#Dataset

CC <- read.csv("Climate Change Methods_Clean_May 21, 2022.csv", header = T, na.strings=c(".", "", " ", "NA", "-99"))

Participants

#Number of responses (rows)
nrow(CC)
## [1] 1033
#Age range
range(CC$Dem_Age, na.rm = T)
## [1]   0 236
#Average age
mean(CC$Dem_Age, na.rm = T)
## [1] 45.63805
#Standard deviation of age
sd(CC$Dem_Age, na.rm = T)
## [1] 17.30648
#Gender frequencies
table(CC$Dem_Gen)
## 
##   1   2   3 
## 520 501  12
#Ethnicity 
table(CC$Dem_Ethnicity)
## 
##   1   2   3   4   5   6   7 
##  61 130  45   2   4 778  13
CC$Ethnicity <- NA
CC$Ethnicity[CC$Dem_Ethnicity == 1] <- 'Asian'
CC$Ethnicity[CC$Dem_Ethnicity == 2] <- 'Black'
CC$Ethnicity[CC$Dem_Ethnicity == 3] <- 'Hispanic'
CC$Ethnicity[CC$Dem_Ethnicity == 4] <- 'Nat Amer'
CC$Ethnicity[CC$Dem_Ethnicity == 5] <- 'Nat Pac'
CC$Ethnicity[CC$Dem_Ethnicity == 6] <- 'White'
CC$Ethnicity[CC$Dem_Ethnicity == 7] <- 'Other'

describe(CC$Dem_Ethnicity)
## CC$Dem_Ethnicity 
##        n  missing distinct     Info     Mean      Gmd 
##     1033        0        7    0.571    5.076    1.505 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     61   130    45     2     4   778    13
## Proportion 0.059 0.126 0.044 0.002 0.004 0.753 0.013
#Gender
CC$Dem_Gender <- as.numeric(as.character(CC$Dem_Gen))
describe(CC$Dem_Gen)
## CC$Dem_Gen 
##        n  missing distinct     Info     Mean      Gmd 
##     1033        0        3    0.758    1.508   0.5234 
##                             
## Value          1     2     3
## Frequency    520   501    12
## Proportion 0.503 0.485 0.012
#Age
CC$Demograph_Age <- as.numeric(as.character(CC$Dem_Age))
describe(CC$Demograph_Age)
## CC$Demograph_Age 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1025        8       69        1    45.64    19.05       21       24 
##      .25      .50      .75      .90      .95 
##       31       44       60       67       71 
## 
## lowest :   0  18  19  20  21, highest:  81  82  91  93 236
range(CC$Demograph_Age ,na.rm = T)
## [1]   0 236
#Political Orientation
##"Which of the following describes your political orientation?"
CC$polOR <- factor(CC$PI_Orientation, levels = c(1, 2, 3, 4, 5, 6, 7), 
                     labels = c("Strongly Conservative", "Moderately Conservative", "Slightly Conservative", "Neither Conservative Nor Liberal", "Slightly Liberal", "Moderately Liberal", "Strongly Liberal"))
table(CC$polOR)
## 
##            Strongly Conservative          Moderately Conservative 
##                               64                              104 
##            Slightly Conservative Neither Conservative Nor Liberal 
##                               74                              187 
##                 Slightly Liberal               Moderately Liberal 
##                              127                              249 
##                 Strongly Liberal 
##                              228

Scales

Aversion to Tampering with Nature

#Aversion to Tampering with Nature
#Aversion to Tampering with Nature Item Definitions
CC$ATNS_1 <- as.numeric(as.character(CC$ATNS_1_36))
CC$ATNS_2 <- as.numeric(as.character(CC$ATNS_1_37))
CC$ATNS_3 <- as.numeric(as.character(CC$ATNS_1_38))
CC$ATNS_4 <- as.numeric(as.character(CC$ATNS_1_39))
CC$ATNS_5 <- as.numeric(as.character(CC$ATNS_1_40))

#Recode item 2
CC$ATNS_2R <- (100- CC$ATNS_2)

#Aversion to Tampering with Nature Scale Descriptives (No reversed codes)
describe(CC$ATNS_1)
## CC$ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1      101    0.999    49.67       31     5.00    15.00 
##      .25      .50      .75      .90      .95 
##    27.75    50.00    70.00    89.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(CC$ATNS_1)
## [1] NA
range(CC$ATNS_1, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_2)
## CC$ATNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       99    0.999    42.42    32.52      0.0      2.0 
##      .25      .50      .75      .90      .95 
##     19.0     41.0     63.0     81.8     91.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
sd(CC$ATNS_2)
## [1] 28.30727
range(CC$ATNS_2, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_3)
## CC$ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1031        2      101    0.999    49.79    32.83      0.0     11.0 
##      .25      .50      .75      .90      .95 
##     27.5     50.0     70.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(CC$ATNS_3)
## [1] NA
range(CC$ATNS_3, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_4)
## CC$ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       99    0.998    61.63    30.62     12.0     21.2 
##      .25      .50      .75      .90      .95 
##     45.0     64.0     82.0    100.0    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
sd(CC$ATNS_4)
## [1] 26.92168
range(CC$ATNS_4, na.rm=TRUE)
## [1]   0 100
describe(CC$ATNS_5)
## CC$ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0      101    0.999     54.7    33.13        3       13 
##      .25      .50      .75      .90      .95 
##       32       57       76       96      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
sd(CC$ATNS_5)
## [1] 28.87365
range(CC$ATNS_5, na.rm=TRUE)
## [1]   0 100
#Aversion to Tampering with Nature Scale Histograms by Item (No reversed codes)
hist(CC$ATNS_1, main = 'ATNS #1: People who push for technological fixes to environmental problems are underestimating the risks.')

hist(CC$ATNS_2, main = 'ATNS #2: People who say we shouldn’t tamper with nature are just being naïve.')

hist(CC$ATNS_3, main = 'ATNS #3: Human beings have no right to meddle with the natural environment.')

hist(CC$ATNS_4, main = 'ATNS #4: I would prefer to live in a world where humans leave nature alone.')

hist(CC$ATNS_5, main = 'ATNS #5: Altering nature will be our downfall as a species.')

#Cronbach's Alpha (4 and 5 reverse coded)
CC$ATNS_Scale <- data.frame(CC$ATNS_1, CC$ATNS_2R, CC$ATNS_3, CC$ATNS_4, CC$ATNS_5)
CC$ATNS_Score <- rowMeans(CC [, c("ATNS_1", "ATNS_2R", "ATNS_3", "ATNS_4", "ATNS_5")], na.rm=TRUE)
psych::alpha(CC$ATNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$ATNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83    0.81      0.49 4.8 0.0084   55 22     0.51
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.85 
## 
##  Reliability if an item is dropped:
##            raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.ATNS_1       0.85      0.85    0.81      0.58 5.6   0.0078 0.0057  0.58
## CC.ATNS_2R      0.81      0.81    0.78      0.51 4.2   0.0097 0.0212  0.51
## CC.ATNS_3       0.76      0.76    0.72      0.44 3.2   0.0121 0.0163  0.45
## CC.ATNS_4       0.77      0.77    0.73      0.45 3.3   0.0118 0.0153  0.45
## CC.ATNS_5       0.78      0.78    0.75      0.46 3.5   0.0113 0.0253  0.46
## 
##  Item statistics 
##               n raw.r std.r r.cor r.drop mean sd
## CC.ATNS_1  1032  0.62  0.63  0.47   0.43   50 27
## CC.ATNS_2R 1033  0.74  0.74  0.63   0.58   58 28
## CC.ATNS_3  1031  0.84  0.84  0.81   0.73   50 29
## CC.ATNS_4  1033  0.83  0.83  0.80   0.72   62 27
## CC.ATNS_5  1033  0.81  0.81  0.75   0.68   55 29
describe(CC$ATNS_Scale)
## CC$ATNS_Scale 
## 
##  5  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.ATNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1      101    0.999    49.67       31     5.00    15.00 
##      .25      .50      .75      .90      .95 
##    27.75    50.00    70.00    89.00   100.00 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_2R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       99    0.999    57.58    32.52      9.0     18.2 
##      .25      .50      .75      .90      .95 
##     37.0     59.0     81.0     98.0    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1031        2      101    0.999    49.79    32.83      0.0     11.0 
##      .25      .50      .75      .90      .95 
##     27.5     50.0     70.0     93.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       99    0.998    61.63    30.62     12.0     21.2 
##      .25      .50      .75      .90      .95 
##     45.0     64.0     82.0    100.0    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.ATNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0      101    0.999     54.7    33.13        3       13 
##      .25      .50      .75      .90      .95 
##       32       57       76       96      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------

Benefit

# Benefit was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented naturalness perception of the technology rated.

## 1. This is likely to lead to achieving carbon neutral climate goals.

Descriptives

# Define Variables
CC$Ben_AFSCS <- CC$Ben_AFSCS_18
CC$Ben_BIO <- CC$Ben_BIO_18
CC$Ben_BECCS <- CC$Ben_BECCS_18
CC$Ben_DACCS <- CC$Ben_DACCS_18
CC$Ben_EW <- CC$Ben_EW_18
CC$Ben_OF <- CC$Ben_OF_18
CC$Ben_BF <- CC$Ben_BF_18
CC$Ben_NE <- CC$Ben_NE_18
CC$Ben_SE <- CC$Ben_SE_18
CC$Ben_WE <- CC$Ben_WE_18

#Descriptives
describe(CC$Ben_AFSCS)
## CC$Ben_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       80    0.999    68.37    25.96    22.45    37.00 
##      .25      .50      .75      .90      .95 
##    55.25    72.00    85.00    97.00   100.00 
## 
## lowest :   0   1   5  10  12, highest:  96  97  98  99 100
sd(CC$Ben_AFSCS, na.rm = TRUE)
## [1] 23.554
hist(CC$Ben_AFSCS)

describe(CC$Ben_BIO)
## CC$Ben_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       86    0.999    53.24    29.51      4.6     19.0 
##      .25      .50      .75      .90      .95 
##     32.0     56.0     72.0     86.0     92.2 
## 
## lowest :   0   1   3   5   7, highest:  95  97  98  99 100
sd(CC$Ben_BIO, na.rm = TRUE)
## [1] 25.81268
hist(CC$Ben_BIO)

describe(CC$Ben_BECCS) 
## CC$Ben_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       87    0.999    55.15    29.13     9.90    18.00 
##      .25      .50      .75      .90      .95 
##    36.75    57.00    75.00    88.00    95.05 
## 
## lowest :   0   1   3   6   7, highest:  94  95  96  97 100
sd(CC$Ben_BECCS, na.rm = TRUE)
## [1] 25.54434
hist(CC$Ben_BECCS)

describe(CC$Ben_DACCS)
## CC$Ben_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       90    0.999    55.49    30.48      3.0     15.0 
##      .25      .50      .75      .90      .95 
##     37.0     59.5     75.0     90.0    100.0 
## 
## lowest :   0   1   2   3   5, highest:  93  95  96  98 100
sd(CC$Ben_DACCS, na.rm = TRUE)
## [1] 26.83216
hist(CC$Ben_DACCS)

describe(CC$Ben_EW)
## CC$Ben_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       83    0.999    52.29    27.87      0.0     13.8 
##      .25      .50      .75      .90      .95 
##     37.0     55.0     70.0     81.2     89.8 
## 
## lowest :   0   3   4   5   6, highest:  95  96  97  99 100
sd(CC$Ben_EW, na.rm = TRUE)
## [1] 24.76007
hist(CC$Ben_EW)

describe(CC$Ben_OF)
## CC$Ben_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       82    0.999    54.46    28.91     6.50    17.00 
##      .25      .50      .75      .90      .95 
##    35.75    58.00    73.25    86.00    91.25 
## 
## lowest :   0   2   4   5   7, highest:  92  93  95  96 100
sd(CC$Ben_OF, na.rm = TRUE)
## [1] 25.41991
hist(CC$Ben_OF)

describe(CC$Ben_BF)
## CC$Ben_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       82    0.999    52.29    30.31     4.25    10.50 
##      .25      .50      .75      .90      .95 
##    34.00    58.00    70.00    85.00    95.25 
## 
## lowest :   0   1   2   5   6, highest:  93  95  96  97 100
sd(CC$Ben_BF, na.rm = TRUE)
## [1] 26.6036
hist(CC$Ben_BF)

describe(CC$Ben_NE)
## CC$Ben_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       78    0.999    59.96    31.22        0       18 
##      .25      .50      .75      .90      .95 
##       43       66       80       93      100 
## 
## lowest :   0   6   9  10  11, highest:  94  95  97  98 100
sd(CC$Ben_NE, na.rm = TRUE)
## [1] 27.81378
hist(CC$Ben_NE)

describe(CC$Ben_SE)
## CC$Ben_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       76    0.998    66.01    29.55     10.0     25.0 
##      .25      .50      .75      .90      .95 
##     50.0     70.0     85.0     99.8    100.0 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
sd(CC$Ben_SE, na.rm = TRUE)
## [1] 26.51654
hist(CC$Ben_SE)

describe(CC$Ben_WE) 
## CC$Ben_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       71    0.998    65.06    28.81     10.3     25.0 
##      .25      .50      .75      .90      .95 
##     52.0     68.0     85.0    100.0    100.0 
## 
## lowest :   0   5   6   8  10, highest:  96  97  98  99 100
sd(CC$Ben_WE, na.rm = TRUE)
## [1] 25.98025
hist(CC$Ben_WE)

Score(s) & Scale(s)

# Note: Benefit Scores & scales not present because measure is one item.)

Climate Change Belief

Descriptives

#Climate Change Belief Item Definitions
CC$CCB1 <- as.numeric(as.character(CC$CCB_1_48))
CC$CCB2 <- as.numeric(as.character(CC$CCB_1_49))
CC$CCB3 <- as.numeric(as.character(CC$CCB_1_50))
CC$CCB4 <- as.numeric(as.character(CC$CCB_1_51))

#Climate Change Belief Descriptives
describe(CC$CCB1)
## CC$CCB1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1       73    0.857    86.88    19.61    33.00    58.00 
##      .25      .50      .75      .90      .95 
##    83.75   100.00   100.00   100.00   100.00 
## 
## lowest :   0   8  11  13  15, highest:  96  97  98  99 100
range(CC$CCB1, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB1, na.rm=TRUE)
## [1] 22.10478
describe(CC$CCB2)
## CC$CCB2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1       87    0.889     83.6    23.87    18.55    50.00 
##      .25      .50      .75      .90      .95 
##    79.00    98.00   100.00   100.00   100.00 
## 
## lowest :   0   3   5   7   8, highest:  96  97  98  99 100
range(CC$CCB2, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB2, na.rm=TRUE)
## [1] 25.75413
describe(CC$CCB3)
## CC$CCB3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       89    0.937    79.64    27.63      1.6     35.0 
##      .25      .50      .75      .90      .95 
##     70.0     91.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(CC$CCB3, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB3, na.rm=TRUE)
## [1] 28.35675
describe(CC$CCB4)
## CC$CCB4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       87    0.979    76.36    27.45     14.2     40.0 
##      .25      .50      .75      .90      .95 
##     65.0     85.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
range(CC$CCB4, na.rm=TRUE)
## [1]   0 100
sd(CC$CCB4, na.rm=TRUE)
## [1] 26.39739
#Climate Change Belief Histograms
hist(CC$CCB1, main = 'Climate Change Belief #1: Climate change is happening."')

hist(CC$CCB2, main = 'Climate Change Belief #2:Climate change poses a risk to human health, safety, and prosperity."')

hist(CC$CCB3, main = 'Climate Change Belief #3:Human activity is largely responsible for recent climate change."')

hist(CC$CCB4, main = 'Climate Change Belief #4: Reducing greenhouse gas emissions will reduce global warming and climate change."')

Score(s) & Scale(s)

#Score & Scale
CC$CCB_Score <- rowMeans(CC[, c('CCB1', 'CCB2', 'CCB3','CCB4')], na.rm=T)
describe(CC$CCB_Score)
## CC$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0      251    0.987    81.61     23.3    24.70    47.35 
##      .25      .50      .75      .90      .95 
##    75.00    91.25    99.00   100.00   100.00 
## 
## lowest :   0.00   2.00   3.75   4.00   4.75, highest:  99.00  99.25  99.50  99.75 100.00
CC$CCB_Scale <- data.frame(CC$CCB_1_48, CC$CCB_1_49, CC$CCB_1_50, CC$CCB_1_51)
describe(CC$CCB_Scale)
## CC$CCB_Scale 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.CCB_1_48 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1       73    0.857    86.88    19.61    33.00    58.00 
##      .25      .50      .75      .90      .95 
##    83.75   100.00   100.00   100.00   100.00 
## 
## lowest :   0   8  11  13  15, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_49 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1       87    0.889     83.6    23.87    18.55    50.00 
##      .25      .50      .75      .90      .95 
##    79.00    98.00   100.00   100.00   100.00 
## 
## lowest :   0   3   5   7   8, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_50 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       89    0.937    79.64    27.63      1.6     35.0 
##      .25      .50      .75      .90      .95 
##     70.0     91.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CCB_1_51 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       87    0.979    76.36    27.45     14.2     40.0 
##      .25      .50      .75      .90      .95 
##     65.0     85.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
#Cronbach's Alpha
psych::alpha(CC$CCB_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CCB_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.94      0.94    0.93       0.8  16 0.003   82 24      0.8
## 
##  lower alpha upper     95% confidence boundaries
## 0.93 0.94 0.95 
## 
##  Reliability if an item is dropped:
##             raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## CC.CCB_1_48      0.93      0.93    0.90      0.82 13.4   0.0037 0.0012  0.82
## CC.CCB_1_49      0.90      0.91    0.88      0.77  9.9   0.0048 0.0032  0.78
## CC.CCB_1_50      0.91      0.92    0.90      0.79 11.1   0.0047 0.0070  0.78
## CC.CCB_1_51      0.93      0.94    0.92      0.83 15.0   0.0036 0.0025  0.85
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.CCB_1_48 1032  0.90  0.91  0.88   0.84   87 22
## CC.CCB_1_49 1032  0.95  0.95  0.94   0.90   84 26
## CC.CCB_1_50 1033  0.94  0.93  0.91   0.88   80 28
## CC.CCB_1_51 1033  0.90  0.90  0.84   0.82   76 26
#Correlation CCB 
cor(CC$CCB_Scale, use= "complete.obs")
##             CC.CCB_1_48 CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51
## CC.CCB_1_48   1.0000000   0.8728811   0.7770843   0.7064467
## CC.CCB_1_49   0.8728811   1.0000000   0.8495833   0.7822191
## CC.CCB_1_50   0.7770843   0.8495833   1.0000000   0.8189666
## CC.CCB_1_51   0.7064467   0.7822191   0.8189666   1.0000000

Connectedness to Nature

Descriptives

#Connectedness to Nature Item Definitions
CC$CNS_1 <- as.numeric(as.character(CC$CNS_1_47))
CC$CNS_2 <- as.numeric(as.character(CC$CNS_1_48))
CC$CNS_3 <- as.numeric(as.character(CC$CNS_1_49))
CC$CNS_4 <- as.numeric(as.character(CC$CNS_1_50))
CC$CNS_5 <- as.numeric(as.character(CC$CNS_1_51))

#Descriptives
describe(CC$CNS_1)
## CC$CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       97    0.998    67.03    27.56       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
range(CC$CNS_1, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_2)
## CC$CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       95    0.995    73.43    24.82       25       44 
##      .25      .50      .75      .90      .95 
##       62       78       91      100      100 
## 
## lowest :   0   5   7   8   9, highest:  96  97  98  99 100
range(CC$CNS_2, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_3)
## CC$CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1       98    0.996    65.94    32.07      0.0     17.0 
##      .25      .50      .75      .90      .95 
##     51.0     70.5     87.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(CC$CNS_3, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_4)
## CC$CNS_4 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1      100    0.996    39.75    37.06        0        0 
##      .25      .50      .75      .90      .95 
##       13       33       68       90      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
range(CC$CNS_4, na.rm=TRUE)
## [1]   0 100
describe(CC$CNS_5)
## CC$CNS_5 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       98    0.999    49.59    34.86        0        5 
##      .25      .50      .75      .90      .95 
##       23       51       72       90      100 
## 
## lowest :   0   1   3   4   5, highest:  95  97  98  99 100
range(CC$CNS_5, na.rm=TRUE)
## [1]   0 100
#Histograms
hist(CC$CNS_1, main = 'I often feel a sense of oneness with the natural world around me.')

hist(CC$CNS_2, main = 'I think of the natural world as a community to which I belong.')

hist(CC$CNS_3, main = 'I feel that all inhabitants of Earth, human, and nonhuman, share a common ‘life force’.')

hist(CC$CNS_4, main = 'My personal welfare is independent of the welfare of the natural world.')

hist(CC$CNS_5, main = 'When I think of my place on Earth, I consider myself to be a top member of a hierarchy that exists in nature.')

