library(readxl)
Datos_papa <- read_excel("C:/Users/luisc/Downloads/Datos_papa.xlsx", 
    sheet = "Hoja 1")
View(Datos_papa)

Anova para peso en el aire

# peso en el aire 

m1 <- aov(Peso_en_aire~Trat, data = Datos_papa)
anova(m1)
## Analysis of Variance Table
## 
## Response: Peso_en_aire
##           Df Sum Sq Mean Sq F value    Pr(>F)    
## Trat       2  34637 17318.3  358.23 5.728e-07 ***
## Residuals  6    290    48.3                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m7 <- kruskal.test(Datos_papa$Peso_en_aire, Datos_papa$Trat, alpha = 0.05)
m7
## 
##  Kruskal-Wallis rank sum test
## 
## data:  Datos_papa$Peso_en_aire and Datos_papa$Trat
## Kruskal-Wallis chi-squared = 7.2, df = 2, p-value = 0.02732
#Prueba de normalidad 

shapiro.test(resid(m1))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m1)
## W = 0.98402, p-value = 0.9817
library(car)
## Loading required package: carData
library(carData)
#Prueba de homogeneidad de varianza tambien homocedasticidad

leveneTest(Datos_papa$Peso_en_aire~Datos_papa$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  2  1.2045 0.3633
##        6
library(agricolae)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:car':
## 
##     recode
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
m1Tukey <-HSD.test(Datos_papa$Peso_en_aire, Datos_papa$Trat, 6, 48.3, alpha = 0.05)
m1Tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##      48.3  6 119.8278 5.799841 17.41094
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_papa$Trat   3         4.339195  0.05
## 
## $means
##          Datos_papa$Peso_en_aire      std r    Min    Max     Q25    Q50
## Capiro                 196.46333 9.952549 3 185.91 205.68 191.855 197.80
## Criolla                 44.52333 3.755720 3  40.54  48.00  42.785  45.03
## Sabanera               118.49667 5.645709 3 112.80 124.09 115.700 118.60
##              Q75
## Capiro   201.740
## Criolla   46.515
## Sabanera 121.345
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Peso_en_aire groups
## Capiro                 196.46333      a
## Sabanera               118.49667      b
## Criolla                 44.52333      c
## 
## attr(,"class")
## [1] "group"
m9LSD <- LSD.test(Datos_papa$Peso_en_aire, Datos_papa$Trat, 6, 48.3, alpha = 0.05)
m9LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##      48.3  6 119.8278 5.799841 2.446912 13.88501
## 
## $parameters
##         test p.ajusted          name.t ntr alpha
##   Fisher-LSD      none Datos_papa$Trat   3  0.05
## 
## $means
##          Datos_papa$Peso_en_aire      std r       LCL       UCL    Min    Max
## Capiro                 196.46333 9.952549 3 186.64515 206.28152 185.91 205.68
## Criolla                 44.52333 3.755720 3  34.70515  54.34152  40.54  48.00
## Sabanera               118.49667 5.645709 3 108.67848 128.31485 112.80 124.09
##              Q25    Q50     Q75
## Capiro   191.855 197.80 201.740
## Criolla   42.785  45.03  46.515
## Sabanera 115.700 118.60 121.345
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Peso_en_aire groups
## Capiro                 196.46333      a
## Sabanera               118.49667      b
## Criolla                 44.52333      c
## 
## attr(,"class")
## [1] "group"

