#Part 1 - HW3
#install.packages("tidyverse")
#install.packages("scatterplot3d")
#sinstall.packages("tibble")
library(tidyverse)
library(scatterplot3d)
library(tibble)
x <- read.table("uWaveGestureLibrary_X_TRAIN.txt")
y <- read.table("uWaveGestureLibrary_Y_TRAIN.txt")
z <- read.table("uWaveGestureLibrary_Z_TRAIN.txt")
x <- t(x)
y <- t(y)
z <- t(z)
bind1 <- cbind(x[,11], y[,11], z[,11])
bind2 <- cbind(x[,20], y[,20], z[,20])
bind3 <- cbind(x[,4], y[,4], z[,4])
bind4 <- cbind(x[,5], y[,5], z[,5])
bind5 <- cbind(x[,2], y[,2], z[,2])
bind6 <- cbind(x[,1], y[,11], z[,11])
bind7 <- cbind(x[,7], y[,7], z[,7])
bind8 <- cbind(x[,6], y[,6], z[,6])
scatterplot3d(x[,11], y[,11], z[,11], main="Class 1", color = 1)
scatterplot3d(x[,20], y[,20], z[,20], main="Class 2", color = 2)
scatterplot3d(x[,4], y[,4], z[,4], main="Class 3", color = 3)
scatterplot3d(x[,5], y[,5], z[,5], main="Class 4", color = 4)
scatterplot3d(x[,2], y[,2], z[,2], main="Class 5", color = 5)
scatterplot3d(x[,1], y[,1], z[,1], main="Class 6", color = 6)
scatterplot3d(x[,7], y[,7], z[,7], main="Class 7", color = 7)
scatterplot3d(x[,6], y[,6], z[,6], main="Class 8", color = 8)
#Part 2 - HW3
library(openxlsx)
dist=read.xlsx("mesafe.xlsx")
dist[is.na(dist)] <- 0
head(dist)
## ADANA ADIYAMAN AFYON A–RI AMASYA ANKARA ANTALYA ARTV›N AYDIN BALIKES›R
## 1 0 336 573 966 611 490 557 1034 883 901
## 2 336 0 909 646 632 755 893 755 1219 1237
## 3 573 909 0 1310 589 256 292 1237 346 328
## 4 966 646 1310 0 738 1054 1429 397 1642 1571
## 5 611 632 589 738 0 333 825 696 931 833
## 6 490 755 256 1054 333 0 544 981 598 535
## B›LEC›K B›NG÷L B›TL›S BOLU BURDUR BURSA «ANAKKALE «ANKIRI «ORUM DEN›ZL›
## 1 770 632 732 677 666 839 1100 575 579 760
## 2 1059 349 412 946 1002 1128 1399 785 696 1096
## 3 212 1100 1292 420 170 277 527 387 497 223
## 4 1360 358 234 1147 1425 1420 1691 986 830 1519
## 5 622 640 832 409 755 682 953 248 92 808
## 6 315 897 1089 191 422 384 655 131 241 475
## D›YARBAKIR ED›RNE ELAZI– ERZ›NCAN ERZURUM ESK›fiEH›R GAZ›ANTEP G›RESUN
## 1 525 1169 492 678 808 688 212 728
## 2 205 1438 282 547 529 977 150 710
## 3 1098 684 960 939 1129 144 785 865
## 4 441 1639 496 371 184 1287 754 547
## 5 699 901 546 367 557 566 607 324
## 6 908 683 757 683 873 233 671 609
## G‹M‹fiHANE HAKKAR› HATAY ISPARTA ›«EL ›STANBUL ›ZM›R KARS KASTAMONU KAYSER›
## 1 786 909 191 616 69 939 900 1011 689 333
## 2 680 669 320 952 405 1208 1236 732 885 437
## 3 1006 1482 764 169 565 454 327 1329 501 521
## 4 384 432 950 1375 1035 1409 1633 217 991 813
## 5 434 1139 703 720 639 671 912 757 253 348
## 6 750 1368 681 421 483 453 579 1073 245 318
## KIRKLAREL› KIRfiEH›R KOCAEL› KONYA K‹TAHYA MALATYA MAN›SA KAHRAMANMARAfi MARD›N
## 1 1150 375 828 356 673 394 884 192 537
## 2 1419 571 1097 692 1009 184 1220 164 296
## 3 665 429 343 223 100 862 311 765 1110
## 4 1620 943 1298 1115 1365 592 1617 810 518
## 5 882 312 560 511 644 466 896 527 794
## 6 664 184 342 258 311 659 563 591 996
## MU–LA MUfi NEVfiEH›R N›–DE ORDU R›ZE SAKARYA SAMSUN S››RT S›NOP S›VAS TEK›RDA–
## 1 868 741 287 205 718 927 791 729 708 846 430 1071
## 2 1204 462 518 541 726 856 1060 750 388 890 412 1340
## 3 368 1209 440 459 821 1076 306 669 1281 670 695 586
## 4 1664 245 892 939 591 550 1261 743 331 899 619 1541
## 5 953 749 363 441 280 535 523 131 886 258 220 803
## 6 620 1006 275 348 565 820 305 413 1095 414 439 585
## TOKAT TRABZON TUNCEL› fiANLIURFA UfiAK VAN YOZGAT ZONGULDAK AKSARAY BAYBURT
## 1 499 852 626 349 689 895 473 754 265 808
## 2 520 781 416 110 1025 575 612 1023 593 654
## 3 633 1001 1070 922 116 1427 471 489 365 1028
## 4 677 485 424 617 1422 230 843 1207 967 306
## 5 114 460 498 716 701 967 200 469 422 456
## 6 377 745 814 808 368 1224 215 268 225 772
## KARAMAN KIRIKKALE BATMAN fiIRNAK BARTIN ARDAHAN I–DIR YALOVA KARAB‹K K›L›S
## 1 289 474 621 720 769 1038 1069 893 701 249
## 2 625 684 301 480 1038 759 749 1162 970 209
## 3 336 331 1194 1293 515 1346 1420 341 447 822
## 4 1114 979 369 426 1174 310 143 1363 1105 813
## 5 616 258 799 981 436 779 848 625 367 666
## 6 369 75 1008 1179 283 1090 1164 407 215 730
## OSMAN›YE D‹ZCE
## 1 87 722
## 2 249 991
## 3 660 375
## 4 879 1192
## 5 632 454
## 6 577 236
dist <- cmdscale(dist, k = 2, eig = TRUE)
x_t1 <- dist$points[, 1]
y_t1 <- dist$points[, 2]
plot(x_t1, y_t1, pch = 19, xlab = "", ylab = "", axes = F, main = "Cities of Turkey")
text(x_t1, y_t1, pos = 4, cex = 0.6, labels = colnames(dist))
#HW4
library(data.table)
library(ggplot2)
library(factoextra)
f <- file.choose()
movies1 = read.csv(f, header=FALSE,sep="|")
colnames(movies1) = c("Title")
d <- file.choose()
moviesdata=read.table(d, header=FALSE, sep="")
mdata <- data.frame(c1 = movies1,
c2 = moviesdata)
distances = dist(mdata[2:100], method = "euclidean")
set.seed(123)
clusterMovies = hclust(distances, method = "ward.D2")
plot(clusterMovies)
hc.complete=hclust(dist(moviesdata), method="complete")
plot(hc.complete,main="Complete Linkage", xlab="", cex=.9)
fviz_nbclust(moviesdata, kmeans, method = "silhouette")
subgrp <- cutree(clusterMovies, k = 2)
plot(clusterMovies)
rect.hclust(clusterMovies , k = 2, border = 2:6)