#Recode items 4 and 5
CC$CNS_4R <- (100 - CC$CNS_4) 
CC$CNS_5R <- (100 - CC$CNS_5)

Score(s) & Scale(s)

#Score & Scale
CC$CNS_Score <- rowMeans(CC [, c("CNS_1", "CNS_2", "CNS_3", "CNS_4R", "CNS_5R")], na.rm=TRUE)
describe(CC$CNS_Score)
## CC$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0      323        1    63.42    18.67    35.00    43.20 
##      .25      .50      .75      .90      .95 
##    53.00    63.00    74.60    84.96    91.80 
## 
## lowest :   0.0   8.6  10.0  12.8  16.0, highest:  98.2  98.6  99.2  99.6 100.0
CC$CNS_Scale2 <- data.frame(CC$CNS_1, CC$CNS_2, CC$CNS_3, CC$CNS_4R, CC$CNS_5R)
psych::alpha(CC$CNS_Scale2)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CNS_Scale2)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.54      0.58    0.63      0.22 1.4 0.024   63 17    0.078
## 
##  lower alpha upper     95% confidence boundaries
## 0.49 0.54 0.58 
## 
##  Reliability if an item is dropped:
##           raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.CNS_1       0.38      0.41    0.44      0.15 0.69    0.032 0.046 0.078
## CC.CNS_2       0.38      0.41    0.44      0.15 0.69    0.032 0.054 0.068
## CC.CNS_3       0.41      0.45    0.51      0.17 0.82    0.031 0.068 0.064
## CC.CNS_4R      0.62      0.66    0.67      0.32 1.92    0.020 0.093 0.313
## CC.CNS_5R      0.58      0.63    0.66      0.30 1.74    0.023 0.109 0.308
## 
##  Item statistics 
##              n raw.r std.r r.cor r.drop mean sd
## CC.CNS_1  1033  0.70  0.75  0.75  0.491   67 25
## CC.CNS_2  1033  0.69  0.75  0.74  0.506   73 23
## CC.CNS_3  1032  0.68  0.70  0.64  0.412   66 29
## CC.CNS_4R 1032  0.47  0.41  0.13  0.092   60 33
## CC.CNS_5R 1033  0.50  0.45  0.18  0.152   50 30
describe(CC$CNS_Scale2)
## CC$CNS_Scale2 
## 
##  5  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       97    0.998    67.03    27.56       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       95    0.995    73.43    24.82       25       44 
##      .25      .50      .75      .90      .95 
##       62       78       91      100      100 
## 
## lowest :   0   5   7   8   9, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1       98    0.996    65.94    32.07      0.0     17.0 
##      .25      .50      .75      .90      .95 
##     51.0     70.5     87.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_4R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1      100    0.996    60.25    37.06        0       10 
##      .25      .50      .75      .90      .95 
##       32       67       87      100      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_5R 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       98    0.999    50.41    34.86        0       10 
##      .25      .50      .75      .90      .95 
##       28       49       77       95      100 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
## Drop reverse coded items 
CC$CNS_Scale <- data.frame(CC$CNS_1, CC$CNS_2, CC$CNS_3)
psych::alpha(CC$CNS_Scale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CNS_Scale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.81      0.82    0.76       0.6 4.5 0.01   69 22     0.58
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.81 0.83 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.CNS_1      0.69      0.70    0.54      0.54 2.4    0.018    NA  0.54
## CC.CNS_2      0.73      0.73    0.58      0.58 2.8    0.017    NA  0.58
## CC.CNS_3      0.80      0.81    0.67      0.67 4.1    0.012    NA  0.67
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.CNS_1 1033  0.87  0.88  0.80   0.71   67 25
## CC.CNS_2 1033  0.84  0.86  0.76   0.68   73 23
## CC.CNS_3 1032  0.85  0.83  0.67   0.61   66 29
describe(CC$CNS_Scale)
## CC$CNS_Scale 
## 
##  3  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.CNS_1 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       97    0.998    67.03    27.56       16       33 
##      .25      .50      .75      .90      .95 
##       51       70       85      100      100 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_2 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       95    0.995    73.43    24.82       25       44 
##      .25      .50      .75      .90      .95 
##       62       78       91      100      100 
## 
## lowest :   0   5   7   8   9, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.CNS_3 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1032        1       98    0.996    65.94    32.07      0.0     17.0 
##      .25      .50      .75      .90      .95 
##     51.0     70.5     87.0    100.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
#Correlation CCB 
cor(CC$CNS_Scale, use= "complete.obs")
##           CC.CNS_1  CC.CNS_2  CC.CNS_3
## CC.CNS_1 1.0000000 0.6748648 0.5798941
## CC.CNS_2 0.6748648 1.0000000 0.5429202
## CC.CNS_3 0.5798941 0.5429202 1.0000000

Control

# Control was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented perception of control over the technology rated.

## 1. We have control over the processes in this method.

Descriptives

# Define Variables
CC$Control_AFSCS <- CC$Risk_AFSCS_34
CC$Control_BIO <- CC$Risk_BIO_34
CC$Control_BECCS <- CC$Risk_BECCS_34
CC$Control_DACCS <- CC$Risk_DACCS_34
CC$Control_EW <- CC$Risk_EW_34
CC$Control_OF <- CC$Risk_OF_34
CC$Control_BF <- CC$Risk_BF_34
CC$Control_NE <- CC$Risk_NE_34
CC$Control_SE <- CC$Risk_SE_34
CC$Control_WE <- CC$Risk_WE_34

# Descriptives
describe(CC$Control_AFSCS)
## CC$Control_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       72    0.997    74.43    22.03       36       50 
##      .25      .50      .75      .90      .95 
##       65       77       88      100      100 
## 
## lowest :   0   5   7   8  20, highest:  96  97  98  99 100
sd(CC$Control_AFSCS, na.rm = TRUE)
## [1] 20.45079
hist(CC$Control_AFSCS)

describe(CC$Control_BIO)
## CC$Control_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       77    0.999    68.98    23.94     29.8     41.6 
##      .25      .50      .75      .90      .95 
##     54.0     71.0     85.0     96.0    100.0 
## 
## lowest :   0   5   9  14  16, highest:  95  96  98  99 100
sd(CC$Control_BIO, na.rm = TRUE)
## [1] 21.26588
hist(CC$Control_BIO)

describe(CC$Control_BECCS)
## CC$Control_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       82    0.999    62.12     26.5     19.0     30.0 
##      .25      .50      .75      .90      .95 
##     47.0     65.0     78.0     90.1    100.0 
## 
## lowest :   0   2   5  10  12, highest:  95  96  98  99 100
sd(CC$Control_BECCS, na.rm = TRUE)
## [1] 23.53716
hist(CC$Control_BECCS)

describe(CC$Control_DACCS)
## CC$Control_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       89    0.999    57.52    29.06    13.70    21.70 
##      .25      .50      .75      .90      .95 
##    40.25    58.00    75.00    92.30   100.00 
## 
## lowest :   0   1   8   9  10, highest:  94  95  97  99 100
sd(CC$Control_DACCS, na.rm = TRUE)
## [1] 25.50693
hist(CC$Control_DACCS)

describe(CC$Control_EW) 
## CC$Control_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       83    0.999     54.8    26.32       14       25 
##      .25      .50      .75      .90      .95 
##       39       55       71       86       92 
## 
## lowest :   0   9  10  12  13, highest:  93  94  95  99 100
sd(CC$Control_EW, na.rm = TRUE)
## [1] 23.13068
hist(CC$Control_EW) 

describe(CC$Control_OF)
## CC$Control_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       90        1    47.47    29.86     5.00    12.50 
##      .25      .50      .75      .90      .95 
##    27.00    47.50    67.25    81.50    91.00 
## 
## lowest :   0   1   2   3   4, highest:  94  95  98  99 100
sd(CC$Control_OF, na.rm = TRUE)
## [1] 25.98562
hist(CC$Control_OF)

describe(CC$Control_BF)
## CC$Control_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       65    0.996    77.22    21.51     37.5     50.5 
##      .25      .50      .75      .90      .95 
##     69.0     80.0     94.0    100.0    100.0 
## 
## lowest :   0   5  15  25  29, highest:  96  97  98  99 100
sd(CC$Control_BF, na.rm = TRUE)
## [1] 19.74204
hist(CC$Control_BF)

describe(CC$Control_NE)
## CC$Control_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       73    0.999    66.63    27.96       20       32 
##      .25      .50      .75      .90      .95 
##       51       71       86       98      100 
## 
## lowest :   0   5   7   9  10, highest:  95  96  98  99 100
sd(CC$Control_NE, na.rm = TRUE)
## [1] 24.96451
hist(CC$Control_NE)

describe(CC$Control_SE)
## CC$Control_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       67    0.993    75.93    25.56     26.8     39.2 
##      .25      .50      .75      .90      .95 
##     63.0     82.0     95.0    100.0    100.0 
## 
## lowest :   0   7   9  10  13, highest:  96  97  98  99 100
sd(CC$Control_SE, na.rm = TRUE)
## [1] 23.96366
hist(CC$Control_SE)

describe(CC$Control_WE)
## CC$Control_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       68    0.997    71.05    27.65     21.1     34.2 
##      .25      .50      .75      .90      .95 
##     56.0     79.0     90.0    100.0    100.0 
## 
## lowest :   0   4  10  12  15, highest:  96  97  98  99 100
sd(CC$Control_WE, na.rm = TRUE)
## [1] 25.10143
hist(CC$Control_WE)

Score(s) & Scale(s)

# Note: Control scores & scales not present because measure is one item.)

Familiarity

# Familiarity was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented participant familiarity with the technology rated.

## 1. This is familiar.

Descriptives

#Define Variables
CC$Familiar_AFSCS <- CC$Risk_AFSCS_31
CC$Familiar_BIO <- CC$Risk_BIO_31
CC$Familiar_BECCS <- CC$Risk_BECCS_31
CC$Familiar_DACCS <- CC$Risk_DACCS_31
CC$Familiar_EW <- CC$Risk_EW_31
CC$Familiar_OF <- CC$Risk_OF_31
CC$Familiar_BF <- CC$Risk_BF_31
CC$Familiar_NE <- CC$Risk_NE_31
CC$Familiar_SE <- CC$Risk_SE_31
CC$Familiar_WE <- CC$Risk_WE_31

# Descriptives
describe(CC$Familiar_AFSCS)
## CC$Familiar_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       91    0.997    62.74    34.66      3.0     11.9 
##      .25      .50      .75      .90      .95 
##     42.0     67.0     89.0    100.0    100.0 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
sd(CC$Familiar_AFSCS, na.rm = TRUE)
## [1] 30.73106
hist(CC$Familiar_AFSCS)

describe(CC$Familiar_BIO)
## CC$Familiar_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       81    0.993    27.51    29.44      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      4.0     20.0     43.0     68.4     82.0 
## 
## lowest :   0   1   2   3   4, highest:  92  93  94  95 100
sd(CC$Familiar_BIO, na.rm = TRUE)
## [1] 26.93655
hist(CC$Familiar_BIO)

describe(CC$Familiar_BECCS)
## CC$Familiar_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       87    0.994    29.66    30.65     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.00    22.00    48.50    73.00    84.05 
## 
## lowest :   0   1   2   3   4, highest:  91  92  94  98 100
sd(CC$Familiar_BECCS, na.rm = TRUE)
## [1] 27.77227
hist(CC$Familiar_BECCS)

describe(CC$Familiar_DACCS)
## CC$Familiar_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       83    0.992    26.66    28.24     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     5.00    20.00    42.00    65.30    76.15 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  99 100
sd(CC$Familiar_DACCS, na.rm = TRUE)
## [1] 25.76452
hist(CC$Familiar_DACCS)

describe(CC$Familiar_EW)
## CC$Familiar_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       76     0.98    22.48    25.13      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     17.0     36.0     60.0     69.8 
## 
## lowest :  0  1  2  3  4, highest: 79 80 87 90 91
sd(CC$Familiar_EW, na.rm = TRUE)
## [1] 23.12228
hist(CC$Familiar_EW)

describe(CC$Familiar_OF)
## CC$Familiar_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       76    0.992    25.51    27.56        0        0 
##      .25      .50      .75      .90      .95 
##        4       18       40       63       76 
## 
## lowest :   0   1   2   3   4, highest:  85  86  87  89 100
sd(CC$Familiar_OF, na.rm = TRUE)
## [1] 25.28677
hist(CC$Familiar_OF)

describe(CC$Familiar_BF)
## CC$Familiar_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       87    0.999    58.37     32.5     0.00    18.00 
##      .25      .50      .75      .90      .95 
##    36.75    61.00    81.00    93.50   100.00 
## 
## lowest :   0   1   5   6   8, highest:  95  96  98  99 100
sd(CC$Familiar_BF, na.rm = TRUE)
## [1] 28.51731
hist(CC$Familiar_BF)

describe(CC$Familiar_NE)
## CC$Familiar_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       82    0.997    69.35    29.29       15       31 
##      .25      .50      .75      .90      .95 
##       54       75       90      100      100 
## 
## lowest :   0   2   3   4   6, highest:  95  97  98  99 100
sd(CC$Familiar_NE, na.rm = TRUE)
## [1] 26.50786
hist(CC$Familiar_NE)

describe(CC$Familiar_SE)
## CC$Familiar_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       51    0.942    87.65    16.08     51.6     63.2 
##      .25      .50      .75      .90      .95 
##     82.0     94.0    100.0    100.0    100.0 
## 
## lowest :   0  18  35  38  41, highest:  96  97  98  99 100
sd(CC$Familiar_SE, na.rm = TRUE)
## [1] 16.36918
hist(CC$Familiar_SE)

describe(CC$Familiar_WE)
## CC$Familiar_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       63    0.983    81.66    20.96     40.2     55.0 
##      .25      .50      .75      .90      .95 
##     75.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   3  13  19, highest:  96  97  98  99 100
sd(CC$Familiar_WE, na.rm = TRUE)
## [1] 20.81041
hist(CC$Familiar_WE)

Score(s) & Scale(s)

# Note: Familiarity scores & scales not present because measure is one item.)

Ideology

Descriptives

Score(s) & Scale(s)

#Political Orientation
##Which of the following best describes your political orientation? ( 1 = Strongly Conservative to 7 = Strongly Liberal)

describe(CC$PI_Orientation)
## CC$PI_Orientation 
##        n  missing distinct     Info     Mean      Gmd 
##     1033        0        7    0.966    4.808    2.076 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     64   104    74   187   127   249   228
## Proportion 0.062 0.101 0.072 0.181 0.123 0.241 0.221
CC$Orientation = as.numeric(recode_factor(CC$PI_Orientation,'1'= "3",'2'= "2",'3'= "1",
                                          '4'= "0",'5'= "-1", '6'= "-2", '7'= "-3"))
describe(CC$Orientation)
## CC$Orientation 
##        n  missing distinct     Info     Mean      Gmd 
##     1033        0        7    0.966    4.808    2.076 
## 
## lowest : 1 2 3 4 5, highest: 3 4 5 6 7
##                                                     
## Value          1     2     3     4     5     6     7
## Frequency     64   104    74   187   127   249   228
## Proportion 0.062 0.101 0.072 0.181 0.123 0.241 0.221
hist(CC$Orientation , main = 'Political Orientation (Liberal to Conservative)')

#Political Party Identification
##Generally speaking, do you usually think of yourself as a Republican, a Democrat, an Independent, or what? (1 = Republican, 2 = Democrat, 3 = Independent, 4 = Other (write-in), 5 = No Preference)

describe(CC$PP_Party)
## CC$PP_Party 
##        n  missing distinct     Info     Mean      Gmd 
##     1032        1        5    0.856    2.252   0.9224 
## 
## lowest : 1 2 3 4 5, highest: 1 2 3 4 5
##                                         
## Value          1     2     3     4     5
## Frequency    183   508   277    26    38
## Proportion 0.177 0.492 0.268 0.025 0.037
CC$Party <- as.numeric(as.character(CC$PP_Party))
CC$DemStrength <- as.numeric(as.character(CC$PP_DemStrength))
CC$RepStrength <- as.numeric(as.character(CC$PP_RepStrength))
CC$PartyClose <- as.numeric(as.character(CC$PP_CloserTo))

# Recode Party

CC$PartyFull <- NA
CC$PartyFull[CC$DemStrength == 1] <- -3
CC$PartyFull[CC$DemStrength == 2] <- -2
CC$PartyFull[CC$PartyClose == 1] <- -1
CC$PartyFull[CC$PartyClose == 3] <- 0
CC$PartyFull[CC$PartyClose == 2] <- 1
CC$PartyFull[CC$RepStrength == 2] <- 2
CC$PartyFull[CC$RepStrength == 1] <- 3

describe(CC$PartyFull)
## CC$PartyFull 
##        n  missing distinct     Info     Mean      Gmd 
##     1032        1        7    0.957  -0.9205    2.216 
## 
## lowest : -3 -2 -1  0  1, highest: -1  0  1  2  3
##                                                     
## Value         -3    -2    -1     0     1     2     3
## Frequency    324   184   126   152    63    96    87
## Proportion 0.314 0.178 0.122 0.147 0.061 0.093 0.084
hist(CC$PartyFull , main = 'Party Identification')

CC$PartyID <- NA
CC$PartyID[CC$PartyFull < 0] <- -0.5
CC$PartyID[CC$PartyFull == 0] <- 0
CC$PartyID[CC$PartyFull > 0] <- 0.5

#New Variable: Ideology
CC$Ideology <-  rowMeans(CC[, c('PartyFull', 'Orientation')], na.rm=T)
describe(CC$Ideology)
## CC$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     1033        0       13     0.87    1.947   0.5695      1.0      1.5 
##      .25      .50      .75      .90      .95 
##      1.5      2.0      2.0      2.5      3.0 
## 
## lowest : -1.0 -0.5  0.0  0.5  1.0, highest:  3.0  3.5  4.0  5.0  6.0
##                                                                             
## Value       -1.0  -0.5   0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0
## Frequency      1     4     4    11    54   242   502   137    64    11     1
## Proportion 0.001 0.004 0.004 0.011 0.052 0.234 0.486 0.133 0.062 0.011 0.001
##                       
## Value        5.0   6.0
## Frequency      1     1
## Proportion 0.001 0.001
hist(CC$Ideology)

Individualism/Collectivism

#Individualism and Collectivism Scale (Code adapted from J.Cole Collectivism Study)

#Individualism and collectivism were each measured with 4 items (for a total of 8 items) on a 1-7 scale of agreement (0 = 'Strongly disagree' to 100 = 'Strongly agree').