Peso en el agua

#Peso en agua 

m2 <- aov(Peso_en_agua~Trat, data = Datos_papa)
anova(m2)
## Analysis of Variance Table
## 
## Response: Peso_en_agua
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       2 222.406 111.203  66.675 7.983e-05 ***
## Residuals  6  10.007   1.668                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
shapiro.test(resid(m2))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m2)
## W = 0.84847, p-value = 0.07169
leveneTest(Datos_papa$Peso_en_agua~Datos_papa$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  2  4.2978 0.06947 .
##        6                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m2Tukey <-HSD.test(Datos_papa$Peso_en_agua, Datos_papa$Trat, 6, 1.668, alpha = 0.05)
m2Tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##     1.668  6 9.955556 12.97276 3.235539
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_papa$Trat   3         4.339195  0.05
## 
## $means
##          Datos_papa$Peso_en_agua       std r   Min   Max    Q25   Q50    Q75
## Capiro                  15.89667 2.1987345 3 13.57 17.94 14.875 16.18 17.060
## Criolla                  3.73000 0.2306513 3  3.55  3.99  3.600  3.65  3.820
## Sabanera                10.24000 0.3404409 3  9.87 10.54 10.090 10.31 10.425
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Peso_en_agua groups
## Capiro                  15.89667      a
## Sabanera                10.24000      b
## Criolla                  3.73000      c
## 
## attr(,"class")
## [1] "group"
o9LSD <- LSD.test(Datos_papa$Peso_en_agua, Datos_papa$Trat, 6, 1.668, alpha = 0.05)
o9LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##     1.668  6 9.955556 12.97276 2.446912 2.580303
## 
## $parameters
##         test p.ajusted          name.t ntr alpha
##   Fisher-LSD      none Datos_papa$Trat   3  0.05
## 
## $means
##          Datos_papa$Peso_en_agua       std r      LCL      UCL   Min   Max
## Capiro                  15.89667 2.1987345 3 14.07212 17.72122 13.57 17.94
## Criolla                  3.73000 0.2306513 3  1.90545  5.55455  3.55  3.99
## Sabanera                10.24000 0.3404409 3  8.41545 12.06455  9.87 10.54
##             Q25   Q50    Q75
## Capiro   14.875 16.18 17.060
## Criolla   3.600  3.65  3.820
## Sabanera 10.090 10.31 10.425
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Peso_en_agua groups
## Capiro                  15.89667      a
## Sabanera                10.24000      b
## Criolla                  3.73000      c
## 
## attr(,"class")
## [1] "group"
m10duncan <- duncan.test(Datos_papa$Peso_en_agua, Datos_papa$Trat, 6, 1.668, alpha = 0.05)
m10duncan
## $statistics
##   MSerror Df     Mean       CV
##     1.668  6 9.955556 12.97276
## 
## $parameters
##     test          name.t ntr alpha
##   Duncan Datos_papa$Trat   3  0.05
## 
## $duncan
##      Table CriticalRange
## 2 3.460456      2.580303
## 3 3.586498      2.674287
## 
## $means
##          Datos_papa$Peso_en_agua       std r   Min   Max    Q25   Q50    Q75
## Capiro                  15.89667 2.1987345 3 13.57 17.94 14.875 16.18 17.060
## Criolla                  3.73000 0.2306513 3  3.55  3.99  3.600  3.65  3.820
## Sabanera                10.24000 0.3404409 3  9.87 10.54 10.090 10.31 10.425
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Peso_en_agua groups
## Capiro                  15.89667      a
## Sabanera                10.24000      b
## Criolla                  3.73000      c
## 
## attr(,"class")
## [1] "group"

Indice de color

#indice de color

m3 <- aov(Indice_color~Trat, data = Datos_papa)
anova(m3)
## Analysis of Variance Table
## 
## Response: Indice_color
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Trat       2  4.2254  2.1127  0.9837 0.4271
## Residuals  6 12.8858  2.1476
shapiro.test(resid(m3))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m3)
## W = 0.9112, p-value = 0.3244
leveneTest(Datos_papa$Indice_color~Datos_papa$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value  Pr(>F)  
## group  2  5.0378 0.05199 .
##        6                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m3Tukey <-HSD.test(Datos_papa$Indice_color, Datos_papa$Trat, 12, 2.1476, alpha = 0.05)
m3Tukey
## $statistics
##   MSerror Df     Mean       CV      MSD
##    2.1476 12 0.355374 412.3738 3.192234
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_papa$Trat   3         3.772929  0.05
## 
## $means
##          Datos_papa$Indice_color       std r        Min       Max        Q25
## Capiro                 1.0483704 0.6888142 3  0.4191904 1.7843443  0.6803835
## Criolla                0.5954273 0.3034253 3  0.3962511 0.9446422  0.4208199
## Sabanera              -0.5776758 2.4241267 3 -2.6306000 2.0966688 -1.9148481
##                 Q50       Q75
## Capiro    0.9415766 1.3629604
## Criolla   0.4453887 0.6950155
## Sabanera -1.1990962 0.4487863
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Indice_color groups
## Capiro                 1.0483704      a
## Criolla                0.5954273      a
## Sabanera              -0.5776758      a
## 
## attr(,"class")
## [1] "group"
m91LSD <- LSD.test(Datos_papa$Indice_color, Datos_papa$Trat, 12, 2.1476, alpha = 0.05)
m91LSD
## $statistics
##   MSerror Df     Mean       CV  t.value     LSD
##    2.1476 12 0.355374 412.3738 2.178813 2.60706
## 
## $parameters
##         test p.ajusted          name.t ntr alpha
##   Fisher-LSD      none Datos_papa$Trat   3  0.05
## 
## $means
##          Datos_papa$Indice_color       std r        LCL      UCL        Min
## Capiro                 1.0483704 0.6888142 3 -0.7950992 2.891840  0.4191904
## Criolla                0.5954273 0.3034253 3 -1.2480423 2.438897  0.3962511
## Sabanera              -0.5776758 2.4241267 3 -2.4211455 1.265794 -2.6306000
##                Max        Q25        Q50       Q75
## Capiro   1.7843443  0.6803835  0.9415766 1.3629604
## Criolla  0.9446422  0.4208199  0.4453887 0.6950155
## Sabanera 2.0966688 -1.9148481 -1.1990962 0.4487863
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Indice_color groups
## Capiro                 1.0483704      a
## Criolla                0.5954273      a
## Sabanera              -0.5776758      a
## 
## attr(,"class")
## [1] "group"
m92duncan <- duncan.test(Datos_papa$Indice_color, Datos_papa$Trat, 12, 2.1476, alpha = 0.05)
m92duncan
## $statistics
##   MSerror Df     Mean       CV
##    2.1476 12 0.355374 412.3738
## 
## $parameters
##     test          name.t ntr alpha
##   Duncan Datos_papa$Trat   3  0.05
## 
## $duncan
##      Table CriticalRange
## 2 3.081307      2.607060
## 3 3.225244      2.728843
## 
## $means
##          Datos_papa$Indice_color       std r        Min       Max        Q25
## Capiro                 1.0483704 0.6888142 3  0.4191904 1.7843443  0.6803835
## Criolla                0.5954273 0.3034253 3  0.3962511 0.9446422  0.4208199
## Sabanera              -0.5776758 2.4241267 3 -2.6306000 2.0966688 -1.9148481
##                 Q50       Q75
## Capiro    0.9415766 1.3629604
## Criolla   0.4453887 0.6950155
## Sabanera -1.1990962 0.4487863
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Indice_color groups
## Capiro                 1.0483704      a
## Criolla                0.5954273      a
## Sabanera              -0.5776758      a
## 
## attr(,"class")
## [1] "group"

