  3.719  1.433
plot.MFA(CaliyPalmira.FMA, choix="group",title="Representación de grupos")

#plot.MFA(CaliyPalmira.FMA, choix="ind",lab.par=FALSE)
library(ggrepel)
options(ggrepel.max.overlaps = Inf)
#dim 1-2
plot.MFA(CaliyPalmira.FMA, choix="var",habillage='group',title="Círculo de correlación", repel = TRUE)

IPRG

#--------------------------ÍNDICE DE PERCEPCIÓN GLOBAL-----------------------------------------------#####

res.mfa_severidad=CaliyPalmira.FMA

#Datos
Severidad=CaliyPalmira[,c(19:22,24,26:34)]

Coord1_severidad <-res.mfa_severidad$global.pca$var$coord[,1];Coord1_severidad
##       x71       x72       x73       x74       x76       x81       x82       x83 
## 0.5440844 0.5365410 0.5418145 0.4521674 0.3952785 0.5969804 0.7904771 0.6356579 
##       x84       x91       x92       x93       x94       x95 
## 0.8121504 0.3474920 0.7997088 0.7953142 0.8218740 0.6461650
lp_severidad<-res.mfa_severidad$eig[1];lp_severidad #VALOR PROPIO
## [1] 1.920754
Vp_severidad<-Coord1_severidad/sqrt(lp_severidad);Vp_severidad #VECTOR PROPIO
##       x71       x72       x73       x74       x76       x81       x82       x83 
## 0.3925819 0.3871390 0.3909441 0.3262596 0.2852117 0.4307489 0.5703657 0.4586564 
##       x84       x91       x92       x93       x94       x95 
## 0.5860039 0.2507315 0.5770267 0.5738559 0.5930200 0.4662378
Pesos_severidad<-(Vp_severidad/sum(Vp_severidad));Pesos_severidad # PESOS RELATIVOS DE LAS VARIABLES
##        x71        x72        x73        x74        x76        x81        x82 
## 0.06242574 0.06156025 0.06216531 0.05187961 0.04535244 0.06849479 0.09069571 
##        x83        x84        x91        x92        x93        x94        x95 
## 0.07293246 0.09318240 0.03986963 0.09175491 0.09125070 0.09429805 0.07413800
sum(Pesos_severidad)
## [1] 1
data.frame(round(Pesos_severidad,3))
##     round.Pesos_severidad..3.
## x71                     0.062
## x72                     0.062
## x73                     0.062
## x74                     0.052
## x76                     0.045
## x81                     0.068
## x82                     0.091
## x83                     0.073
## x84                     0.093
## x91                     0.040
## x92                     0.092
## x93                     0.091
## x94                     0.094
## x95                     0.074
res.mfa_severidad$eig
##         eigenvalue percentage of variance cumulative percentage of variance
## comp 1  1.92075448              41.445703                          41.44570
## comp 2  0.77532670              16.729864                          58.17557
## comp 3  0.44107863               9.517517                          67.69308
## comp 4  0.24670485               5.323354                          73.01644
## comp 5  0.22646400               4.886600                          77.90304
## comp 6  0.19852715               4.283784                          82.18682
## comp 7  0.16336268               3.525011                          85.71183
## comp 8  0.15646009               3.376068                          89.08790
## comp 9  0.11867588               2.560767                          91.64867
## comp 10 0.10988535               2.371087                          94.01976
## comp 11 0.08344743               1.800614                          95.82037
## comp 12 0.07156271               1.544168                          97.36454
## comp 13 0.06860665               1.480382                          98.84492
## comp 14 0.05353089               1.155080                         100.00000
Ind_severidad<-as.matrix(Severidad)%*%Pesos_severidad
Imin_severidad<-min(Ind_severidad);Imin_severidad
## [1] 0.9601304
Imax_severidad<-max(Ind_severidad);Imax_severidad
## [1] 6.709947
Ind_2_severidad<-round(((Ind_severidad-Imin_severidad)/(Imax_severidad-Imin_severidad))*100,2) #con este índice se hace el cluster
min(Ind_2_severidad)
## [1] 0
max(Ind_2_severidad)
## [1] 100
dim(Ind_2_severidad)
## [1] 1443    1
View(Ind_2_severidad)

C8<-cbind(Ind_2_severidad,CaliyPalmira)

summary(C8)
##  Ind_2_severidad       x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 40.24   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 52.45   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 53.00   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 65.36   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0