##Collectivism Items
###Individualism/Collectivism Item #3 (C): It is important to me to think of myself as a member of my religious, national, or ethnic group. 
###Individualism/Collectivism Item #4 (C): Learning about the traditions, values, and beliefs of my family is important to me.
###Individualism/Collectivism Item #7 (C): In the end, a person feels closest to members of their own religious, national, or ethnic group. 
###Individualism/Collectivism Item #8 (C): It is important to me to respect decisions made by my family.

##Individualism Items 
###Individualism/Collectivism Item #1 (I): It is important to me to develop my own personal style. 
###Individualism/Collectivism Item #2 (I): It is better for me to follow my own ideas than to follow those of anyone else.  
###Individualism/Collectivism Item #5 (I): I enjoy being unique and different from others in many respects. 
###Individualism/Collectivism Item #6 (I): My personal achievements and accomplishments are very important to who I am.

#Individualism (Items 1,2,5,6)
CC$Ind_1 <- as.numeric(as.character(CC$Individualism_54))
CC$Ind_2 <- as.numeric(as.character(CC$Individualism_55))
CC$Ind_5 <- as.numeric(as.character(CC$Individualism_58))
CC$Ind_6 <- as.numeric(as.character(CC$Individualism_59))
CC$Individualism_Score <- rowMeans(CC[, c('Ind_1', 'Ind_2', 'Ind_5','Ind_6')], na.rm=T)

#Collectivism (Items 3,4,7,8)
CC$Ind_3 <- as.numeric(as.character(CC$Individualism_56))
CC$Ind_4 <- as.numeric(as.character(CC$Individualism_57))
CC$Ind_7 <- as.numeric(as.character(CC$Individualism_60))
CC$Ind_8 <- as.numeric(as.character(CC$Individualism_69))
CC$Collectivism_Score <- rowMeans(CC[, c('Ind_3', 'Ind_4', 'Ind_7','Ind_8')], na.rm=T)

#Individualism Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5,CC$Ind_6))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5, CC$Ind_6))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.69       0.4 2.6 0.014   71 17     0.38
## 
##  lower alpha upper     95% confidence boundaries
## 0.69 0.72 0.75 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Ind_1      0.56      0.56    0.48      0.30 1.3    0.024 0.010  0.32
## CC.Ind_2      0.75      0.75    0.68      0.50 3.0    0.014 0.015  0.47
## CC.Ind_5      0.61      0.61    0.54      0.34 1.6    0.021 0.020  0.37
## CC.Ind_6      0.70      0.70    0.64      0.44 2.3    0.017 0.029  0.37
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_1 1033  0.83  0.84  0.80   0.67   74 22
## CC.Ind_2 1033  0.64  0.63  0.42   0.35   67 23
## CC.Ind_5 1033  0.79  0.79  0.72   0.59   72 22
## CC.Ind_6 1033  0.70  0.69  0.53   0.44   70 24
hist(CC$Individualism_Score , main = 'Individualism Score')

#Collectivism Alpha and Histogram (4 items)
psych::alpha(data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83     0.8      0.54 4.7 0.0088   54 24     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.84 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Ind_3      0.75      0.75    0.69      0.50 3.0   0.0136 0.0174  0.43
## CC.Ind_4      0.76      0.76    0.69      0.52 3.2   0.0126 0.0073  0.53
## CC.Ind_7      0.82      0.82    0.76      0.60 4.5   0.0099 0.0038  0.62
## CC.Ind_8      0.78      0.78    0.72      0.55 3.6   0.0115 0.0102  0.59
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_3 1033  0.86  0.85  0.78   0.71   43 32
## CC.Ind_4 1033  0.83  0.83  0.77   0.69   62 29
## CC.Ind_7 1032  0.75  0.75  0.62   0.57   53 28
## CC.Ind_8 1033  0.80  0.81  0.72   0.64   58 28
hist(CC$Collectivism_Score , main = 'Collectivism Score')

#Cronbachs Alpha for Individualism and Collectivism scales
CC$IndScale <- data.frame(CC$Ind_1, CC$Ind_2, CC$Ind_5, CC$Ind_6)
psych::alpha(CC$IndScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$IndScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.69       0.4 2.6 0.014   71 17     0.38
## 
##  lower alpha upper     95% confidence boundaries
## 0.69 0.72 0.75 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Ind_1      0.56      0.56    0.48      0.30 1.3    0.024 0.010  0.32
## CC.Ind_2      0.75      0.75    0.68      0.50 3.0    0.014 0.015  0.47
## CC.Ind_5      0.61      0.61    0.54      0.34 1.6    0.021 0.020  0.37
## CC.Ind_6      0.70      0.70    0.64      0.44 2.3    0.017 0.029  0.37
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_1 1033  0.83  0.84  0.80   0.67   74 22
## CC.Ind_2 1033  0.64  0.63  0.42   0.35   67 23
## CC.Ind_5 1033  0.79  0.79  0.72   0.59   72 22
## CC.Ind_6 1033  0.70  0.69  0.53   0.44   70 24
CC$CollScale <- data.frame(CC$Ind_3, CC$Ind_4, CC$Ind_7, CC$Ind_8)
psych::alpha(CC$CollScale)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$CollScale)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.83      0.83     0.8      0.54 4.7 0.0088   54 24     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.84 
## 
##  Reliability if an item is dropped:
##          raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Ind_3      0.75      0.75    0.69      0.50 3.0   0.0136 0.0174  0.43
## CC.Ind_4      0.76      0.76    0.69      0.52 3.2   0.0126 0.0073  0.53
## CC.Ind_7      0.82      0.82    0.76      0.60 4.5   0.0099 0.0038  0.62
## CC.Ind_8      0.78      0.78    0.72      0.55 3.6   0.0115 0.0102  0.59
## 
##  Item statistics 
##             n raw.r std.r r.cor r.drop mean sd
## CC.Ind_3 1033  0.86  0.85  0.78   0.71   43 32
## CC.Ind_4 1033  0.83  0.83  0.77   0.69   62 29
## CC.Ind_7 1032  0.75  0.75  0.62   0.57   53 28
## CC.Ind_8 1033  0.80  0.81  0.72   0.64   58 28

Naturalness

# Naturalness was rated on a four item scale (0 = Strongly disagree to 100 = Strongly agree)  and a mean score was calculated to represent naturalness perception of the technology rated.

## 1. This is natural
## 2. This involves humans altering naturally occurring processes (Reverse code)
## 3. This relies on science-based technology (Reverse code)
## 4. This is artificial (Reverse code)

Descriptives

#Define Variables
CC$Nat_1_AFSCS <- CC$Naturalness_AFSCS_30
CC$Nat_2R_AFSCS <- (100-CC$Naturalness_AFSCS_31)
CC$Nat_3R_AFSCS <- (100-CC$Naturalness_AFSCS_35)
CC$Nat_4R_AFSCS <- (100-CC$Naturalness_AFSCS_36)

CC$Nat_1_BIO <- CC$Naturalness_BIO_30
CC$Nat_2R_BIO <- (100-CC$Naturalness_BIO_31)
CC$Nat_3R_BIO <- (100-CC$Naturalness_BIO_35)
CC$Nat_4R_BIO <- (100-CC$Naturalness_BIO_36)

CC$Nat_1_BECCS <- CC$Naturalness_BECCS_30
CC$Nat_2R_BECCS <- (100-CC$Naturalness_BECCS_31)
CC$Nat_3R_BECCS <- (100-CC$Naturalness_BECCS_35)
CC$Nat_4R_BECCS <- (100-CC$Naturalness_BECCS_36)

CC$Nat_1_DACCS <- CC$Naturalness_DACCS_30
CC$Nat_2R_DACCS <- (100-CC$Naturalness_DACCS_31)
CC$Nat_3R_DACCS <- (100-CC$Naturalness_DACCS_35)
CC$Nat_4R_DACCS <- (100-CC$Naturalness_DACCS_36)

CC$Nat_1_EW <- CC$Naturalness_EW_30
CC$Nat_2R_EW <- (100-CC$Naturalness_EW_31)
CC$Nat_3R_EW <- (100-CC$Naturalness_EW_35)
CC$Nat_4R_EW <- (100-CC$Naturalness_EW_36)

CC$Nat_1_OF <- CC$Naturalness_OF_30
CC$Nat_2R_OF <- (100-CC$Naturalness_OF_31)
CC$Nat_3R_OF <- (100-CC$Naturalness_OF_35)
CC$Nat_4R_OF <- (100-CC$Naturalness_OF_36)

CC$Nat_1_BF <- CC$Naturalness_BF_30
CC$Nat_2R_BF <- (100-CC$Naturalness_BF_31)
CC$Nat_3R_BF <- (100-CC$Naturalness_BF_35)
CC$Nat_4R_BF <- (100-CC$Naturalness_BF_36)

CC$Nat_1_NE <- CC$Naturalness_NE_30
CC$Nat_2R_NE <- (100-CC$Naturalness_NE_31)
CC$Nat_3R_NE <- (100-CC$Naturalness_NE_35)
CC$Nat_4R_NE <- (100-CC$Naturalness_NE_36)

CC$Nat_1_SE <- CC$Naturalness_SE_30
CC$Nat_2R_SE <- (100-CC$Naturalness_SE_31)
CC$Nat_3R_SE <- (100-CC$Naturalness_SE_35)
CC$Nat_4R_SE <- (100-CC$Naturalness_SE_36)

CC$Nat_1_WE <- CC$Naturalness_WE_30
CC$Nat_2R_WE <- (100-CC$Naturalness_WE_31)
CC$Nat_3R_WE <- (100-CC$Naturalness_WE_35)
CC$Nat_4R_WE <- (100-CC$Naturalness_WE_36)

# Descriptives
describe(CC$Nat_1_AFSCS)
## CC$Nat_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       78    0.991    74.83    27.28    19.45    36.90 
##      .25      .50      .75      .90      .95 
##    60.25    83.00    95.00   100.00   100.00 
## 
## lowest :   0   3   6   7  10, highest:  96  97  98  99 100
describe(CC$Nat_2R_AFSCS)
## CC$Nat_2R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       95    0.999    53.13    35.12     0.00    14.00 
##      .25      .50      .75      .90      .95 
##    30.00    50.00    82.75    97.10   100.00 
## 
## lowest :   0   2   4   5   6, highest:  96  97  98  99 100
describe(CC$Nat_3R_AFSCS)
## CC$Nat_3R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       89    0.999    39.57    33.51     0.00     2.90 
##      .25      .50      .75      .90      .95 
##    16.00    35.00    60.75    86.20    95.10 
## 
## lowest :   0   1   2   3   4, highest:  93  94  96  97 100
describe(CC$Nat_4R_AFSCS)
## CC$Nat_4R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       77     0.99    79.29    25.84    23.45    41.00 
##      .25      .50      .75      .90      .95 
##    65.25    91.00    99.00   100.00   100.00 
## 
## lowest :   0   4   6   7  12, highest:  96  97  98  99 100
describe(CC$Nat_1_BIO)
## CC$Nat_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       91    0.999    45.56    31.28        0        5 
##      .25      .50      .75      .90      .95 
##       25       46       64       84       96 
## 
## lowest :   0   2   3   4   5, highest:  90  95  96  97 100
describe(CC$Nat_2R_BIO) 
## CC$Nat_2R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       77    0.999    36.78    27.56      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     20.0     35.0     49.0     71.2     85.0 
## 
## lowest :   0   2   3   5   6, highest:  93  95  96  98 100
describe(CC$Nat_3R_BIO)
## CC$Nat_3R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       69    0.993    23.72    23.37      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      6.0     20.0     35.0     49.4     70.0 
## 
## lowest :   0   1   2   3   5, highest:  87  88  95  97 100
describe(CC$Nat_4R_BIO) 
## CC$Nat_4R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       96    0.999    49.98     35.8      0.0      7.6 
##      .25      .50      .75      .90      .95 
##     25.0     49.0     78.0     96.4    100.0 
## 
## lowest :   0   1   4   5   6, highest:  95  96  97  99 100
describe(CC$Nat_1_BECCS) 
## CC$Nat_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       89    0.999    43.48    29.15     0.00     6.00 
##      .25      .50      .75      .90      .95 
##    25.00    45.00    60.00    76.00    88.05 
## 
## lowest :   0   1   2   3   4, highest:  90  93  96  99 100
describe(CC$Nat_2R_BECCS) 
## CC$Nat_2R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       72    0.997    30.68    25.04     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.00    30.00    44.25    60.00    75.00 
## 
## lowest :   0   1   2   3   4, highest:  85  89  90  93 100
describe(CC$Nat_3R_BECCS) 
## CC$Nat_3R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       70     0.99    22.78    22.63     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.00    20.00    35.00    48.00    63.05 
## 
## lowest :   0   1   2   3   4, highest:  90  92  95  98 100
describe(CC$Nat_4R_BECCS)
## CC$Nat_4R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       90    0.999    42.06    31.49      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     20.0     40.0     62.0     81.1     93.0 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  98 100
describe(CC$Nat_1_DACCS)
## CC$Nat_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       83    0.996    29.52    27.63     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    10.00    25.00    41.00    65.00    82.15 
## 
## lowest :   0   1   3   4   5, highest:  94  95  97  98 100
describe(CC$Nat_2R_DACCS) 
## CC$Nat_2R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       81    0.996    28.75    27.75      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     24.0     40.0     70.3     81.6 
## 
## lowest :   0   1   2   3   4, highest:  87  90  91  99 100
describe(CC$Nat_3R_DACCS)
## CC$Nat_3R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       60    0.976    16.52    18.49     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.00    12.00    26.00    40.00    48.15 
## 
## lowest :   0   1   3   4   5, highest:  81  83  85  93 100
describe(CC$Nat_4R_DACCS)
## CC$Nat_4R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       81    0.995    28.65    27.29     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    10.00    23.00    42.00    63.30    82.15 
## 
## lowest :   0   1   3   4   5, highest:  88  89  95  98 100
describe(CC$Nat_1_EW)
## CC$Nat_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       93    0.999    45.92    31.11        0        7 
##      .25      .50      .75      .90      .95 
##       25       50       67       81       89 
## 
## lowest :   0   1   2   3   4, highest:  91  92  95  98 100
describe(CC$Nat_2R_EW)
## CC$Nat_2R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       76    0.995    27.12    24.96      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     40.0     58.6     75.0 
## 
## lowest :   0   1   2   3   4, highest:  85  90  92  93 100
describe(CC$Nat_3R_EW)
## CC$Nat_3R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       70    0.994    25.78    24.03        0        0 
##      .25      .50      .75      .90      .95 
##        8       24       39       50       70 
## 
## lowest :   0   1   2   3   4, highest:  86  88  90  95 100
describe(CC$Nat_4R_EW)
## CC$Nat_4R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       84    0.999    44.47    31.96      0.0      6.4 
##      .25      .50      .75      .90      .95 
##     22.0     44.0     67.0     80.0     92.6 
## 
## lowest :   0   4   5   6   7, highest:  91  93  94  98 100
describe(CC$Nat_1_OF)
## CC$Nat_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       83    0.999    40.43     31.1     0.00     1.00 
##      .25      .50      .75      .90      .95 
##    18.00    39.00    59.25    78.50    87.00 
## 
## lowest :   0   2   4   5   6, highest:  88  90  92  93 100
describe(CC$Nat_2R_OF)
## CC$Nat_2R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       66    0.996    22.35    21.52     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     7.00    19.00    32.00    46.00    60.25 
## 
## lowest :   0   1   3   4   5, highest:  80  81  82  89 100
describe(CC$Nat_3R_OF)
## CC$Nat_3R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       67    0.996    26.12    23.98     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    10.00    23.00    36.00    58.00    68.25 
## 
## lowest :   0   1   2   3   4, highest:  79  80  90  91 100
describe(CC$Nat_4R_OF)
## CC$Nat_4R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       87    0.999    38.43     30.1     0.00     5.00 
##      .25      .50      .75      .90      .95 
##    16.75    37.00    55.00    76.50    91.25 
## 
## lowest :   0   2   3   4   5, highest:  92  93  95  99 100
describe(CC$Nat_1_BF)
## CC$Nat_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       88    0.999    53.11    31.82      2.0     13.5 
##      .25      .50      .75      .90      .95 
##     35.0     53.0     75.0     91.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  95  97  98  99 100
describe(CC$Nat_2R_BF)
## CC$Nat_2R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       80    0.998    37.99    30.34      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     19.5     35.0     54.0     79.5     91.0 
## 
## lowest :   0   2   3   4   5, highest:  91  95  96  99 100
describe(CC$Nat_3R_BF)
## CC$Nat_3R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       59    0.987    17.67    18.15     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    15.00    27.00    39.00    46.25 
## 
## lowest :  0  1  2  3  4, highest: 68 75 77 81 85
describe(CC$Nat_4R_BF)
## CC$Nat_4R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       85    0.999    49.22    33.39     1.75    10.00 
##      .25      .50      .75      .90      .95 
##    26.75    49.00    74.00    90.50    99.25 
## 
## lowest :   0   1   2   4   5, highest:  95  96  98  99 100
describe(CC$Nat_1_NE)
## CC$Nat_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       80    0.995    30.82    28.99        0        0 
##      .25      .50      .75      .90      .95 
##        8       26       49       67       80 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  95 100
describe(CC$Nat_2R_NE)
## CC$Nat_2R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       72    0.994    30.07    30.73        0        0 
##      .25      .50      .75      .90      .95 
##        7       23       43       80       95 
## 
## lowest :   0   2   3   4   5, highest:  94  95  98  99 100
describe(CC$Nat_3R_NE)
## CC$Nat_3R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       48    0.931    11.08    14.64        0        0 
##      .25      .50      .75      .90      .95 
##        0        6       17       33       43 
## 
## lowest :   0   1   2   3   4, highest:  49  50  64  92 100
describe(CC$Nat_4R_NE)
## CC$Nat_4R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       79    0.996    32.08    30.61        0        0 
##      .25      .50      .75      .90      .95 
##        9       27       48       77       90 
## 
## lowest :   0   3   4   5   6, highest:  92  95  96  99 100
describe(CC$Nat_1_SE)
## CC$Nat_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       75    0.991    72.85    29.21     10.6     30.2 
##      .25      .50      .75      .90      .95 
##     60.0     80.0     95.0    100.0    100.0 
## 
## lowest :   0   1   4   6  10, highest:  95  97  98  99 100
describe(CC$Nat_2R_SE)
## CC$Nat_2R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       79    0.989    66.11    36.13      4.6     18.0 
##      .25      .50      .75      .90      .95 
##     38.0     78.0     95.0    100.0    100.0 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
describe(CC$Nat_3R_SE)
## CC$Nat_3R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       52    0.964    14.63    17.95      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     10.0     22.0     38.6     50.0 
## 
## lowest :  0  1  2  3  4, highest: 70 71 76 80 93
describe(CC$Nat_4R_SE)
## CC$Nat_4R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       76    0.997    66.13    33.03      9.8     21.6 
##      .25      .50      .75      .90      .95 
##     47.0     74.0     92.0    100.0    100.0 
## 
## lowest :   0   5   7   8  11, highest:  96  97  98  99 100
describe(CC$Nat_1_WE)
## CC$Nat_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       78    0.994    69.52    31.09      9.1     21.2 
##      .25      .50      .75      .90      .95 
##     54.5     78.0     91.0    100.0    100.0 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
describe(CC$Nat_2R_WE)
## CC$Nat_2R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       84    0.992    63.87    35.49     10.0     20.0 
##      .25      .50      .75      .90      .95 
##     38.0     72.0     93.5    100.0    100.0 
## 
## lowest :   0   1   5   8  10, highest:  96  97  98  99 100
describe(CC$Nat_3R_WE)
## CC$Nat_3R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       63    0.988    20.82    22.27        0        0 
##      .25      .50      .75      .90      .95 
##        2       17       30       47       65 
## 
## lowest :   0   1   2   3   4, highest:  85  88  90  94 100
describe(CC$Nat_4R_WE)
## CC$Nat_4R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       78    0.997    62.65    35.13      5.0     13.4 
##      .25      .50      .75      .90      .95 
##     41.0     68.0     90.0    100.0    100.0 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
sd(CC$Nat_1_AFSCS, na.rm = TRUE)
## [1] 25.43286
sd(CC$Nat_2R_AFSCS, na.rm = TRUE)
## [1] 30.48964
sd(CC$Nat_3R_AFSCS, na.rm = TRUE)
## [1] 29.56135
sd(CC$Nat_4R_AFSCS, na.rm = TRUE)
## [1] 25.13828
sd(CC$Nat_1_BIO, na.rm = TRUE)
## [1] 27.31186
sd(CC$Nat_2R_BIO, na.rm = TRUE)
## [1] 24.53143
sd(CC$Nat_3R_BIO, na.rm = TRUE)
## [1] 21.85822
sd(CC$Nat_4R_BIO, na.rm = TRUE) 
## [1] 31.06943
sd(CC$Nat_1_BECCS, na.rm = TRUE) 
## [1] 25.53642
sd(CC$Nat_2R_BECCS, na.rm = TRUE) 
## [1] 22.56763
sd(CC$Nat_3R_BECCS, na.rm = TRUE) 
## [1] 20.86114
sd(CC$Nat_4R_BECCS, na.rm = TRUE)
## [1] 27.54009
sd(CC$Nat_1_DACCS, na.rm = TRUE)
## [1] 25.07632
sd(CC$Nat_2R_DACCS, na.rm = TRUE) 
## [1] 25.6886
sd(CC$Nat_3R_DACCS, na.rm = TRUE)
## [1] 17.64158
sd(CC$Nat_4R_DACCS)
## [1] NA
sd(CC$Nat_1_EW, na.rm = TRUE)
## [1] 27.05301
sd(CC$Nat_2R_EW, na.rm = TRUE)
## [1] 22.74157
sd(CC$Nat_3R_EW, na.rm = TRUE)
## [1] 21.88575
sd(CC$Nat_4R_EW, na.rm = TRUE)
## [1] 27.74531
sd(CC$Nat_1_OF, na.rm = TRUE)
## [1] 27.0995
sd(CC$Nat_2R_OF, na.rm = TRUE)
## [1] 20.3552
sd(CC$Nat_3R_OF, na.rm = TRUE)
## [1] 22.13675
sd(CC$Nat_4R_OF, na.rm = TRUE)
## [1] 26.58775
sd(CC$Nat_1_BF, na.rm = TRUE)
## [1] 27.71169
sd(CC$Nat_2R_BF, na.rm = TRUE)
## [1] 26.88231
sd(CC$Nat_3R_BF, na.rm = TRUE)
## [1] 16.85631
sd(CC$Nat_4R_BF, na.rm = TRUE)
## [1] 28.94767
sd(CC$Nat_1_NE, na.rm = TRUE)
## [1] 25.87979
sd(CC$Nat_2R_NE, na.rm = TRUE)
## [1] 28.46893
sd(CC$Nat_3R_NE, na.rm = TRUE)
## [1] 15.27055
sd(CC$Nat_4R_NE, na.rm = TRUE)
## [1] 27.61447
sd(CC$Nat_1_SE, na.rm = TRUE)
## [1] 27.29524
sd(CC$Nat_2R_SE, na.rm = TRUE)
## [1] 32.35417
sd(CC$Nat_3R_SE, na.rm = TRUE)
## [1] 17.77715
sd(CC$Nat_4R_SE, na.rm = TRUE)
## [1] 29.37358
sd(CC$Nat_1_WE, na.rm = TRUE)
## [1] 28.45846
sd(CC$Nat_2R_WE, na.rm = TRUE)
## [1] 31.25356
sd(CC$Nat_3R_WE, na.rm = TRUE)
## [1] 21.16047
sd(CC$Nat_4R_WE, na.rm = TRUE)
## [1] 30.9186
hist(CC$Nat_1_AFSCS)

