Más aplicaciones estadísticas en:
Los datos utilizados son tomados del libro Control estadístico de la calidad de Douglas C. Montgomery.
Página 407.
x1<-c(9.45,7.99,9.29,11.66,12.16,10.18,8.04,11.46,9.2,10.34,9.03,11.47,
10.51,9.4,10.08,9.37,10.62,10.31,8.52,10.84,10.9,9.33,12.29,11.5,
10.6,11.08,10.38,11.62,11.31,10.52)
ca<-qcc(x1[1:20],newdata=x1[21:30],type="xbar.one")
summary(ca)
##
## Call:
## qcc(data = x1[1:20], type = "xbar.one", newdata = x1[21:30])
##
## xbar.one chart for x1[1:20]
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.9900 9.2675 10.1300 9.9960 10.6750 12.1600
##
## Group sample size: 1
## Number of groups: 20
## Center of group statistics: 9.996
## Standard deviation: 1.374113
##
## Summary of group statistics in x1[21:30]:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 9.3300 10.5400 10.9900 10.9530 11.4525 12.2900
##
## Group sample size: 1
## Number of groups: 10
##
## Control limits:
## LCL UCL
## 5.87366 14.11834
n<-length(x1);n
## [1] 30
z<-(x1-10);z
## [1] -0.55 -2.01 -0.71 1.66 2.16 0.18 -1.96 1.46 -0.80 0.34 -0.97 1.47
## [13] 0.51 -0.60 0.08 -0.63 0.62 0.31 -1.48 0.84 0.90 -0.67 2.29 1.50
## [25] 0.60 1.08 0.38 1.62 1.31 0.52
z1<-z[1];z1
## [1] -0.55
for(i in 2:n){
z1[i]=z[i]+z1[i-1]}
z1
## [1] -0.55 -2.56 -3.27 -1.61 0.55 0.73 -1.23 0.23 -0.57 -0.23 -1.20 0.27
## [13] 0.78 0.18 0.26 -0.37 0.25 0.56 -0.92 -0.08 0.82 0.15 2.44 3.94
## [25] 4.54 5.62 6.00 7.62 8.93 9.45
ca1<-qcc(z1[1:20],newdata=z1[21:30],type="xbar.one")
summary(ca1)
##
## Call:
## qcc(data = z1[1:20], type = "xbar.one", newdata = z1[21:30])
##
## xbar.one chart for z1[1:20]
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.2700 -0.9900 -0.1550 -0.4390 0.2625 0.7800
##
## Group sample size: 1
## Number of groups: 20
## Center of group statistics: -0.439
## Standard deviation: 0.8767264
##
## Summary of group statistics in z1[21:30]:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.150 2.815 5.080 4.951 7.215 9.450
##
## Group sample size: 1
## Number of groups: 10
##
## Control limits:
## LCL UCL
## -3.069179 2.191179
cu <- cusum(x1, lambda=0.1, nsigmas=3,std.dev=1)
summary(cu)
##
## Call:
## cusum(data = x1, std.dev = 1, lambda = 0.1, nsigmas = 3)
##
## cusum chart for x1
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.990 9.377 10.445 10.315 11.252 12.290
##
## Group sample size: 1
## Number of groups: 30
## Center of group statistics: 10.315
## Standard deviation: 1
##
## Decision interval (std.err.): 5
## Shift detection (std. err.): 1
x11<-x1[1:20]
x12<-x1[21:30]
cu1 <- cusum(x11, lambda=0.1, nsigmas=3,center=10)
x12<-x1[21:30]
cu2 <- cusum(x12, lambda=0.1, nsigmas=3,center=11)
cu3<-cusum(x11, newdata=x12,nsigmas=3,lambda=0.1)
plot(cu3, chart.all=FALSE)
x2<-c(9.45,7.99,9.29,11.66,12.16,10.18,8.04,11.46,9.2,10.34,9.03,11.47,
10.51,9.4,10.08,9.37,10.62,10.31,8.52,10.84,10.9,9.33,12.29,11.5,
10.6,11.08,10.38,11.62,11.31,10.52)
ew <- ewma(x2, lambda=0.1,nsigmas=3,std.dev=1,center=10)
summary(ew)
##
## Call:
## ewma(data = x2, center = 10, std.dev = 1, lambda = 0.1, nsigmas = 3)
##
## ewma chart for x2
##
## Summary of group statistics:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 7.9900 9.3775 10.4450 10.3150 11.2525 12.2900
##
## Group sample size: 1
## Number of groups: 30
## Center of group statistics: 10
## Standard deviation: 1
##
## Smoothing parameter: 0.1
## Control limits:
## LCL UCL
## [1,] 9.700000 10.30000
## [2,] 9.596391 10.40361
## ...
## [30,] 9.312371 10.68763
Paquete utilizado: qcc
|-|-|-|
O.M.F.
|-|-|-|