K-means

set.seed(1234)
kmeans <- kmeans(C8$Ind_2_severidad, 3, iter.max = 1000, nstart = 10);kmeans
## K-means clustering with 3 clusters of sizes 362, 643, 438
## 
## Cluster means:
##       [,1]
## 1 76.82887
## 2 53.72342
## 3 32.23507
## 
## Clustering vector:
##    [1] 3 3 2 2 2 1 3 2 2 3 2 3 2 2 2 2 3 2 1 2 1 3 3 3 2 3 3 2 3 2 2 2 3 1 2 3 2
##   [38] 1 1 2 1 3 2 2 2 3 3 3 3 2 3 3 3 1 2 2 3 2 3 3 1 3 3 3 2 3 2 2 1 1 2 3 2 3
##   [75] 3 2 3 2 1 2 1 2 2 2 3 1 3 3 1 2 3 2 2 2 3 1 2 3 3 2 1 3 3 2 1 1 1 1 2 2 1
##  [112] 1 2 1 3 3 3 2 3 2 1 1 2 2 3 2 1 2 1 3 1 2 1 3 2 3 3 1 2 3 1 2 2 2 3 2 2 3
##  [149] 2 2 3 3 1 2 1 3 2 2 2 1 2 1 2 2 2 1 2 3 1 3 1 1 2 3 2 2 3 2 2 2 1 3 1 3 1
##  [186] 2 3 2 2 2 2 2 3 3 1 3 2 2 3 2 3 2 2 1 2 1 2 2 3 1 1 3 2 2 2 2 2 1 3 1 2 2
##  [223] 2 2 2 3 2 3 3 2 1 2 2 2 2 3 3 2 3 3 2 2 2 3 3 3 2 1 3 1 3 3 2 2 2 3 2 3 1
##  [260] 2 1 2 2 3 3 2 3 2 1 3 1 3 3 3 3 2 2 1 1 2 2 2 1 2 3 2 1 3 2 2 2 2 3 2 3 3
##  [297] 3 2 2 1 3 2 3 3 1 2 3 2 2 1 2 1 3 3 2 2 2 3 1 3 2 2 3 3 2 1 1 3 2 3 2 2 1
##  [334] 1 2 3 2 1 3 3 3 2 2 3 2 2 3 2 2 1 1 2 3 2 2 3 1 3 3 1 2 1 3 3 2 3 1 3 1 3
##  [371] 2 2 1 2 1 2 1 3 3 2 2 1 3 1 1 2 1 3 3 2 3 3 2 3 2 2 3 2 3 3 2 3 3 3 2 3 3
##  [408] 3 1 2 1 2 3 2 1 1 2 2 3 2 2 3 1 1 1 2 1 2 2 2 2 1 3 2 1 1 2 3 2 3 3 3 2 1
##  [445] 3 3 1 2 1 1 2 1 1 2 2 2 2 1 2 1 3 2 2 3 2 2 2 2 1 2 1 2 3 1 3 2 1 2 3 2 3
##  [482] 1 2 2 2 3 1 1 1 3 2 2 3 3 1 2 2 2 2 1 3 1 2 3 2 2 2 3 3 3 3 2 2 2 3 3 1 2
##  [519] 3 3 3 1 3 3 2 2 1 3 3 2 2 3 2 2 2 3 3 3 2 3 3 2 1 2 1 2 2 2 2 3 2 1 2 3 3
##  [556] 1 3 3 2 3 3 3 2 3 2 3 2 3 2 3 2 1 2 2 3 2 2 2 2 2 2 2 1 3 3 3 3 2 3 2 2 3
##  [593] 2 2 2 2 2 3 2 2 2 2 2 3 3 3 2 3 2 1 3 2 2 1 2 1 3 1 2 3 1 1 3 2 2 2 1 1 3
##  [630] 3 1 2 3 1 2 2 3 1 3 3 3 3 2 2 3 2 2 2 3 1 1 1 2 2 2 1 2 1 2 2 1 3 1 2 1 2
##  [667] 3 2 3 2 1 2 2 2 1 2 2 3 1 2 2 2 2 2 2 3 3 2 3 2 3 2 2 2 1 2 1 2 1 3 3 2 2
##  [704] 2 1 1 2 2 3 2 2 1 3 3 2 2 3 2 2 2 2 3 2 2 2 1 3 