hist(CC$Nat_2R_AFSCS)

hist(CC$Nat_3R_AFSCS)

hist(CC$Nat_4R_AFSCS)

hist(CC$Nat_1_BIO)

hist(CC$Nat_2R_BIO) 

hist(CC$Nat_3R_BIO)

hist(CC$Nat_4R_BIO) 

hist(CC$Nat_1_BECCS) 

hist(CC$Nat_2R_BECCS) 

hist(CC$Nat_3R_BECCS) 

hist(CC$Nat_4R_BECCS)

hist(CC$Nat_1_DACCS)

hist(CC$Nat_2R_DACCS) 

hist(CC$Nat_3R_DACCS)

hist(CC$Nat_4R_DACCS)

hist(CC$Nat_1_EW)

hist(CC$Nat_2R_EW)

hist(CC$Nat_3R_EW)

hist(CC$Nat_4R_EW)

hist(CC$Nat_1_OF)

hist(CC$Nat_2R_OF)

hist(CC$Nat_3R_OF)

hist(CC$Nat_4R_OF)

hist(CC$Nat_1_BF)

hist(CC$Nat_2R_BF)

hist(CC$Nat_3R_BF)

hist(CC$Nat_4R_BF)

hist(CC$Nat_1_NE)

hist(CC$Nat_2R_NE)

hist(CC$Nat_3R_NE)

hist(CC$Nat_4R_NE)

hist(CC$Nat_1_SE)

hist(CC$Nat_2R_SE)

hist(CC$Nat_3R_SE)

hist(CC$Nat_4R_SE)

hist(CC$Nat_1_WE)

hist(CC$Nat_2R_WE)

hist(CC$Nat_3R_WE)

hist(CC$Nat_4R_WE)

Score(s) & Scale(s)

# Scores & Scales
CC$Nat_Score_AFSCS <- rowMeans(CC [, c("Nat_1_AFSCS", "Nat_2R_AFSCS", "Nat_3R_AFSCS", "Nat_4R_AFSCS")], na.rm=TRUE)
CC$Nat_Scale_AFSCS <- data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS)

CC$Nat_Score_BIO <- rowMeans(CC [, c("Nat_1_BIO", "Nat_2R_BIO", "Nat_3R_BIO", "Nat_4R_BIO")], na.rm=TRUE)
CC$Nat_Scale_BIO <- data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, CC$Nat_4R_BIO)

CC$Nat_Score_BECCS <- rowMeans(CC [, c("Nat_1_BECCS", "Nat_2R_BECCS", "Nat_3R_BECCS", "Nat_4R_BECCS")], na.rm=TRUE)
CC$Nat_Scale_BECCS <- data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, CC$Nat_3R_BECCS, CC$Nat_4R_BECCS)

CC$Nat_Score_DACCS <- rowMeans(CC [, c("Nat_1_DACCS", "Nat_2R_DACCS", "Nat_3R_DACCS", "Nat_4R_DACCS")], na.rm=TRUE)
CC$Nat_Scale_DACCS <- data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, CC$Nat_3R_DACCS, CC$Nat_4R_DACCS)

CC$Nat_Score_EW <- rowMeans(CC [, c("Nat_1_EW", "Nat_2R_EW", "Nat_3R_EW", "Nat_4R_EW")], na.rm=TRUE)
CC$Nat_Scale_EW <- data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, CC$Nat_4R_EW)

CC$Nat_Score_OF <- rowMeans(CC [, c("Nat_1_OF", "Nat_2R_OF", "Nat_3R_OF", "Nat_4R_OF")], na.rm=TRUE)
CC$Nat_Scale_OF <- data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, CC$Nat_4R_OF)

CC$Nat_Score_BF <- rowMeans(CC [, c("Nat_1_BF", "Nat_2R_BF", "Nat_3R_BF", "Nat_4R_BF")], na.rm=TRUE)
CC$Nat_Scale_BF <- data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, CC$Nat_4R_BF)

CC$Nat_Score_NE <- rowMeans(CC [, c("Nat_1_NE", "Nat_2R_NE", "Nat_3R_NE", "Nat_4R_NE")], na.rm=TRUE)
CC$Nat_Scale_NE <- data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, CC$Nat_4R_NE)

CC$Nat_Score_SE <- rowMeans(CC [, c("Nat_1_SE", "Nat_2R_SE", "Nat_3R_SE", "Nat_4R_SE")], na.rm=TRUE)
CC$Nat_Scale_SE <- data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, CC$Nat_4R_SE)

CC$Nat_Score_WE <- rowMeans(CC [, c("Nat_1_WE", "Nat_2R_WE", "Nat_3R_WE", "Nat_4R_WE")], na.rm=TRUE)
CC$Nat_Scale_WE <- data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, CC$Nat_4R_WE)

