Module 9: Simple Inference Tests

-For this lab the goal was to utilize the data and run simple inference tests. - Before beginning the lab, we read in the data and also loaded up the dplyr() package.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
Deer <- read.csv("Deer.csv")
iris <- read.csv("iris.csv")

-For the first problem, we had to make a vector of 50 random legolas actors. These actors had a mean height of 195cm, and a standard deviation of 15cm. From there we ran a t-test to compare the sample of actors to our set pf Aragorn and Gimli actors.

aragorn = rnorm(50, mean = 180, sd = 10)
gimli = rnorm(50, mean = 132, sd = 15)
legolas = rnorm(50, mean = 195, sd = 15)
t.test(aragorn, legolas, alternative = "two.sided")
## 
##  Welch Two Sample t-test
## 
## data:  aragorn and legolas
## t = -5.4084, df = 84.979, p-value = 5.752e-07
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -18.269358  -8.447525
## sample estimates:
## mean of x mean of y 
##  181.3406  194.6991
t.test(gimli, legolas, alternative = "two.sided")
## 
##  Welch Two Sample t-test
## 
## data:  gimli and legolas
## t = -22.596, df = 97.43, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -69.02309 -57.87722
## sample estimates:
## mean of x mean of y 
##  131.2489  194.6991
var.test(gimli, legolas)
## 
##  F test to compare two variances
## 
## data:  gimli and legolas
## F = 0.85784, num df = 49, denom df = 49, p-value = 0.5936
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.4868036 1.5116753
## sample estimates:
## ratio of variances 
##          0.8578397
iris_seto <- iris %>%
  filter(Species == "setosa")
cor.test(iris_seto$Sepal.Length, iris_seto$Sepal.Width)
## 
##  Pearson's product-moment correlation
## 
## data:  iris_seto$Sepal.Length and iris_seto$Sepal.Width
## t = 7.6807, df = 48, p-value = 6.71e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.5851391 0.8460314
## sample estimates:
##       cor 
## 0.7425467
iris_versi <- iris %>%
  filter(Species == "versicolor")
cor.test(iris_versi$Sepal.Length, iris_versi$Sepal.Width)
## 
##  Pearson's product-moment correlation
## 
## data:  iris_versi$Sepal.Length and iris_versi$Sepal.Width
## t = 4.2839, df = 48, p-value = 8.772e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2900175 0.7015599
## sample estimates:
##       cor 
## 0.5259107
iris_virgin <- iris %>%
  filter(Species == "virginica")
cor.test(iris_virgin$Sepal.Length, iris_virgin$Sepal.Width)
## 
##  Pearson's product-moment correlation
## 
## data:  iris_virgin$Sepal.Length and iris_virgin$Sepal.Width
## t = 3.5619, df = 48, p-value = 0.0008435
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.2049657 0.6525292
## sample estimates:
##       cor 
## 0.4572278

-Finally, we ran a chisq.test() function to test if there was a significant difference in the number of deer caught per month, and if the cases of tuberculosis are uniformly distributed across all farms.

table(Deer$Month)
## 
##   1   2   3   4   5   6   7   8   9  10  11  12 
## 256 165  27   3   2  35  11  19  58 168 189 188
chisq.test(table(Deer$Month))
## 
##  Chi-squared test for given probabilities
## 
## data:  table(Deer$Month)
## X-squared = 997.07, df = 11, p-value < 2.2e-16
table(Deer$Farm, Deer$Tb)
##       
##          0   1
##   AL    10   3
##   AU    23   0
##   BA    67   5
##   BE     7   0
##   CB    88   3
##   CRC    4   0
##   HB    22   1
##   LCV    0   1
##   LN    28   6
##   MAN   27  24
##   MB    16   5
##   MO   186  31
##   NC    24   4
##   NV    18   1
##   PA    11   0
##   PN    39   0
##   QM    67   7
##   RF    23   1
##   RN    21   0
##   RO    31   0
##   SAL    0   1
##   SAU    3   0
##   SE    16  10
##   TI     9   0
##   TN    16   2
##   VISO  13   1
##   VY    15   4
chisq.test(table(Deer$Farm, Deer$Tb))
## Warning in chisq.test(table(Deer$Farm, Deer$Tb)): Chi-squared approximation may
## be incorrect
## 
##  Pearson's Chi-squared test
## 
## data:  table(Deer$Farm, Deer$Tb)
## X-squared = 129.09, df = 26, p-value = 1.243e-15