3 2 3 3 2 3 2 2 3 3 2 2 2
##  [741] 2 1 1 1 2 1 2 1 2 2 1 2 1 1 2 2 1 2 2 2 2 2 3 3 2 3 2 3 2 3 2 1 1 1 3 2 3
##  [778] 2 2 1 1 2 2 2 1 3 2 2 3 1 2 2 2 1 3 1 3 2 3 3 2 1 3 3 2 2 1 1 3 3 3 2 1 1
##  [815] 2 2 1 2 2 2 3 2 3 3 2 2 2 2 1 2 3 2 1 2 1 1 3 1 2 2 2 3 1 2 2 2 2 2 2 1 2
##  [852] 2 3 1 1 2 3 3 2 3 1 3 2 1 1 3 3 1 3 3 2 2 2 3 1 1 3 1 3 2 2 1 2 3 2 2 2 1
##  [889] 2 3 3 3 2 1 2 3 2 3 3 2 2 3 3 3 1 1 3 1 3 2 2 2 3 2 2 1 2 1 2 1 2 2 3 2 2
##  [926] 1 2 2 3 1 2 3 2 1 2 3 1 2 3 1 3 3 1 1 1 2 2 3 3 1 1 1 1 2 2 1 3 1 3 2 1 2
##  [963] 3 3 3 3 2 2 2 1 1 2 2 1 1 3 1 2 1 2 2 3 2 3 3 3 2 2 1 1 1 2 3 3 2 3 2 1 2
## [1000] 2 3 3 1 1 1 2 1 2 2 2 3 2 3 1 1 2 3 3 1 1 3 1 2 1 2 3 3 1 1 3 2 1 1 3 1 2
## [1037] 3 3 2 3 3 1 2 1 1 1 1 2 3 1 2 2 2 2 1 2 1 2 2 2 2 3 2 3 1 3 1 1 2 2 1 3 3
## [1074] 3 2 3 2 1 2 3 1 2 2 2 1 1 2 2 3 3 2 2 1 3 1 3 3 3 3 1 3 3 1 3 2 3 2 1 2 1
## [1111] 2 2 2 2 1 2 1 3 3 2 2 2 3 1 2 1 2 2 2 2 3 2 2 2 1 2 1 1 2 2 3 3 3 2 2 1 3
## [1148] 2 2 1 3 2 2 1 2 3 3 2 2 3 2 1 2 2 3 3 2 1 1 3 3 3 2 3 2 3 2 1 2 2 3 2 3 3
## [1185] 3 3 1 3 2 2 1 2 3 3 2 2 2 2 2 2 1 2 3 1 1 3 3 1 1 3 2 3 2 2 1 3 1 1 3 1 3
## [1222] 3 3 1 1 1 1 2 2 2 2 1 2 1 2 2 2 2 3 2 2 1 2 1 3 1 1 1 2 2 1 2 1 2 1 2 3 2
## [1259] 2 2 3 1 1 1 1 1 3 2 2 2 3 2 2 2 3 2 1 3 1 3 3 3 1 1 3 1 2 3 1 2 1 1 2 1 3
## [1296] 2 1 2 3 2 2 3 3 3 2 1 1 2 1 2 1 2 2 2 2 1 2 1 3 3 1 3 1 2 1 2 2 1 1 1 1 3
## [1333] 1 1 1 1 2 1 3 1 2 2 2 1 2 3 1 2 1 3 1 2 3 2 3 3 1 1 3 2 1 3 1 2 2 3 3 1 2
## [1370] 2 3 3 2 2 3 2 2 2 2 3 1 1 1 1 3 2 1 3 2 3 2 2 2 2 2 3 2 2 1 3 1 3 3 2 3 1
## [1407] 2 2 3 2 2 2 2 2 3 1 1 2 2 3 1 2 2 2 2 2 1 1 2 2 1 2 1 2 2 1 2 3 2 2 2 2 2
## 
## Within cluster sum of squares by cluster:
## [1] 28951.78 24547.84 33413.90
##  (between_SS / total_SS =  82.0 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"     "tot.withinss"
## [6] "betweenss"    "size"         "iter"         "ifault"
#windows();fviz_cluster(kmeans, data = C8)