# Describe Scores/Scales 
describe(CC$Nat_Score_AFSCS)
## CC$Nat_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683      198        1    61.71    22.46    26.09    35.92 
##      .25      .50      .75      .90      .95 
##    48.38    62.75    74.94    87.50    94.55 
## 
## lowest :   0.00   7.00   8.00  11.00  11.75, highest:  98.00  98.75  99.50  99.75 100.00
describe(CC$Nat_Scale_AFSCS)
## CC$Nat_Scale_AFSCS 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       78    0.991    74.83    27.28    19.45    36.90 
##      .25      .50      .75      .90      .95 
##    60.25    83.00    95.00   100.00   100.00 
## 
## lowest :   0   3   6   7  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       95    0.999    53.13    35.12     0.00    14.00 
##      .25      .50      .75      .90      .95 
##    30.00    50.00    82.75    97.10   100.00 
## 
## lowest :   0   2   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       89    0.999    39.57    33.51     0.00     2.90 
##      .25      .50      .75      .90      .95 
##    16.00    35.00    60.75    86.20    95.10 
## 
## lowest :   0   1   2   3   4, highest:  93  94  96  97 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       77     0.99    79.29    25.84    23.45    41.00 
##      .25      .50      .75      .90      .95 
##    65.25    91.00    99.00   100.00   100.00 
## 
## lowest :   0   4   6   7  12, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_AFSCS, na.rm = TRUE)
## [1] 19.85926
describe(CC$Nat_Score_BIO)
## CC$Nat_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696      182        1    39.01    20.91     5.75    12.70 
##      .25      .50      .75      .90      .95 
##    27.00    39.00    50.75    63.25    68.75 
## 
## lowest :  0.00  0.75  1.75  2.50  2.75, highest: 76.75 78.00 87.25 96.50 97.50
describe(CC$Nat_Scale_BIO)
## CC$Nat_Scale_BIO 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       91    0.999    45.56    31.28        0        5 
##      .25      .50      .75      .90      .95 
##       25       46       64       84       96 
## 
## lowest :   0   2   3   4   5, highest:  90  95  96  97 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       77    0.999    36.78    27.56      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     20.0     35.0     49.0     71.2     85.0 
## 
## lowest :   0   2   3   5   6, highest:  93  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       69    0.993    23.72    23.37      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      6.0     20.0     35.0     49.4     70.0 
## 
## lowest :   0   1   2   3   5, highest:  87  88  95  97 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       96    0.999    49.98     35.8      0.0      7.6 
##      .25      .50      .75      .90      .95 
##     25.0     49.0     78.0     96.4    100.0 
## 
## lowest :   0   1   4   5   6, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BIO, na.rm = TRUE)
## [1] 18.52405
describe(CC$Nat_Score_BECCS)
## CC$Nat_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693      181        1    34.75    18.68     6.25    12.25 
##      .25      .50      .75      .90      .95 
##    24.94    33.75    46.06    53.80    61.26 
## 
## lowest :  0.00  2.25  2.50  3.00  4.50, highest: 75.00 76.25 77.50 78.75 79.00
describe(CC$Nat_Scale_BECCS)
## CC$Nat_Scale_BECCS 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       89    0.999    43.48    29.15     0.00     6.00 
##      .25      .50      .75      .90      .95 
##    25.00    45.00    60.00    76.00    88.05 
## 
## lowest :   0   1   2   3   4, highest:  90  93  96  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       72    0.997    30.68    25.04     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    14.00    30.00    44.25    60.00    75.00 
## 
## lowest :   0   1   2   3   4, highest:  85  89  90  93 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       70     0.99    22.78    22.63     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     4.00    20.00    35.00    48.00    63.05 
## 
## lowest :   0   1   2   3   4, highest:  90  92  95  98 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       90    0.999    42.06    31.49      0.0      6.0 
##      .25      .50      .75      .90      .95 
##     20.0     40.0     62.0     81.1     93.0 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BECCS, na.rm = TRUE)
## [1] 16.49646
describe(CC$Nat_Score_DACCS)
## CC$Nat_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675      156    0.999    25.86    19.07     0.00     2.50 
##      .25      .50      .75      .90      .95 
##    13.62    25.00    36.12    48.23    58.50 
## 
## lowest :  0.00  0.25  0.50  2.50  3.50, highest: 70.50 70.75 75.00 75.25 79.25
describe(CC$Nat_Scale_DACCS)
## CC$Nat_Scale_DACCS 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       83    0.996    29.52    27.63     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    10.00    25.00    41.00    65.00    82.15 
## 
## lowest :   0   1   3   4   5, highest:  94  95  97  98 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       81    0.996    28.75    27.75      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      9.0     24.0     40.0     70.3     81.6 
## 
## lowest :   0   1   2   3   4, highest:  87  90  91  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       60    0.976    16.52    18.49     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.00    12.00    26.00    40.00    48.15 
## 
## lowest :   0   1   3   4   5, highest:  81  83  85  93 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       81    0.995    28.65    27.29     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    10.00    23.00    42.00    63.30    82.15 
## 
## lowest :   0   1   3   4   5, highest:  88  89  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_DACCS, na.rm = TRUE)
## [1] 17.03858
describe(CC$Nat_Score_EW)
## CC$Nat_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688      190        1    35.82    20.63     5.30    13.00 
##      .25      .50      .75      .90      .95 
##    22.50    36.00    49.00    57.75    66.05 
## 
## lowest :  0.00  0.50  0.75  2.25  2.50, highest: 75.00 76.75 78.50 78.75 87.50
describe(CC$Nat_Scale_EW)
## CC$Nat_Scale_EW 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       93    0.999    45.92    31.11        0        7 
##      .25      .50      .75      .90      .95 
##       25       50       67       81       89 
## 
## lowest :   0   1   2   3   4, highest:  91  92  95  98 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       76    0.995    27.12    24.96      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     10.0     23.0     40.0     58.6     75.0 
## 
## lowest :   0   1   2   3   4, highest:  85  90  92  93 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       70    0.994    25.78    24.03        0        0 
##      .25      .50      .75      .90      .95 
##        8       24       39       50       70 
## 
## lowest :   0   1   2   3   4, highest:  86  88  90  95 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       84    0.999    44.47    31.96      0.0      6.4 
##      .25      .50      .75      .90      .95 
##     22.0     44.0     67.0     80.0     92.6 
## 
## lowest :   0   4   5   6   7, highest:  91  93  94  98 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_EW, na.rm = TRUE)
## [1] 18.13118
describe(CC$Nat_Score_OF)
## CC$Nat_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697      169        1    31.83    19.75     4.50     8.50 
##      .25      .50      .75      .90      .95 
##    20.00    31.25    42.50    54.50    61.00 
## 
## lowest :  0.00  0.25  1.25  2.50  3.00, highest: 73.50 75.00 80.25 80.50 84.50
describe(CC$Nat_Scale_OF)
## CC$Nat_Scale_OF 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       83    0.999    40.43     31.1     0.00     1.00 
##      .25      .50      .75      .90      .95 
##    18.00    39.00    59.25    78.50    87.00 
## 
## lowest :   0   2   4   5   6, highest:  88  90  92  93 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       66    0.996    22.35    21.52     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     7.00    19.00    32.00    46.00    60.25 
## 
## lowest :   0   1   3   4   5, highest:  80  81  82  89 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       67    0.996    26.12    23.98     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    10.00    23.00    36.00    58.00    68.25 
## 
## lowest :   0   1   2   3   4, highest:  79  80  90  91 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       87    0.999    38.43     30.1     0.00     5.00 
##      .25      .50      .75      .90      .95 
##    16.75    37.00    55.00    76.50    91.25 
## 
## lowest :   0   2   3   4   5, highest:  92  93  95  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_OF, na.rm = TRUE)
## [1] 17.41912
describe(CC$Nat_Score_BF)
## CC$Nat_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777      150        1     39.5    19.96    8.188   15.500 
##      .25      .50      .75      .90      .95 
##   27.188   39.750   50.312   60.500   69.875 
## 
## lowest :  0.00  0.25  1.00  1.50  2.00, highest: 72.50 73.00 74.25 75.00 86.75
describe(CC$Nat_Scale_BF)
## CC$Nat_Scale_BF 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       88    0.999    53.11    31.82      2.0     13.5 
##      .25      .50      .75      .90      .95 
##     35.0     53.0     75.0     91.0    100.0 
## 
## lowest :   0   1   2   3   4, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       80    0.998    37.99    30.34      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     19.5     35.0     54.0     79.5     91.0 
## 
## lowest :   0   2   3   4   5, highest:  91  95  96  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       59    0.987    17.67    18.15     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     2.00    15.00    27.00    39.00    46.25 
## 
## lowest :  0  1  2  3  4, highest: 68 75 77 81 85
## --------------------------------------------------------------------------------
## CC.Nat_4R_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       85    0.999    49.22    33.39     1.75    10.00 
##      .25      .50      .75      .90      .95 
##    26.75    49.00    74.00    90.50    99.25 
## 
## lowest :   0   1   2   4   5, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_BF, na.rm = TRUE)
## [1] 17.61328
describe(CC$Nat_Score_NE)
## CC$Nat_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772      141    0.999    26.01    19.32     0.00     2.50 
##      .25      .50      .75      .90      .95 
##    13.25    25.00    37.75    48.25    55.50 
## 
## lowest :  0.00  1.25  1.50  2.00  2.50, highest: 60.50 63.75 65.00 69.75 75.00
describe(CC$Nat_Scale_NE)
## CC$Nat_Scale_NE 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       80    0.995    30.82    28.99        0        0 
##      .25      .50      .75      .90      .95 
##        8       26       49       67       80 
## 
## lowest :   0   1   2   3   4, highest:  89  90  93  95 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       72    0.994    30.07    30.73        0        0 
##      .25      .50      .75      .90      .95 
##        7       23       43       80       95 
## 
## lowest :   0   2   3   4   5, highest:  94  95  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       48    0.931    11.08    14.64        0        0 
##      .25      .50      .75      .90      .95 
##        0        6       17       33       43 
## 
## lowest :   0   1   2   3   4, highest:  49  50  64  92 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       79    0.996    32.08    30.61        0        0 
##      .25      .50      .75      .90      .95 
##        9       27       48       77       90 
## 
## lowest :   0   3   4   5   6, highest:  92  95  96  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_NE, na.rm = TRUE)
## [1] 17.09411
describe(CC$Nat_Score_SE)
## CC$Nat_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780      146        1    54.93    20.65    24.05    31.25 
##      .25      .50      .75      .90      .95 
##    41.75    54.75    69.50    75.00    82.60 
## 
## lowest :  0.00  2.00  5.50  8.75 14.50, highest: 87.25 87.50 90.00 92.00 94.00
describe(CC$Nat_Scale_SE)
## CC$Nat_Scale_SE 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       75    0.991    72.85    29.21     10.6     30.2 
##      .25      .50      .75      .90      .95 
##     60.0     80.0     95.0    100.0    100.0 
## 
## lowest :   0   1   4   6  10, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       79    0.989    66.11    36.13      4.6     18.0 
##      .25      .50      .75      .90      .95 
##     38.0     78.0     95.0    100.0    100.0 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       52    0.964    14.63    17.95      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     10.0     22.0     38.6     50.0 
## 
## lowest :  0  1  2  3  4, highest: 70 71 76 80 93
## --------------------------------------------------------------------------------
## CC.Nat_4R_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       76    0.997    66.13    33.03      9.8     21.6 
##      .25      .50      .75      .90      .95 
##     47.0     74.0     92.0    100.0    100.0 
## 
## lowest :   0   5   7   8  11, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_SE, na.rm = TRUE)
## [1] 18.23051
describe(CC$Nat_Score_WE)
## CC$Nat_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770      149        1    54.22    21.36    22.35    26.60 
##      .25      .50      .75      .90      .95 
##    42.50    54.75    69.50    75.00    80.17 
## 
## lowest :   0.00   6.00   7.75  15.00  15.50, highest:  86.75  90.50  91.50  92.00 100.00
describe(CC$Nat_Scale_WE)
## CC$Nat_Scale_WE 
## 
##  4  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Nat_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       78    0.994    69.52    31.09      9.1     21.2 
##      .25      .50      .75      .90      .95 
##     54.5     78.0     91.0    100.0    100.0 
## 
## lowest :   0   1   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_2R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       84    0.992    63.87    35.49     10.0     20.0 
##      .25      .50      .75      .90      .95 
##     38.0     72.0     93.5    100.0    100.0 
## 
## lowest :   0   1   5   8  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Nat_3R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       63    0.988    20.82    22.27        0        0 
##      .25      .50      .75      .90      .95 
##        2       17       30       47       65 
## 
## lowest :   0   1   2   3   4, highest:  85  88  90  94 100
## --------------------------------------------------------------------------------
## CC.Nat_4R_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       78    0.997    62.65    35.13      5.0     13.4 
##      .25      .50      .75      .90      .95 
##     41.0     68.0     90.0    100.0    100.0 
## 
## lowest :   0   3   4   5   6, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Nat_Score_WE, na.rm = TRUE)
## [1] 18.78584
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_AFSCS, CC$Nat_2R_AFSCS, 
##     CC$Nat_3R_AFSCS, CC$Nat_4R_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.68      0.69    0.67      0.36 2.3 0.016   62 20     0.35
## 
##  lower alpha upper     95% confidence boundaries
## 0.65 0.68 0.71 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## CC.Nat_1_AFSCS       0.59      0.60    0.54      0.33 1.5    0.022 0.0312  0.23
## CC.Nat_2R_AFSCS      0.56      0.58    0.55      0.31 1.4    0.025 0.0682  0.23
## CC.Nat_3R_AFSCS      0.77      0.77    0.70      0.53 3.4    0.013 0.0052  0.54
## CC.Nat_4R_AFSCS      0.52      0.52    0.46      0.26 1.1    0.026 0.0331  0.23
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_AFSCS  350  0.72  0.75  0.66   0.51   75 25
## CC.Nat_2R_AFSCS 350  0.79  0.77  0.66   0.55   53 30
## CC.Nat_3R_AFSCS 350  0.57  0.54  0.27   0.23   40 30
## CC.Nat_4R_AFSCS 350  0.80  0.82  0.78   0.63   79 25
hist(CC$Nat_Score_AFSCS, main = 'AFSCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, CC$Nat_4R_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BIO, CC$Nat_2R_BIO, CC$Nat_3R_BIO, 
##     CC$Nat_4R_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.66      0.64    0.63       0.3 1.7 0.016   39 19      0.3
## 
##  lower alpha upper     95% confidence boundaries
## 0.62 0.66 0.69 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BIO       0.51      0.50    0.42      0.25 1.00    0.025 0.014  0.22
## CC.Nat_2R_BIO      0.60      0.57    0.57      0.31 1.32    0.020 0.087  0.22
## CC.Nat_3R_BIO      0.73      0.72    0.66      0.47 2.61    0.014 0.021  0.38
## CC.Nat_4R_BIO      0.43      0.42    0.36      0.20 0.73    0.030 0.028  0.15
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BIO  337  0.78  0.75  0.69   0.55   46 27
## CC.Nat_2R_BIO 337  0.67  0.69  0.50   0.42   37 25
## CC.Nat_3R_BIO 337  0.46  0.52  0.23   0.18   24 22
## CC.Nat_4R_BIO 337  0.85  0.81  0.77   0.62   50 31
hist(CC$Nat_Score_BIO, main = 'BIO Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, CC$Nat_3R_BECCS, CC$Nat_4R_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BECCS, CC$Nat_2R_BECCS, 
##     CC$Nat_3R_BECCS, CC$Nat_4R_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.61      0.59    0.61      0.26 1.4 0.019   35 16     0.23
## 
##  lower alpha upper     95% confidence boundaries
## 0.58 0.61 0.65 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BECCS       0.41      0.41    0.35      0.19 0.69    0.031 0.028 0.168
## CC.Nat_2R_BECCS      0.54      0.50    0.55      0.25 1.02    0.023 0.148 0.032
## CC.Nat_3R_BECCS      0.72      0.71    0.67      0.45 2.47    0.015 0.046 0.363
## CC.Nat_4R_BECCS      0.37      0.37    0.30      0.16 0.59    0.033 0.018 0.168
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BECCS  340  0.79  0.76  0.72  0.546   43 26
## CC.Nat_2R_BECCS 340  0.66  0.68  0.47  0.391   31 23
## CC.Nat_3R_BECCS 340  0.40  0.46  0.12  0.089   23 21
## CC.Nat_4R_BECCS 340  0.82  0.78  0.77  0.578   42 28
hist(CC$Nat_Score_BECCS, main = 'BECCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, CC$Nat_3R_DACCS, CC$Nat_4R_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_DACCS, CC$Nat_2R_DACCS, 
##     CC$Nat_3R_DACCS, CC$Nat_4R_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.69      0.68    0.67      0.34 2.1 0.015   26 17     0.32
## 
##  lower alpha upper     95% confidence boundaries
## 0.66 0.69 0.72 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_DACCS       0.52      0.51    0.43      0.26 1.05    0.024 0.016  0.25
## CC.Nat_2R_DACCS      0.67      0.65    0.64      0.38 1.83    0.016 0.082  0.25
## CC.Nat_3R_DACCS      0.75      0.75    0.70      0.50 3.01    0.014 0.032  0.40
## CC.Nat_4R_DACCS      0.50      0.49    0.41      0.24 0.95    0.025 0.020  0.18
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_DACCS  358  0.83  0.80  0.78   0.63   30 25
## CC.Nat_2R_DACCS 358  0.70  0.68  0.48   0.42   29 26
## CC.Nat_3R_DACCS 358  0.47  0.55  0.27   0.23   17 18
## CC.Nat_4R_DACCS 358  0.84  0.82  0.80   0.66   29 25
hist(CC$Nat_Score_DACCS, main = 'DACCS Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, CC$Nat_4R_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_EW, CC$Nat_2R_EW, CC$Nat_3R_EW, 
##     CC$Nat_4R_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.68     0.7      0.35 2.2 0.015   36 18     0.32
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.7 0.73 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_EW       0.57      0.57    0.51      0.31 1.33    0.022 0.033  0.22
## CC.Nat_2R_EW      0.62      0.59    0.64      0.32 1.42    0.020 0.144  0.18
## CC.Nat_3R_EW      0.80      0.79    0.76      0.56 3.79    0.011 0.031  0.52
## CC.Nat_4R_EW      0.46      0.46    0.41      0.22 0.86    0.029 0.035  0.22
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_EW  345  0.80  0.76  0.74   0.58   46 27
## CC.Nat_2R_EW 345  0.73  0.75  0.60   0.52   27 23
## CC.Nat_3R_EW 345  0.45  0.50  0.22   0.17   26 22
## CC.Nat_4R_EW 345  0.88  0.85  0.86   0.72   44 28
hist(CC$Nat_Score_EW, main = 'EW Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, CC$Nat_4R_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_OF, CC$Nat_2R_OF, CC$Nat_3R_OF, 
##     CC$Nat_4R_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.69      0.68    0.68      0.35 2.1 0.015   32 17     0.31
## 
##  lower alpha upper     95% confidence boundaries
## 0.66 0.69 0.72 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_OF       0.55      0.56    0.48      0.29 1.25    0.024 0.022  0.22
## CC.Nat_2R_OF      0.62      0.60    0.62      0.34 1.51    0.020 0.115  0.20
## CC.Nat_3R_OF      0.77      0.77    0.72      0.53 3.32    0.012 0.031  0.46
## CC.Nat_4R_OF      0.47      0.48    0.41      0.23 0.91    0.029 0.023  0.22
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_OF  336  0.81  0.77  0.73   0.58   40 27
## CC.Nat_2R_OF 336  0.69  0.73  0.56   0.48   22 20
## CC.Nat_3R_OF 336  0.49  0.53  0.24   0.20   26 22
## CC.Nat_4R_OF 336  0.86  0.83  0.83   0.68   38 27
hist(CC$Nat_Score_OF, main = 'OF Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, CC$Nat_4R_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_BF, CC$Nat_2R_BF, CC$Nat_3R_BF, 
##     CC$Nat_4R_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63      0.58    0.61      0.26 1.4 0.017   39 18     0.24
## 
##  lower alpha upper     95% confidence boundaries
## 0.6 0.63 0.66 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_BF       0.45      0.42    0.37      0.19 0.72    0.026 0.040 0.138
## CC.Nat_2R_BF      0.54      0.45    0.54      0.22 0.82    0.020 0.180 0.027
## CC.Nat_3R_BF      0.74      0.74    0.69      0.49 2.83    0.014 0.036 0.413
## CC.Nat_4R_BF      0.36      0.31    0.29      0.13 0.46    0.031 0.045 0.138
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_BF  256  0.79  0.74 0.703  0.547   53 28
## CC.Nat_2R_BF 256  0.72  0.71 0.522  0.436   38 27
## CC.Nat_3R_BF 256  0.27  0.41 0.061  0.033   18 17
## CC.Nat_4R_BF 256  0.85  0.80 0.800  0.642   49 29
hist(CC$Nat_Score_BF, main = 'BF Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, CC$Nat_4R_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_NE, CC$Nat_2R_NE, CC$Nat_3R_NE, 
##     CC$Nat_4R_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.63       0.6    0.62      0.27 1.5 0.017   26 17      0.2
## 
##  lower alpha upper     95% confidence boundaries
## 0.59 0.63 0.66 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Nat_1_NE       0.41      0.39    0.32      0.18 0.64    0.028 0.020  0.15
## CC.Nat_2R_NE      0.65      0.60    0.62      0.33 1.49    0.015 0.119  0.15
## CC.Nat_3R_NE      0.70      0.70    0.68      0.44 2.35    0.017 0.065  0.33
## CC.Nat_4R_NE      0.34      0.33    0.26      0.14 0.49    0.032 0.011  0.12
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_NE  261  0.81  0.78  0.77   0.59   31 26
## CC.Nat_2R_NE 261  0.66  0.61  0.35   0.30   30 28
## CC.Nat_3R_NE 261  0.35  0.49  0.16   0.13   11 15
## CC.Nat_4R_NE 261  0.85  0.82  0.84   0.65   32 28
hist(CC$Nat_Score_NE, main = 'NE Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, CC$Nat_4R_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_SE, CC$Nat_2R_SE, CC$Nat_3R_SE, 
##     CC$Nat_4R_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.59      0.58    0.57      0.26 1.4 0.02   55 18     0.23
## 
##  lower alpha upper     95% confidence boundaries
## 0.55 0.59 0.63 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se  var.r med.r
## CC.Nat_1_SE       0.43      0.45    0.36      0.21 0.82    0.029 0.0036  0.24
## CC.Nat_2R_SE      0.61      0.58    0.56      0.31 1.38    0.018 0.0719  0.26
## CC.Nat_3R_SE      0.61      0.63    0.58      0.36 1.68    0.022 0.0462  0.24
## CC.Nat_4R_SE      0.35      0.35    0.27      0.15 0.53    0.032 0.0055  0.15
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_SE  253  0.74  0.72  0.64   0.48   73 27
## CC.Nat_2R_SE 253  0.66  0.61  0.34   0.28   66 32
## CC.Nat_3R_SE 253  0.44  0.56  0.28   0.22   15 18
## CC.Nat_4R_SE 253  0.80  0.79  0.75   0.55   66 29
hist(CC$Nat_Score_SE, main = 'SE Naturalness Scale Score')

psych::alpha(data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, CC$Nat_4R_WE))
## Number of categories should be increased  in order to count frequencies.
## Warning in psych::alpha(data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, : Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( CC.Nat_3R_WE ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Nat_1_WE, CC$Nat_2R_WE, CC$Nat_3R_WE, 
##     CC$Nat_4R_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.58      0.53    0.58      0.22 1.1 0.019   54 19     0.17
## 
##  lower alpha upper     95% confidence boundaries
## 0.54 0.58 0.62 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r  med.r
## CC.Nat_1_WE       0.34      0.28    0.27     0.117 0.40    0.033 0.051  0.024
## CC.Nat_2R_WE      0.54      0.47    0.55     0.230 0.90    0.022 0.178  0.024
## CC.Nat_3R_WE      0.72      0.73    0.69     0.469 2.65    0.015 0.046  0.374
## CC.Nat_4R_WE      0.25      0.19    0.19     0.074 0.24    0.037 0.045 -0.047
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Nat_1_WE  263  0.79  0.77  0.76  0.559   70 28
## CC.Nat_2R_WE 263  0.68  0.64  0.40  0.334   64 31
## CC.Nat_3R_WE 263  0.25  0.36 -0.03 -0.029   21 21
## CC.Nat_4R_WE 263  0.84  0.82  0.84  0.629   63 31
hist(CC$Nat_Score_WE, main = 'WE Naturalness Scale Score')

#Correlations
cor.plot(CC$Nat_Scale_AFSCS, labels = c('1','2', '3', '4'), main = "Correlation Between AFSCS Support Items")

cor.plot(CC$Nat_Scale_BIO, labels = c('1','2', '3', '4'), main = "Correlation Between BIO Support Items")

cor.plot(CC$Nat_Scale_BECCS, labels = c('1','2', '3', '4'), main = "Correlation Between BECCS Support Items")

cor.plot(CC$Nat_Scale_DACCS, labels = c('1','2', '3', '4'), main = "Correlation Between DACCS Support Items")

cor.plot(CC$Nat_Scale_EW, labels = c('1','2', '3', '4'), main = "Correlation Between EW Support Items")

cor.plot(CC$Nat_Scale_OF, labels = c('1','2', '3', '4'), main = "Correlation Between OF Support Items")

cor.plot(CC$Nat_Scale_BF, labels = c('1','2', '3', '4'), main = "Correlation Between BF Support Items")

cor.plot(CC$Nat_Scale_NE, labels = c('1','2', '3', '4'), main = "Correlation Between NE Support Items")

cor.plot(CC$Nat_Scale_SE, labels = c('1','2', '3', '4'), main = "Correlation Between SE Support Items")

cor.plot(CC$Nat_Scale_WE, labels = c('1','2', '3', '4'), main = "Correlation Between WE Support Items")

Support

# Support was rated on a two item scale (0 = Strongly disagree to 100 = Strongly agree) and a mean score was calculated to represent intent to support of the technology rated, used in this study as a proxy for support.

## 1. I would personally support non-government entities deploying these on a large scale. 
## 2. I would personally support spending government tax dollars to deploy these on a large scale. 