Gravedad especifica

#Gravedad especifica 

m5 <- aov(Gravedad_especifica~Trat, data = Datos_papa)
anova(m5)
## Analysis of Variance Table
## 
## Response: Gravedad_especifica
##           Df  Sum Sq Mean Sq F value    Pr(>F)    
## Trat       2 5510096 2755048  108.15 1.966e-05 ***
## Residuals  6  152844   25474                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
shapiro.test(resid(m5))
## 
##  Shapiro-Wilk normality test
## 
## data:  resid(m5)
## W = 0.91682, p-value = 0.3666
leveneTest(Datos_papa$Gravedad_especifica~Datos_papa$Trat, center=mean)
## Warning in leveneTest.default(y = y, group = group, ...): group coerced to
## factor.
## Levene's Test for Homogeneity of Variance (center = mean)
##       Df F value Pr(>F)
## group  2  2.7864 0.1394
##        6
m5Tukey <-HSD.test(Datos_papa$Gravedad_especifica, Datos_papa$Trat, 6, 25474, alpha = 0.05)
m5Tukey
## $statistics
##   MSerror Df     Mean       CV    MSD
##     25474  6 1451.905 10.99285 399.85
## 
## $parameters
##    test          name.t ntr StudentizedRange alpha
##   Tukey Datos_papa$Trat   3         4.339195  0.05
## 
## $means
##          Datos_papa$Gravedad_especifica      std r       Min       Max
## Capiro                        2447.4849 233.3561 3 2180.8718 2614.6021
## Criolla                        535.8272 102.2118 3  450.2717  649.0141
## Sabanera                      1372.4025 107.3291 3 1289.1429 1493.5333
##                Q25       Q50       Q75
## Capiro   2363.9262 2546.9807 2580.7914
## Criolla   479.2337  508.1957  578.6049
## Sabanera 1311.8371 1334.5313 1414.0323
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Gravedad_especifica groups
## Capiro                        2447.4849      a
## Sabanera                      1372.4025      b
## Criolla                        535.8272      c
## 
## attr(,"class")
## [1] "group"
m10LSD <- LSD.test(Datos_papa$Gravedad_especifica, Datos_papa$Trat, 6, 25474, alpha = 0.05)
m10LSD
## $statistics
##   MSerror Df     Mean       CV  t.value      LSD
##     25474  6 1451.905 10.99285 2.446912 318.8756
## 
## $parameters
##         test p.ajusted          name.t ntr alpha
##   Fisher-LSD      none Datos_papa$Trat   3  0.05
## 
## $means
##          Datos_papa$Gravedad_especifica      std r       LCL       UCL
## Capiro                        2447.4849 233.3561 3 2222.0058 2672.9640
## Criolla                        535.8272 102.2118 3  310.3481  761.3062
## Sabanera                      1372.4025 107.3291 3 1146.9234 1597.8816
##                Min       Max       Q25       Q50       Q75
## Capiro   2180.8718 2614.6021 2363.9262 2546.9807 2580.7914
## Criolla   450.2717  649.0141  479.2337  508.1957  578.6049
## Sabanera 1289.1429 1493.5333 1311.8371 1334.5313 1414.0323
## 
## $comparison
## NULL
## 
## $groups
##          Datos_papa$Gravedad_especifica groups
## Capiro                        2447.4849      a
## Sabanera                      1372.4025      b
## Criolla                        535.8272      c
## 
## attr(,"class")
## [1] "group"