C8$cluster <- kmeans$cluster
summary(C8)
##  Ind_2_severidad       x11             x12             x21       
##  Min.   :  0.00   Min.   :0.000   Min.   :0.000   Min.   :1.000  
##  1st Qu.: 40.24   1st Qu.:3.000   1st Qu.:6.000   1st Qu.:5.000  
##  Median : 52.45   Median :4.000   Median :7.000   Median :5.000  
##  Mean   : 53.00   Mean   :3.735   Mean   :6.367   Mean   :5.375  
##  3rd Qu.: 65.36   3rd Qu.:5.000   3rd Qu.:7.000   3rd Qu.:6.000  
##  Max.   :100.00   Max.   :5.000   Max.   :8.000   Max.   :7.000  
##       x22             x23             x24             x25             x31      
##  Min.   :1.000   Min.   :0.000   Min.   :1.000   Min.   :0.000   No     :  21  
##  1st Qu.:3.000   1st Qu.:7.000   1st Qu.:5.000   1st Qu.:6.000   No sabe:  20  
##  Median :4.000   Median :8.000   Median :6.000   Median :7.000   Si     :1402  
##  Mean   :3.633   Mean   :7.319   Mean   :5.796   Mean   :6.517                 
##  3rd Qu.:4.000   3rd Qu.:8.000   3rd Qu.:7.000   3rd Qu.:7.000                 
##  Max.   :4.000   Max.   :8.000   Max.   :7.000   Max.   :7.000                 
##       x32      x33           x41             x42             x43      
##  No     :702   0:   7   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  No sabe:124   1:1303   1st Qu.:2.000   1st Qu.:3.000   1st Qu.:3.00  
##  Si     :617   2: 133   Median :4.000   Median :4.000   Median :4.00  
##                         Mean   :3.671   Mean   :3.773   Mean   :3.96  
##                         3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.00  
##                         Max.   :7.000   Max.   :7.000   Max.   :7.00  
##       x44            x51             x52             x61             x62      
##  Min.   :1.00   Min.   :1.000   Min.   :1.000   Min.   :0.000   Min.   :1.00  
##  1st Qu.:2.00   1st Qu.:3.000   1st Qu.:4.000   1st Qu.:1.000   1st Qu.:2.00  
##  Median :3.00   Median :5.000   Median :5.000   Median :2.000   Median :4.00  
##  Mean   :3.45   Mean   :4.459   Mean   :5.252   Mean   :2.256   Mean   :3.43  
##  3rd Qu.:5.00   3rd Qu.:6.000   3rd Qu.:6.000   3rd Qu.:3.000   3rd Qu.:5.00  
##  Max.   :7.00   Max.   :7.000   Max.   :7.000   Max.   :6.000   Max.   :7.00  
##       x71             x72             x73             x74       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:3.000   1st Qu.:4.000   1st Qu.:3.000   1st Qu.:5.000  
##  Median :4.000   Median :5.000   Median :4.000   Median :6.000  
##  Mean   :4.283   Mean   :4.578   Mean   :4.112   Mean   :5.415  
##  3rd Qu.:5.000   3rd Qu.:6.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x75             x76             x77             x81       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.500   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :3.000   Median :5.000   Median :5.000  
##  Mean   :3.717   Mean   :3.286   Mean   :4.398   Mean   :4.995  
##  3rd Qu.:5.000   3rd Qu.:4.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :7.000  
##       x82             x83             x84           x91         
##  Min.   :1.000   Min.   :1.000   Min.   :1.0   Min.   : 0.0000  
##  1st Qu.:3.000   1st Qu.:3.000   1st Qu.:3.0   1st Qu.: 0.0000  
##  Median :4.000   Median :4.000   Median :4.0   Median : 0.0000  
##  Mean   :4.084   Mean   :4.236   Mean   :3.9   Mean   : 0.6189  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.0   3rd Qu.: 1.0000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.0   Max.   :13.0000  
##       x92             x93             x94             x95       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.500   1st Qu.:3.000  
##  Median :4.000   Median :4.000   Median :4.000   Median :5.000  
##  Mean   :3.625   Mean   :3.685   Mean   :3.743   Mean   :4.604  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:6.000  
##  Max.   :7.000   Max.   :7.000   Max.   :7.000   Max.   :7.000  
##       x101            x102            x103            x104      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000   1st Qu.:4.000  
##  Median :5.000   Median :5.000   Median :4.000   Median :5.000  
##  Mean   :4.426   Mean   :4.639   Mean   :4.131   Mean   :4.516  
##  3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000   3rd Qu.:5.000  
##  Max.   :5.000   Max.   :5.000   Max.   :5.000   Max.   :5.000  
##       x105             x106              id         Municipio        
##  Min.   : 0.000   Min.   : 0.000   Min.   :  1.0   Length:1443       
##  1st Qu.: 4.000   1st Qu.: 2.000   1st Qu.:182.5   Class :character  
##  Median : 9.000   Median : 6.000   Median :366.0   Mode  :character  
##  Mean   : 8.069   Mean   : 5.881   Mean   :370.4                     
##  3rd Qu.:12.000   3rd Qu.:10.000   3rd Qu.:549.5                     
##  Max.   :14.000   Max.   :12.000   Max.   :814.0                     
##     cluster     
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :2.000  
##  Mean   :2.053  
##  3rd Qu.:3.000  
##  Max.   :3.000
kmeans$centers
##       [,1]
## 1 76.82887
## 2 53.72342
## 3 32.23507
sum(kmeans$cluster==1)/1443#bajo
## [1] 0.2508663
sum(kmeans$cluster==2)/1443#alto
## [1] 0.4455994
sum(kmeans$cluster==3)/1443#medio
## [1] 0.3035343
tapply(Ind_2_severidad,kmeans$cluster,summary)
## $`1`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   65.35   69.53   74.64   76.83   81.84  100.00 
## 
## $`2`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   43.04   48.42   53.40   53.72   59.05   65.16 
## 
## $`3`
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   27.94   34.34   32.24   38.73   42.90