Descriptives

# Define Variables
CC$Support1_AFSCS <- as.numeric(as.character(CC$BI_AFSCS_18))
CC$Support2_AFSCS <- as.numeric(as.character(CC$BI_AFSCS_19))

CC$Support1_BIO <- CC$BI_BIO_18
CC$Support2_BIO <- CC$BI_BIO_19

CC$Support1_BECCS <- CC$BI_BECCS_18
CC$Support2_BECCS <- CC$BI_BECCS_19

CC$Support1_DACCS <- CC$BI_DACCS_18
CC$Support2_DACCS <- CC$BI_DACCS_19

CC$Support1_EW <- CC$BI_EW_18
CC$Support2_EW <- CC$BI_EW_19

CC$Support1_OF <- CC$BI_OF_18
CC$Support2_OF <- CC$BI_OF_19

CC$Support1_BF <- CC$BI_BF_18
CC$Support2_BF <- CC$BI_BF_19

CC$Support1_NE <- CC$BI_NE_18
CC$Support2_NE <- CC$BI_NE_19

CC$Support1_SE <- CC$BI_SE_18
CC$Support2_SE <- CC$BI_SE_19

CC$Support1_WE <- CC$BI_WE_18
CC$Support2_WE <- CC$BI_WE_19

# Descriptives
describe(CC$Support1_AFSCS)
## CC$Support1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       67    0.982    77.99    25.42    24.45    41.80 
##      .25      .50      .75      .90      .95 
##    68.00    84.50   100.00   100.00   100.00 
## 
## lowest :   0   1   4   9  10, highest:  96  97  98  99 100
describe(CC$Support2_AFSCS)
## CC$Support2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       69    0.987    74.02    29.26      4.0     27.7 
##      .25      .50      .75      .90      .95 
##     63.0     81.5     96.0    100.0    100.0 
## 
## lowest :   0   2   4   5   7, highest:  95  96  98  99 100
describe(CC$Support1_BIO)
## CC$Support1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       86    0.999    55.92    31.35        0       12 
##      .25      .50      .75      .90      .95 
##       39       59       76       91      100 
## 
## lowest :   0   4   5   6   7, highest:  95  96  97  98 100
describe(CC$Support2_BIO)
## CC$Support2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       90    0.999    51.48    33.96      0.0      4.2 
##      .25      .50      .75      .90      .95 
##     30.0     54.0     75.0     90.4    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  98 100
describe(CC$Support1_BECCS)
## CC$Support1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       86    0.999    55.83     32.3      0.0     10.9 
##      .25      .50      .75      .90      .95 
##     37.0     60.0     75.0     93.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  94  95  96  98 100
describe(CC$Support2_BECCS)
## CC$Support2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       87    0.998    51.32    33.91     0.00     0.90 
##      .25      .50      .75      .90      .95 
##    29.00    54.00    73.25    89.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  93  94  96  98 100
describe(CC$Support1_DACCS)
## CC$Support1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       88    0.998    55.01    33.93     0.00     5.70 
##      .25      .50      .75      .90      .95 
##    35.25    60.00    75.00    98.30   100.00 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
describe(CC$Support2_DACCS)
## CC$Support2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       91    0.999    51.75    34.09     0.00     1.70 
##      .25      .50      .75      .90      .95 
##    30.00    55.00    74.75    90.00   100.00 
## 
## lowest :   0   1   2   4   5, highest:  95  97  98  99 100
describe(CC$Support1_EW)
## CC$Support1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       94    0.999     50.4    33.79        0        4 
##      .25      .50      .75      .90      .95 
##       27       51       72       90      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  98 100
describe(CC$Support2_EW)
## CC$Support2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       88    0.998    48.39    34.97        0        0 
##      .25      .50      .75      .90      .95 
##       25       50       73       90      100 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
describe(CC$Support1_OF)
## CC$Support1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       91    0.999    52.79     35.2     0.00     5.00 
##      .25      .50      .75      .90      .95 
##    27.75    59.00    75.00    94.00   100.00 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
describe(CC$Support2_OF)
## CC$Support2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       89    0.998    49.14    35.41     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    20.00    53.50    74.25    89.50    98.00 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  98 100
describe(CC$Support1_BF)
## CC$Support1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       78    0.999    63.82    29.18     9.75    21.00 
##      .25      .50      .75      .90      .95 
##    50.75    70.00    82.00    95.50   100.00 
## 
## lowest :   0   4   5   7   8, highest:  94  95  96  98 100
describe(CC$Support2_BF)
## CC$Support2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       82    0.999     59.1    31.27     0.00    13.50 
##      .25      .50      .75      .90      .95 
##    46.00    62.00    79.25    93.00   100.00 
## 
## lowest :   0   3   4   5   6, highest:  94  95  96  98 100
describe(CC$Support1_NE)
## CC$Support1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       86    0.997    49.56     39.2        0        0 
##      .25      .50      .75      .90      .95 
##       17       53       80       95      100 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
describe(CC$Support2_NE)
## CC$Support2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       86    0.997    51.79    37.88        0        0 
##      .25      .50      .75      .90      .95 
##       24       55       80       95      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  97 100
describe(CC$Support1_SE)
## CC$Support1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       57    0.956     82.8     22.5       35       52 
##      .25      .50      .75      .90      .95 
##       75       91      100      100      100 
## 
## lowest :   0   1   5  10  14, highest:  96  97  98  99 100
describe(CC$Support2_SE)
## CC$Support2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       66    0.964    76.62     29.3      3.2     30.0 
##      .25      .50      .75      .90      .95 
##     65.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4  10, highest:  96  97  98  99 100
describe(CC$Support1_WE)
## CC$Support1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       64    0.989    76.49    25.88     21.2     41.0 
##      .25      .50      .75      .90      .95 
##     68.5     81.0     98.0    100.0    100.0 
## 
## lowest :   0   4  10  17  20, highest:  95  96  98  99 100
describe(CC$Support2_WE)
## CC$Support2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       66    0.989    73.27    29.79      2.5     25.0 
##      .25      .50      .75      .90      .95 
##     60.0     80.0     97.0    100.0    100.0 
## 
## lowest :   0   2   7  10  11, highest:  96  97  98  99 100
sd(CC$Support1_AFSCS, na.rm = TRUE)
## [1] 24.55699
sd(CC$Support2_AFSCS, na.rm = TRUE)
## [1] 28.03461
sd(CC$Support1_BIO, na.rm = TRUE)
## [1] 27.62384
sd(CC$Support2_BIO, na.rm = TRUE)
## [1] 29.6643
sd(CC$Support1_BECCS, na.rm = TRUE)
## [1] 28.47284
sd(CC$Support2_BECCS, na.rm = TRUE)
## [1] 29.67555
sd(CC$Support1_DACCS, na.rm = TRUE)
## [1] 29.83761
sd(CC$Support2_DACCS, na.rm = TRUE)
## [1] 29.7729
sd(CC$Support1_EW, na.rm = TRUE)
## [1] 29.4364
sd(CC$Support2_EW, na.rm = TRUE)
## [1] 30.37366
sd(CC$Support1_OF, na.rm = TRUE)
## [1] 30.76413
sd(CC$Support2_OF, na.rm = TRUE)
## [1] 30.90659
sd(CC$Support1_BF, na.rm = TRUE)
## [1] 26.19582
sd(CC$Support2_BF, na.rm = TRUE)
## [1] 27.79847
sd(CC$Support1_NE, na.rm = TRUE)
## [1] 34.03823
sd(CC$Support2_NE, na.rm = TRUE)
## [1] 33.00463
sd(CC$Support1_SE, na.rm = TRUE)
## [1] 22.90163
sd(CC$Support2_SE, na.rm = TRUE)
## [1] 28.60121
sd(CC$Support1_WE, na.rm = TRUE)
## [1] 24.75049
sd(CC$Support2_WE, na.rm = TRUE)
## [1] 28.4126
hist(CC$Support1_AFSCS)

hist(CC$Support2_AFSCS)

hist(CC$Support1_BIO)

hist(CC$Support2_BIO)

hist(CC$Support1_BECCS)

hist(CC$Support2_BECCS)

hist(CC$Support1_DACCS)

hist(CC$Support2_DACCS)

hist(CC$Support1_EW)

hist(CC$Support2_EW)

hist(CC$Support1_OF)

hist(CC$Support2_OF)

hist(CC$Support1_BF)

hist(CC$Support2_BF)

hist(CC$Support1_NE)

hist(CC$Support2_NE)

hist(CC$Support1_SE)

hist(CC$Support2_SE)

hist(CC$Support1_WE)

hist(CC$Support2_WE)

Score(s) & Scale(s)

# Scores & Scales
CC$Support_Score_AFSCS <- rowMeans(CC [, c("Support1_AFSCS", "Support2_AFSCS")], na.rm=TRUE)
CC$Support_Scale_AFSCS <- data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS)

CC$Support_Score_BIO <- rowMeans(CC [, c("Support1_BIO", "Support2_BIO")], na.rm=TRUE)
CC$Support_Scale_BIO <- data.frame(CC$Support1_BIO, CC$Support2_BIO)

CC$Support_Score_BECCS <- rowMeans(CC [, c("Support1_BECCS", "Support2_BECCS")], na.rm=TRUE)
CC$Support_Scale_BECCS <- data.frame(CC$Support1_BECCS, CC$Support2_BECCS)

CC$Support_Score_DACCS <- rowMeans(CC [, c("Support1_DACCS", "Support2_DACCS")], na.rm=TRUE)
CC$Support_Scale_DACCS <- data.frame(CC$Support1_DACCS, CC$Support2_DACCS)

CC$Support_Score_EW <- rowMeans(CC [, c("Support1_EW", "Support2_EW")], na.rm=TRUE)
CC$Support_Scale_EW <- data.frame(CC$Support1_EW, CC$Support2_EW)

CC$Support_Score_OF <- rowMeans(CC [, c("Support1_OF", "Support2_OF")], na.rm=TRUE)
CC$Support_Scale_OF <- data.frame(CC$Support1_OF, CC$Support2_OF)

CC$Support_Score_BF <- rowMeans(CC [, c("Support1_BF", "Support2_BF")], na.rm=TRUE)
CC$Support_Scale_BF <- data.frame(CC$Support1_BF, CC$Support2_BF)

CC$Support_Score_NE <- rowMeans(CC [, c("Support1_NE", "Support2_NE")], na.rm=TRUE)
CC$Support_Scale_NE <- data.frame(CC$Support1_NE, CC$Support2_NE)

CC$Support_Score_SE <- rowMeans(CC [, c("Support1_SE", "Support2_SE")], na.rm=TRUE)
CC$Support_Scale_SE <- data.frame(CC$Support1_SE, CC$Support2_SE)

CC$Support_Score_WE <- rowMeans(CC [, c("Support1_WE", "Support2_WE")], na.rm=TRUE)
CC$Support_Scale_WE <- data.frame(CC$Support1_WE, CC$Support2_WE)

# Describe Scores/Scales 
describe(CC$Support_Score_AFSCS)
## CC$Support_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683      115    0.992    76.01    25.29    31.12    47.80 
##      .25      .50      .75      .90      .95 
##    62.50    81.00    95.00   100.00   100.00 
## 
## lowest :   0.0   4.0   5.0  10.0  12.5, highest:  97.0  97.5  98.0  99.5 100.0
describe(CC$Support_Scale_AFSCS)
## CC$Support_Scale_AFSCS 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       67    0.982    77.99    25.42    24.45    41.80 
##      .25      .50      .75      .90      .95 
##    68.00    84.50   100.00   100.00   100.00 
## 
## lowest :   0   1   4   9  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       69    0.987    74.02    29.26      4.0     27.7 
##      .25      .50      .75      .90      .95 
##     63.0     81.5     96.0    100.0    100.0 
## 
## lowest :   0   2   4   5   7, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_AFSCS, na.rm = TRUE)
## [1] 23.4927
describe(CC$Support_Score_BIO)
## CC$Support_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696      142    0.999     53.7    30.11      0.8     13.3 
##      .25      .50      .75      .90      .95 
##     36.5     54.5     74.5     87.2     95.9 
## 
## lowest :   0.0   1.0   2.5   3.5   5.0, highest:  94.0  95.0  95.5  97.5 100.0
describe(CC$Support_Scale_BIO)
## CC$Support_Scale_BIO 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       86    0.999    55.92    31.35        0       12 
##      .25      .50      .75      .90      .95 
##       39       59       76       91      100 
## 
## lowest :   0   4   5   6   7, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       90    0.999    51.48    33.96      0.0      4.2 
##      .25      .50      .75      .90      .95 
##     30.0     54.0     75.0     90.4    100.0 
## 
## lowest :   0   1   2   3   5, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BIO, na.rm = TRUE)
## [1] 26.4761
describe(CC$Support_Score_BECCS)
## CC$Support_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693      136    0.999    53.58    30.93     0.00     9.90 
##      .25      .50      .75      .90      .95 
##    36.00    55.00    74.50    85.05   100.00 
## 
## lowest :   0.0   1.0   1.5   2.0   5.0, highest:  93.0  93.5  95.0  96.0 100.0
describe(CC$Support_Scale_BECCS)
## CC$Support_Scale_BECCS 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       86    0.999    55.83     32.3      0.0     10.9 
##      .25      .50      .75      .90      .95 
##     37.0     60.0     75.0     93.0    100.0 
## 
## lowest :   0   1   2   4   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       87    0.998    51.32    33.91     0.00     0.90 
##      .25      .50      .75      .90      .95 
##    29.00    54.00    73.25    89.00   100.00 
## 
## lowest :   0   1   3   4   5, highest:  93  94  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BECCS, na.rm = TRUE)
## [1] 27.26706
describe(CC$Support_Score_DACCS)
## CC$Support_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675      149    0.999    53.38     32.3     0.00     5.85 
##      .25      .50      .75      .90      .95 
##    35.62    56.00    74.00    90.00   100.00 
## 
## lowest :   0.0   0.5   1.0   2.0   2.5, highest:  96.5  97.0  98.5  99.5 100.0
describe(CC$Support_Scale_DACCS)
## CC$Support_Scale_DACCS 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       88    0.998    55.01    33.93     0.00     5.70 
##      .25      .50      .75      .90      .95 
##    35.25    60.00    75.00    98.30   100.00 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       91    0.999    51.75    34.09     0.00     1.70 
##      .25      .50      .75      .90      .95 
##    30.00    55.00    74.75    90.00   100.00 
## 
## lowest :   0   1   2   4   5, highest:  95  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_DACCS, na.rm = TRUE)
## [1] 28.35202
describe(CC$Support_Score_EW)
## CC$Support_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688      143    0.999     49.4    31.85      0.0      8.0 
##      .25      .50      .75      .90      .95 
##     29.5     50.5     68.5     87.8     97.5 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  94.5  95.0  95.5  98.0 100.0
describe(CC$Support_Scale_EW)
## CC$Support_Scale_EW 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       94    0.999     50.4    33.79        0        4 
##      .25      .50      .75      .90      .95 
##       27       51       72       90      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       88    0.998    48.39    34.97        0        0 
##      .25      .50      .75      .90      .95 
##       25       50       73       90      100 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_EW, na.rm = TRUE)
## [1] 27.83398
describe(CC$Support_Score_OF)
## CC$Support_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697      145    0.999    50.96    33.13     0.00     5.25 
##      .25      .50      .75      .90      .95 
##    27.38    54.50    73.62    89.00    95.00 
## 
## lowest :   0.0   0.5   2.0   3.0   3.5, highest:  95.0  95.5  97.0  97.5 100.0
describe(CC$Support_Scale_OF)
## CC$Support_Scale_OF 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       91    0.999    52.79     35.2     0.00     5.00 
##      .25      .50      .75      .90      .95 
##    27.75    59.00    75.00    94.00   100.00 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
## --------------------------------------------------------------------------------
## CC.Support2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       89    0.998    49.14    35.41     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    20.00    53.50    74.25    89.50    98.00 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_OF, na.rm = TRUE)
## [1] 28.94031
describe(CC$Support_Score_BF)
## CC$Support_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777      121        1    61.46    27.66     10.0     22.5 
##      .25      .50      .75      .90      .95 
##     50.0     65.0     78.5     92.5    100.0 
## 
## lowest :   0.0   2.5   4.0   5.0   7.0, highest:  95.0  96.5  98.0  99.0 100.0
describe(CC$Support_Scale_BF)
## CC$Support_Scale_BF 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       78    0.999    63.82    29.18     9.75    21.00 
##      .25      .50      .75      .90      .95 
##    50.75    70.00    82.00    95.50   100.00 
## 
## lowest :   0   4   5   7   8, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       82    0.999     59.1    31.27     0.00    13.50 
##      .25      .50      .75      .90      .95 
##    46.00    62.00    79.25    93.00   100.00 
## 
## lowest :   0   3   4   5   6, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_BF, na.rm = TRUE)
## [1] 24.86738
describe(CC$Support_Score_NE)
## CC$Support_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772      124    0.999    50.67    35.84      0.0      1.0 
##      .25      .50      .75      .90      .95 
##     27.5     52.0     76.5     92.0    100.0 
## 
## lowest :   0.0   1.0   2.0   3.0   3.5, highest:  95.0  95.5  96.0  99.0 100.0
describe(CC$Support_Scale_NE)
## CC$Support_Scale_NE 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       86    0.997    49.56     39.2        0        0 
##      .25      .50      .75      .90      .95 
##       17       53       80       95      100 
## 
## lowest :   0   1   2   3   5, highest:  94  95  96  98 100
## --------------------------------------------------------------------------------
## CC.Support2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       86    0.997    51.79    37.88        0        0 
##      .25      .50      .75      .90      .95 
##       24       55       80       95      100 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  97 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_NE, na.rm = TRUE)
## [1] 31.09265
describe(CC$Support_Score_SE)
## CC$Support_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       94    0.979    79.71    24.22     31.2     49.5 
##      .25      .50      .75      .90      .95 
##     69.0     87.5    100.0    100.0    100.0 
## 
## lowest :   0.0   0.5   2.5  10.0  12.0, highest:  97.5  98.5  99.0  99.5 100.0
describe(CC$Support_Scale_SE)
## CC$Support_Scale_SE 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       57    0.956     82.8     22.5       35       52 
##      .25      .50      .75      .90      .95 
##       75       91      100      100      100 
## 
## lowest :   0   1   5  10  14, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       66    0.964    76.62     29.3      3.2     30.0 
##      .25      .50      .75      .90      .95 
##     65.0     87.0    100.0    100.0    100.0 
## 
## lowest :   0   1   2   4  10, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_SE, na.rm = TRUE)
## [1] 23.29772
describe(CC$Support_Score_WE)
## CC$Support_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770      101    0.993    74.88    26.21    21.10    42.50 
##      .25      .50      .75      .90      .95 
##    63.25    80.00    95.00   100.00   100.00 
## 
## lowest :   0.0   3.0  10.5  11.0  15.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(CC$Support_Scale_WE)
## CC$Support_Scale_WE 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Support1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       64    0.989    76.49    25.88     21.2     41.0 
##      .25      .50      .75      .90      .95 
##     68.5     81.0     98.0    100.0    100.0 
## 
## lowest :   0   4  10  17  20, highest:  95  96  98  99 100
## --------------------------------------------------------------------------------
## CC.Support2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       66    0.989    73.27    29.79      2.5     25.0 
##      .25      .50      .75      .90      .95 
##     60.0     80.0     97.0    100.0    100.0 
## 
## lowest :   0   2   7  10  11, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Support_Score_WE, na.rm = TRUE)
## [1] 24.54025
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_AFSCS, CC$Support2_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.74      0.75    0.59      0.59 2.9 0.016   76 23     0.59
## 
##  lower alpha upper     95% confidence boundaries
## 0.71 0.74 0.77 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_AFSCS      0.52      0.59    0.35      0.59 1.5       NA     0
## CC.Support2_AFSCS      0.68      0.59    0.35      0.59 1.5       NA     0
##                   med.r
## CC.Support1_AFSCS  0.59
## CC.Support2_AFSCS  0.59
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_AFSCS 350  0.88  0.89  0.69   0.59   78 25
## CC.Support2_AFSCS 350  0.91  0.89  0.69   0.59   74 28
hist(CC$Support_Score_AFSCS, main = 'AFSCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_BIO, CC$Support2_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BIO, CC$Support2_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.83      0.83    0.71      0.71 4.9 0.011   54 26     0.71
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.85 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_BIO      0.66      0.71     0.5      0.71 2.4       NA     0  0.71
## CC.Support2_BIO      0.76      0.71     0.5      0.71 2.4       NA     0  0.71
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BIO 337  0.92  0.92  0.78   0.71   56 28
## CC.Support2_BIO 337  0.93  0.92  0.78   0.71   51 30
hist(CC$Support_Score_BIO, main = 'BIO Support Scale Score')

psych::alpha(data.frame(CC$Support1_BECCS, CC$Support2_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BECCS, CC$Support2_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.86      0.86    0.76      0.76 6.3 0.0085   54 27     0.76
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.86 0.88 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_BECCS      0.73      0.76    0.58      0.76 3.1       NA     0
## CC.Support2_BECCS      0.79      0.76    0.58      0.76 3.1       NA     0
##                   med.r
## CC.Support1_BECCS  0.76
## CC.Support2_BECCS  0.76
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BECCS 340  0.94  0.94  0.82   0.76   56 28
## CC.Support2_BECCS 340  0.94  0.94  0.82   0.76   51 30
hist(CC$Support_Score_BECCS, main = 'BECCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_DACCS, CC$Support2_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_DACCS, CC$Support2_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.89      0.89    0.81      0.81 8.5 0.0065   53 28     0.81
## 
##  lower alpha upper     95% confidence boundaries
## 0.88 0.89 0.91 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Support1_DACCS      0.81      0.81    0.66      0.81 4.3       NA     0
## CC.Support2_DACCS      0.81      0.81    0.66      0.81 4.3       NA     0
##                   med.r
## CC.Support1_DACCS  0.81
## CC.Support2_DACCS  0.81
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Support1_DACCS 358  0.95  0.95  0.86   0.81   55 30
## CC.Support2_DACCS 358  0.95  0.95  0.86   0.81   52 30
hist(CC$Support_Score_DACCS, main = 'DACCS Support Scale Score')

psych::alpha(data.frame(CC$Support1_EW, CC$Support2_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_EW, CC$Support2_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.85      0.85    0.73      0.73 5.5 0.0096   49 28     0.73
## 
##  lower alpha upper     95% confidence boundaries
## 0.83 0.85 0.86 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_EW      0.71      0.73    0.54      0.73 2.7       NA     0  0.73
## CC.Support2_EW      0.76      0.73    0.54      0.73 2.7       NA     0  0.73
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_EW 345  0.93  0.93   0.8   0.73   50 29
## CC.Support2_EW 345  0.93  0.93   0.8   0.73   48 30
hist(CC$Support_Score_EW, main = 'EW Support Scale Score')

psych::alpha(data.frame(CC$Support1_OF, CC$Support2_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_OF, CC$Support2_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.86      0.86    0.76      0.76 6.4 0.0084   51 29     0.76
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.86 0.88 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_OF      0.76      0.76    0.58      0.76 3.2       NA     0  0.76
## CC.Support2_OF      0.77      0.76    0.58      0.76 3.2       NA     0  0.76
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_OF 336  0.94  0.94  0.82   0.76   53 31
## CC.Support2_OF 336  0.94  0.94  0.82   0.76   49 31
hist(CC$Support_Score_OF, main = 'OF Support Scale Score')

psych::alpha(data.frame(CC$Support1_BF, CC$Support2_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_BF, CC$Support2_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82     0.7       0.7 4.6 0.011   61 25      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.8 0.82 0.84 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_BF      0.66       0.7    0.49       0.7 2.3       NA     0   0.7
## CC.Support2_BF      0.74       0.7    0.49       0.7 2.3       NA     0   0.7
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_BF 256  0.92  0.92  0.77    0.7   64 26
## CC.Support2_BF 256  0.93  0.92  0.77    0.7   59 28
hist(CC$Support_Score_BF, main = 'BF Support Scale Score')

psych::alpha(data.frame(CC$Support1_NE, CC$Support2_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_NE, CC$Support2_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.84      0.84    0.72      0.72 5.2 0.01   51 31     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.84 0.86 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_NE      0.74      0.72    0.52      0.72 2.6       NA     0  0.72
## CC.Support2_NE      0.70      0.72    0.52      0.72 2.6       NA     0  0.72
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_NE 261  0.93  0.93  0.79   0.72   50 34
## CC.Support2_NE 261  0.93  0.93  0.79   0.72   52 33
hist(CC$Support_Score_NE, main = 'NE Support Scale Score')

psych::alpha(data.frame(CC$Support1_SE, CC$Support2_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_SE, CC$Support2_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.77    0.63      0.63 3.4 0.014   80 23     0.63
## 
##  lower alpha upper     95% confidence boundaries
## 0.74 0.76 0.79 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_SE      0.51      0.63     0.4      0.63 1.7       NA     0  0.63
## CC.Support2_SE      0.79      0.63     0.4      0.63 1.7       NA     0  0.63
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_SE 253  0.88   0.9  0.72   0.63   83 23
## CC.Support2_SE 253  0.92   0.9  0.72   0.63   77 29
hist(CC$Support_Score_SE, main = 'SE Support Scale Score')

psych::alpha(data.frame(CC$Support1_WE, CC$Support2_WE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Support1_WE, CC$Support2_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.83     0.7       0.7 4.7 0.011   75 25      0.7
## 
##  lower alpha upper     95% confidence boundaries
## 0.8 0.82 0.84 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Support1_WE      0.61       0.7    0.49       0.7 2.4       NA     0   0.7
## CC.Support2_WE      0.81       0.7    0.49       0.7 2.4       NA     0   0.7
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Support1_WE 263  0.91  0.92  0.77    0.7   76 25
## CC.Support2_WE 263  0.93  0.92  0.77    0.7   73 28
hist(CC$Support_Score_WE, main = 'WE Support Scale Score')

#Correlations
cor.plot(CC$Support_Scale_AFSCS, labels = c('1','2'), main = "Correlation Between AFSCS Support Items")

cor.plot(CC$Support_Scale_BIO, labels = c('1','2'), main = "Correlation Between BIO Support Items")

cor.plot(CC$Support_Scale_BECCS, labels = c('1','2'), main = "Correlation Between BECCS Support Items")

cor.plot(CC$Support_Scale_DACCS, labels = c('1','2'), main = "Correlation Between DACCS Support Items")

cor.plot(CC$Support_Scale_EW, labels = c('1','2'), main = "Correlation Between EW Support Items")

cor.plot(CC$Support_Scale_OF, labels = c('1','2'), main = "Correlation Between OF Support Items")

cor.plot(CC$Support_Scale_BF, labels = c('1','2'), main = "Correlation Between BF Support Items")

cor.plot(CC$Support_Scale_NE, labels = c('1','2'), main = "Correlation Between NE Support Items")

cor.plot(CC$Support_Scale_SE, labels = c('1','2'), main = "Correlation Between SE Support Items")

cor.plot(CC$Support_Scale_WE, labels = c('1','2'), main = "Correlation Between WE Support Items")

Risk

# Risk was rated on a two item scale (0 = Strongly disagree to 100 = Strongly agree) and a mean score was calculated to represent risk perception of the technology rated.

## 1. This is risky to deploy.
## 2. This is frightening.

Descriptives

# Define Variables
CC$Risk_1_AFSCS <- CC$Risk_AFSCS_32
CC$Risk_2_AFSCS <- CC$Risk_AFSCS_33

CC$Risk_1_BIO <- CC$Risk_BIO_32
CC$Risk_2_BIO <- CC$Risk_BIO_33

CC$Risk_1_BECCS <- CC$Risk_BECCS_32
CC$Risk_2_BECCS <- CC$Risk_BECCS_33

CC$Risk_1_DACCS <- CC$Risk_DACCS_32
CC$Risk_2_DACCS <- CC$Risk_DACCS_33

CC$Risk_1_EW <- CC$Risk_EW_32
CC$Risk_2_EW <- CC$Risk_EW_33

CC$Risk_1_OF <- CC$Risk_OF_32
CC$Risk_2_OF <- CC$Risk_OF_33

CC$Risk_1_BF <- CC$Risk_BF_32
CC$Risk_2_BF <- CC$Risk_BF_33

CC$Risk_1_NE <- CC$Risk_NE_32
CC$Risk_2_NE <- CC$Risk_NE_33

CC$Risk_1_SE <- CC$Risk_SE_32
CC$Risk_2_SE <- CC$Risk_SE_33

CC$Risk_1_WE <- CC$Risk_WE_32
CC$Risk_2_WE <- CC$Risk_WE_33

# Descriptives
describe(CC$Risk_1_AFSCS)
## CC$Risk_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       66    0.983    19.61    23.65      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     11.0     30.0     52.2     70.0 
## 
## lowest :   0   1   2   3   4, highest:  80  81  85  86 100
describe(CC$Risk_2_AFSCS)
## CC$Risk_2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       57    0.934    13.34    19.17     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.00     3.50    17.00    44.10    60.55 
## 
## lowest :   0   1   2   3   4, highest:  75  80  85  95 100
describe(CC$Risk_1_BIO)
## CC$Risk_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       83    0.999    39.28    28.79      0.0      3.6 
##      .25      .50      .75      .90      .95 
##     19.0     40.0     56.0     74.4     80.0 
## 
## lowest :   0   1   2   3   4, highest:  86  90  95  96 100
describe(CC$Risk_2_BIO)
## CC$Risk_2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       82    0.992     27.8    28.23        0        0 
##      .25      .50      .75      .90      .95 
##        4       25       47       63       75 
## 
## lowest :   0   1   2   3   4, highest:  90  92  95  96 100
describe(CC$Risk_1_BECCS)
## CC$Risk_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       86    0.999    45.22    30.92     0.00     5.90 
##      .25      .50      .75      .90      .95 
##    24.75    50.00    64.00    80.00    93.05 
## 
## lowest :   0   1   4   5   6, highest:  93  94  95  96 100
describe(CC$Risk_2_BECCS)
## CC$Risk_2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       81    0.992    31.89    32.03        0        0 
##      .25      .50      .75      .90      .95 
##        5       25       51       75       90 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  96 100
describe(CC$Risk_1_DACCS)
## CC$Risk_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       90    0.999    49.88    31.27     0.00     8.40 
##      .25      .50      .75      .90      .95 
##    29.25    52.00    69.75    84.30    95.00 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
describe(CC$Risk_2_DACCS)
## CC$Risk_2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       92    0.994    35.56    33.73     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     7.00    32.00    58.75    79.30    89.00 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  99 100
describe(CC$Risk_1_EW)
## CC$Risk_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       85    0.999    46.13    30.64      4.0     10.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     65.0     84.2     92.4 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  99 100
describe(CC$Risk_2_EW)
## CC$Risk_2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       83    0.994    31.43    31.51        0        0 
##      .25      .50      .75      .90      .95 
##        6       25       52       75       85 
## 
## lowest :   0   1   2   3   4, highest:  92  95  98  99 100
describe(CC$Risk_1_OF)
## CC$Risk_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       94        1     54.8    31.28     1.75    15.50 
##      .25      .50      .75      .90      .95 
##    33.00    57.00    75.00    89.50    97.25 
## 
## lowest :   0   1   2   4   7, highest:  95  96  97  98 100
describe(CC$Risk_2_OF)
## CC$Risk_2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       88    0.996    38.57    34.03      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     11.0     37.0     63.0     80.5     90.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
describe(CC$Risk_1_BF)
## CC$Risk_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       75    0.998     31.8    26.98     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    11.75    29.00    50.00    68.00    74.00 
## 
## lowest :   0   1   2   4   5, highest:  83  84  87  93 100
describe(CC$Risk_2_BF)
## CC$Risk_2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       65    0.983    19.68    22.33     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.00    13.50    30.25    50.50    63.25 
## 
## lowest :   0   1   2   3   4, highest:  80  81  87  88 100
describe(CC$Risk_1_NE)
## CC$Risk_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       76    0.998    57.13    34.95        4       10 
##      .25      .50      .75      .90      .95 
##       31       63       80      100      100 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  99 100
describe(CC$Risk_2_NE)
## CC$Risk_2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       84    0.998    49.46    37.24        0        3 
##      .25      .50      .75      .90      .95 
##       20       55       76       95      100 
## 
## lowest :   0   1   2   3   4, highest:  93  95  97  99 100
describe(CC$Risk_1_SE)
## CC$Risk_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       54    0.948     13.7    18.54        0        0 
##      .25      .50      .75      .90      .95 
##        0        5       21       40       52 
## 
## lowest :  0  1  2  3  4, highest: 67 79 80 82 88
describe(CC$Risk_2_SE)
## CC$Risk_2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       44     0.83    7.194    11.57      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      0.0      8.0     24.8     34.8 
## 
## lowest :   0   1   2   3   4, highest:  64  75  79  88 100
describe(CC$Risk_1_WE)
## CC$Risk_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       71    0.984    23.22    27.79      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.5     13.0     37.5     67.8     79.9 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  97 100
describe(CC$Risk_2_WE)
## CC$Risk_2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       55    0.914    13.97    20.08      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      4.0     19.0     43.0     67.6 
## 
## lowest :   0   1   2   3   4, highest:  84  89  90  99 100
sd(CC$Risk_1_AFSCS, na.rm = TRUE)
## [1] 22.91403
sd(CC$Risk_2_AFSCS, na.rm = TRUE)
## [1] 20.71641
sd(CC$Risk_1_BIO, na.rm = TRUE)
## [1] 25.10228
sd(CC$Risk_2_BIO, na.rm = TRUE)
## [1] 25.28385
sd(CC$Risk_1_BECCS, na.rm = TRUE)
## [1] 26.9803
sd(CC$Risk_2_BECCS, na.rm = TRUE)
## [1] 28.63165
sd(CC$Risk_1_DACCS, na.rm = TRUE)
## [1] 27.33425
sd(CC$Risk_2_DACCS, na.rm = TRUE)
## [1] 29.6358
sd(CC$Risk_1_EW, na.rm = TRUE)
## [1] 26.69134
sd(CC$Risk_2_EW, na.rm = TRUE)
## [1] 28.10315
sd(CC$Risk_1_OF, na.rm = TRUE)
## [1] 27.30675
sd(CC$Risk_2_OF, na.rm = TRUE)
## [1] 29.71348
sd(CC$Risk_1_BF, na.rm = TRUE)
## [1] 23.79626
sd(CC$Risk_2_BF, na.rm = TRUE)
## [1] 21.08743
sd(CC$Risk_1_NE, na.rm = TRUE)
## [1] 30.53679
sd(CC$Risk_2_NE, na.rm = TRUE)
## [1] 32.32854
sd(CC$Risk_1_SE, na.rm = TRUE)
## [1] 19.02075
sd(CC$Risk_2_SE, na.rm = TRUE)
## [1] 14.92275
sd(CC$Risk_1_WE, na.rm = TRUE)
## [1] 26.32136
sd(CC$Risk_2_WE, na.rm = TRUE)
## [1] 21.79981
hist(CC$Risk_1_AFSCS)

hist(CC$Risk_2_AFSCS)

hist(CC$Risk_1_BIO)

hist(CC$Risk_2_BIO)

hist(CC$Risk_1_BECCS)

hist(CC$Risk_2_BECCS)

hist(CC$Risk_1_DACCS)

hist(CC$Risk_2_DACCS)

hist(CC$Risk_1_EW)

hist(CC$Risk_2_EW)

hist(CC$Risk_1_OF)

hist(CC$Risk_2_OF)

hist(CC$Risk_1_BF)

hist(CC$Risk_2_BF)

hist(CC$Risk_1_NE)

hist(CC$Risk_2_NE)

hist(CC$Risk_1_SE)

hist(CC$Risk_2_SE)

hist(CC$Risk_1_WE)

hist(CC$Risk_2_WE)

Score(s) & Scale(s)

# Scores & Scales
CC$Risk_Score_AFSCS <- rowMeans(CC [, c("Risk_1_AFSCS", "Risk_2_AFSCS")], na.rm=TRUE)
CC$Risk_Scale_AFSCS <- data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS)

CC$Risk_Score_BIO <- rowMeans(CC [, c("Risk_1_BIO", "Risk_2_BIO")], na.rm=TRUE)
CC$Risk_Scale_BIO <- data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO)

CC$Risk_Score_BECCS <- rowMeans(CC [, c("Risk_1_BECCS", "Risk_2_BECCS")], na.rm=TRUE)
CC$Risk_Scale_BECCS <- data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS)

CC$Risk_Score_DACCS <- rowMeans(CC [, c("Risk_1_DACCS", "Risk_2_DACCS")], na.rm=TRUE)
CC$Risk_Scale_DACCS <- data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS)

CC$Risk_Score_EW <- rowMeans(CC [, c("Risk_1_EW", "Risk_2_EW")], na.rm=TRUE)
CC$Risk_Scale_EW <- data.frame(CC$Risk_1_EW, CC$Risk_2_EW)

CC$Risk_Score_OF <- rowMeans(CC [, c("Risk_1_OF", "Risk_2_OF")], na.rm=TRUE)
CC$Risk_Scale_OF <- data.frame(CC$Risk_1_OF, CC$Risk_2_OF)

CC$Risk_Score_BF <- rowMeans(CC [, c("Risk_1_BF", "Risk_2_BF")], na.rm=TRUE)
CC$Risk_Scale_BF <- data.frame(CC$Risk_1_BF, CC$Risk_2_BF)

CC$Risk_Score_NE <- rowMeans(CC [, c("Risk_1_NE", "Risk_2_NE")], na.rm=TRUE)
CC$Risk_Scale_NE <- data.frame(CC$Risk_1_NE, CC$Risk_2_NE)

CC$Risk_Score_SE <- rowMeans(CC [, c("Risk_1_SE", "Risk_2_SE")], na.rm=TRUE)
CC$Risk_Scale_SE <- data.frame(CC$Risk_1_SE, CC$Risk_2_SE)

CC$Risk_Score_WE <- rowMeans(CC [, c("Risk_1_WE", "Risk_2_WE")], na.rm=TRUE)
CC$Risk_Scale_WE <- data.frame(CC$Risk_1_WE, CC$Risk_2_WE)

# Describe Scores/Scales 
describe(CC$Risk_Score_AFSCS)
## CC$Risk_Score_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683      105    0.987    16.47    20.51    0.000    0.000 
##      .25      .50      .75      .90      .95 
##    0.625    8.000   24.875   47.650   62.500 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  79.0  80.0  85.0  90.5 100.0
describe(CC$Risk_Scale_AFSCS)
## CC$Risk_Scale_AFSCS 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       66    0.983    19.61    23.65      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0     11.0     30.0     52.2     70.0 
## 
## lowest :   0   1   2   3   4, highest:  80  81  85  86 100
## --------------------------------------------------------------------------------
## CC.Risk_2_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       57    0.934    13.34    19.17     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.00     3.50    17.00    44.10    60.55 
## 
## lowest :   0   1   2   3   4, highest:  75  80  85  95 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_AFSCS, na.rm = TRUE)
## [1] 20.42068
describe(CC$Risk_Score_BIO)
## CC$Risk_Score_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696      134    0.999    33.54    26.41      0.0      2.8 
##      .25      .50      .75      .90      .95 
##     12.5     32.5     50.0     63.0     75.3 
## 
## lowest :  0.0  0.5  1.0  1.5  2.0, highest: 84.0 88.0 90.0 93.0 95.0
describe(CC$Risk_Scale_BIO)
## CC$Risk_Scale_BIO 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       83    0.999    39.28    28.79      0.0      3.6 
##      .25      .50      .75      .90      .95 
##     19.0     40.0     56.0     74.4     80.0 
## 
## lowest :   0   1   2   3   4, highest:  86  90  95  96 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       82    0.992     27.8    28.23        0        0 
##      .25      .50      .75      .90      .95 
##        4       25       47       63       75 
## 
## lowest :   0   1   2   3   4, highest:  90  92  95  96 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BIO, na.rm = TRUE)
## [1] 23.14198
describe(CC$Risk_Score_BECCS)
## CC$Risk_Score_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693      140    0.999    38.55    29.08     0.00     3.50 
##      .25      .50      .75      .90      .95 
##    19.38    37.50    55.00    72.05    86.00 
## 
## lowest :   0.0   0.5   1.0   2.5   3.0, highest:  92.5  93.0  94.0  98.0 100.0
describe(CC$Risk_Scale_BECCS)
## CC$Risk_Scale_BECCS 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       86    0.999    45.22    30.92     0.00     5.90 
##      .25      .50      .75      .90      .95 
##    24.75    50.00    64.00    80.00    93.05 
## 
## lowest :   0   1   4   5   6, highest:  93  94  95  96 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       81    0.992    31.89    32.03        0        0 
##      .25      .50      .75      .90      .95 
##        5       25       51       75       90 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  96 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BECCS, na.rm = TRUE)
## [1] 25.57054
describe(CC$Risk_Score_DACCS)
## CC$Risk_Score_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675      154        1    42.72    30.34     0.00     5.50 
##      .25      .50      .75      .90      .95 
##    22.00    45.00    62.50    77.95    89.50 
## 
## lowest :   0.0   0.5   1.0   2.5   3.0, highest:  95.5  98.0  98.5  99.5 100.0
describe(CC$Risk_Scale_DACCS)
## CC$Risk_Scale_DACCS 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       90    0.999    49.88    31.27     0.00     8.40 
##      .25      .50      .75      .90      .95 
##    29.25    52.00    69.75    84.30    95.00 
## 
## lowest :   0   2   3   4   5, highest:  96  97  98  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       92    0.994    35.56    33.73     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     7.00    32.00    58.75    79.30    89.00 
## 
## lowest :   0   1   2   3   4, highest:  94  95  96  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_DACCS, na.rm = TRUE)
## [1] 26.44361
describe(CC$Risk_Score_EW)
## CC$Risk_Score_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688      148        1    38.78     28.9      2.5      7.5 
##      .25      .50      .75      .90      .95 
##     18.0     37.5     55.5     75.3     85.0 
## 
## lowest :   0.0   1.0   2.0   2.5   3.0, highest:  94.0  96.0  97.5  99.5 100.0
describe(CC$Risk_Scale_EW)
## CC$Risk_Scale_EW 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       85    0.999    46.13    30.64      4.0     10.0 
##      .25      .50      .75      .90      .95 
##     25.0     50.0     65.0     84.2     92.4 
## 
## lowest :   0   2   3   4   5, highest:  93  94  95  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       83    0.994    31.43    31.51        0        0 
##      .25      .50      .75      .90      .95 
##        6       25       52       75       85 
## 
## lowest :   0   1   2   3   4, highest:  92  95  98  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_EW, na.rm = TRUE)
## [1] 25.39343
describe(CC$Risk_Score_OF)
## CC$Risk_Score_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697      154        1    46.68    30.59     1.25    10.25 
##      .25      .50      .75      .90      .95 
##    25.50    45.50    66.50    81.75    91.25 
## 
## lowest :   0.0   0.5   1.5   2.0   5.0, highest:  96.0  97.0  98.5  99.0 100.0
describe(CC$Risk_Scale_OF)
## CC$Risk_Scale_OF 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       94        1     54.8    31.28     1.75    15.50 
##      .25      .50      .75      .90      .95 
##    33.00    57.00    75.00    89.50    97.25 
## 
## lowest :   0   1   2   4   7, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
## CC.Risk_2_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       88    0.996    38.57    34.03      0.0      0.0 
##      .25      .50      .75      .90      .95 
##     11.0     37.0     63.0     80.5     90.0 
## 
## lowest :   0   1   2   3   4, highest:  95  96  97  98 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_OF, na.rm = TRUE)
## [1] 26.55251
describe(CC$Risk_Score_BF)
## CC$Risk_Score_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777      107    0.999    25.74    22.72    0.000    0.500 
##      .25      .50      .75      .90      .95 
##    8.375   21.750   38.750   52.000   60.250 
## 
## lowest :   0.0   0.5   1.0   1.5   2.5, highest:  81.5  83.5  85.5  86.0 100.0
describe(CC$Risk_Scale_BF)
## CC$Risk_Scale_BF 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       75    0.998     31.8    26.98     0.00     0.00 
##      .25      .50      .75      .90      .95 
##    11.75    29.00    50.00    68.00    74.00 
## 
## lowest :   0   1   2   4   5, highest:  83  84  87  93 100
## --------------------------------------------------------------------------------
## CC.Risk_2_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       65    0.983    19.68    22.33     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     0.00    13.50    30.25    50.50    63.25 
## 
## lowest :   0   1   2   3   4, highest:  80  81  87  88 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_BF, na.rm = TRUE)
## [1] 20.34737
describe(CC$Risk_Score_NE)
## CC$Risk_Score_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772      126    0.999     53.3    34.78      2.5      7.5 
##      .25      .50      .75      .90      .95 
##     25.0     58.5     76.0     92.0    100.0 
## 
## lowest :   0.0   0.5   1.5   2.0   2.5, highest:  95.5  96.5  98.5  99.0 100.0
describe(CC$Risk_Scale_NE)
## CC$Risk_Scale_NE 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       76    0.998    57.13    34.95        4       10 
##      .25      .50      .75      .90      .95 
##       31       63       80      100      100 
## 
## lowest :   0   1   3   4   5, highest:  93  94  95  99 100
## --------------------------------------------------------------------------------
## CC.Risk_2_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       84    0.998    49.46    37.24        0        3 
##      .25      .50      .75      .90      .95 
##       20       55       76       95      100 
## 
## lowest :   0   1   2   3   4, highest:  93  95  97  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_NE, na.rm = TRUE)
## [1] 30.2486
describe(CC$Risk_Score_SE)
## CC$Risk_Score_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       71    0.958    10.45    14.19      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      3.5     15.5     34.0     43.4 
## 
## lowest :  0.0  0.5  1.0  1.5  2.0, highest: 48.5 51.0 63.0 64.5 78.5
describe(CC$Risk_Scale_SE)
## CC$Risk_Scale_SE 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       54    0.948     13.7    18.54        0        0 
##      .25      .50      .75      .90      .95 
##        0        5       21       40       52 
## 
## lowest :  0  1  2  3  4, highest: 67 79 80 82 88
## --------------------------------------------------------------------------------
## CC.Risk_2_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       44     0.83    7.194    11.57      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      0.0      8.0     24.8     34.8 
## 
## lowest :   0   1   2   3   4, highest:  64  75  79  88 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_SE, na.rm = TRUE)
## [1] 14.54438
describe(CC$Risk_Score_WE)
## CC$Risk_Score_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       94    0.987    18.59    22.94      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.5     11.0     25.5     51.9     65.7 
## 
## lowest :  0.0  0.5  1.0  1.5  2.0, highest: 89.0 89.5 92.0 98.0 98.5
describe(CC$Risk_Scale_WE)
## CC$Risk_Scale_WE 
## 
##  2  Variables      1033  Observations
## --------------------------------------------------------------------------------
## CC.Risk_1_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       71    0.984    23.22    27.79      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.5     13.0     37.5     67.8     79.9 
## 
## lowest :   0   1   2   3   4, highest:  90  91  92  97 100
## --------------------------------------------------------------------------------
## CC.Risk_2_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       55    0.914    13.97    20.08      0.0      0.0 
##      .25      .50      .75      .90      .95 
##      0.0      4.0     19.0     43.0     67.6 
## 
## lowest :   0   1   2   3   4, highest:  84  89  90  99 100
## --------------------------------------------------------------------------------
sd(CC$Risk_Score_WE, na.rm = TRUE)
## [1] 22.66007
#Cronbach's alpha for risk scale
psych::alpha(data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_AFSCS, CC$Risk_2_AFSCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.86      0.86    0.75      0.75 6.1 0.0089   16 20     0.75
## 
##  lower alpha upper     95% confidence boundaries
## 0.84 0.86 0.87 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_AFSCS      0.83      0.75    0.57      0.75   3       NA     0  0.75
## CC.Risk_2_AFSCS      0.68      0.75    0.57      0.75   3       NA     0  0.75
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_AFSCS 350  0.94  0.94  0.81   0.75   20 23
## CC.Risk_2_AFSCS 350  0.93  0.94  0.81   0.75   13 21
hist(CC$Risk_Score_AFSCS, main = 'AFSCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BIO, CC$Risk_2_BIO))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.81      0.81    0.69      0.69 4.4 0.012   34 23     0.69
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.81 0.84 
## 
##  Reliability if an item is dropped:
##               raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BIO      0.68      0.69    0.47      0.69 2.2       NA     0  0.69
## CC.Risk_2_BIO      0.69      0.69    0.47      0.69 2.2       NA     0  0.69
## 
##  Item statistics 
##                 n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BIO 337  0.92  0.92  0.76   0.69   39 25
## CC.Risk_2_BIO 337  0.92  0.92  0.76   0.69   28 25
hist(CC$Risk_Score_BIO, main = 'BIO Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BECCS, CC$Risk_2_BECCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.82      0.82    0.69      0.69 4.5 0.011   39 26     0.69
## 
##  lower alpha upper     95% confidence boundaries
## 0.79 0.82 0.84 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BECCS      0.65      0.69    0.48      0.69 2.2       NA     0  0.69
## CC.Risk_2_BECCS      0.73      0.69    0.48      0.69 2.2       NA     0  0.69
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BECCS 340  0.91  0.92  0.76   0.69   45 27
## CC.Risk_2_BECCS 340  0.92  0.92  0.76   0.69   32 29
hist(CC$Risk_Score_BECCS, main = 'BECCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_DACCS, CC$Risk_2_DACCS))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.84      0.84    0.72      0.72 5.2 0.01   43 26     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.84 0.86 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_DACCS      0.67      0.72    0.52      0.72 2.6       NA     0  0.72
## CC.Risk_2_DACCS      0.78      0.72    0.52      0.72 2.6       NA     0  0.72
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_DACCS 358  0.92  0.93  0.79   0.72   50 27
## CC.Risk_2_DACCS 358  0.93  0.93  0.79   0.72   36 30
hist(CC$Risk_Score_DACCS, main = 'DACCS Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_EW, CC$Risk_2_EW))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_EW, CC$Risk_2_EW))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.84      0.84    0.72      0.72 5.1 0.01   39 25     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.82 0.84 0.86 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_EW      0.68      0.72    0.52      0.72 2.5       NA     0  0.72
## CC.Risk_2_EW      0.76      0.72    0.52      0.72 2.5       NA     0  0.72
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_EW 345  0.92  0.93  0.79   0.72   46 27
## CC.Risk_2_EW 345  0.93  0.93  0.79   0.72   31 28
hist(CC$Risk_Score_EW, main = 'EW Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_OF, CC$Risk_2_OF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_OF, CC$Risk_2_OF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.85      0.85    0.73      0.73 5.5 0.0096   47 27     0.73
## 
##  lower alpha upper     95% confidence boundaries
## 0.83 0.85 0.86 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_OF      0.67      0.73    0.54      0.73 2.8       NA     0  0.73
## CC.Risk_2_OF      0.80      0.73    0.54      0.73 2.8       NA     0  0.73
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_OF 336  0.93  0.93   0.8   0.73   55 27
## CC.Risk_2_OF 336  0.94  0.93   0.8   0.73   39 30
hist(CC$Risk_Score_OF, main = 'OF Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_BF, CC$Risk_2_BF))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_BF, CC$Risk_2_BF))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.78      0.78    0.64      0.64 3.6 0.014   26 20     0.64
## 
##  lower alpha upper     95% confidence boundaries
## 0.75 0.78 0.81 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_BF      0.73      0.64    0.41      0.64 1.8       NA     0  0.64
## CC.Risk_2_BF      0.57      0.64    0.41      0.64 1.8       NA     0  0.64
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_BF 256  0.92  0.91  0.73   0.64   32 24
## CC.Risk_2_BF 256  0.89  0.91  0.73   0.64   20 21
hist(CC$Risk_Score_BF, main = 'BF Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_NE, CC$Risk_2_NE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_NE, CC$Risk_2_NE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.92      0.92    0.85      0.85  12 0.005   53 30     0.85
## 
##  lower alpha upper     95% confidence boundaries
## 0.91 0.92 0.93 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_NE       0.8      0.85    0.73      0.85 5.8       NA     0  0.85
## CC.Risk_2_NE       0.9      0.85    0.73      0.85 5.8       NA     0  0.85
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_NE 261  0.96  0.96  0.89   0.85   57 31
## CC.Risk_2_NE 261  0.96  0.96  0.89   0.85   49 32
hist(CC$Risk_Score_NE, main = 'NE Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_SE, CC$Risk_2_SE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_SE, CC$Risk_2_SE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.62      0.63    0.46      0.46 1.7 0.023   10 15     0.46
## 
##  lower alpha upper     95% confidence boundaries
## 0.57 0.62 0.66 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Risk_1_SE      0.59      0.46    0.21      0.46 0.86       NA     0  0.46
## CC.Risk_2_SE      0.36      0.46    0.21      0.46 0.86       NA     0  0.46
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_SE 253  0.89  0.85  0.58   0.46 13.7 19
## CC.Risk_2_SE 253  0.81  0.85  0.58   0.46  7.2 15
hist(CC$Risk_Score_SE, main = 'SE Risk Scale Score')

psych::alpha(data.frame(CC$Risk_1_WE, CC$Risk_2_WE))
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = data.frame(CC$Risk_1_WE, CC$Risk_2_WE))
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean sd median_r
##       0.86      0.87    0.77      0.77 6.8 0.0082   19 23     0.77
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.86 0.88 
## 
##  Reliability if an item is dropped:
##              raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Risk_1_WE      0.93      0.77     0.6      0.77 3.4       NA     0  0.77
## CC.Risk_2_WE      0.64      0.77     0.6      0.77 3.4       NA     0  0.77
## 
##  Item statistics 
##                n raw.r std.r r.cor r.drop mean sd
## CC.Risk_1_WE 263  0.95  0.94  0.83   0.77   23 26
## CC.Risk_2_WE 263  0.93  0.94  0.83   0.77   14 22
hist(CC$Risk_Score_WE, main = 'WE Risk Scale Score')

#Correlations
cor.plot(CC$Risk_Scale_AFSCS, labels = c('1','2'), main = "Correlation Between AFSCS Risk Items")

cor.plot(CC$Risk_Scale_BIO, labels = c('1','2'), main = "Correlation Between BIO Risk Items")

cor.plot(CC$Risk_Scale_BECCS, labels = c('1','2'), main = "Correlation Between BECCS Risk Items")

cor.plot(CC$Risk_Scale_DACCS, labels = c('1','2'), main = "Correlation Between DACCS Risk Items")

cor.plot(CC$Risk_Scale_EW, labels = c('1','2'), main = "Correlation Between EW Risk Items")

cor.plot(CC$Risk_Scale_OF, labels = c('1','2'), main = "Correlation Between OF Risk Items")

cor.plot(CC$Risk_Scale_BF, labels = c('1','2'), main = "Correlation Between BF Risk Items")

cor.plot(CC$Risk_Scale_NE, labels = c('1','2'), main = "Correlation Between NE Risk Items")

cor.plot(CC$Risk_Scale_SE, labels = c('1','2'), main = "Correlation Between SE Risk Items")

cor.plot(CC$Risk_Scale_WE, labels = c('1','2'), main = "Correlation Between WE Risk Items")

Understanding

# Understanding was rated on a one item scale (0 = Strongly disagree to 100 = Strongly agree) and represented participant understanding of the technology rated.

## 1. I understand how this works.

Descriptives

# Define Variables
CC$Und_AFSCS <- CC$Risk_AFSCS_30
CC$Und_BIO <- CC$Risk_BIO_30
CC$Und_BECCS <- CC$Risk_BECCS_30
CC$Und_DACCS <- CC$Risk_DACCS_30
CC$Und_EW <- CC$Risk_EW_30
CC$Und_OF <- CC$Risk_OF_30
CC$Und_BF <- CC$Risk_BF_30
CC$Und_NE <- CC$Risk_NE_30
CC$Und_SE <- CC$Risk_SE_30
CC$Und_WE <- CC$Risk_WE_30

# Descriptives
describe(CC$Und_AFSCS)
## CC$Und_AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683       85    0.995    70.76    28.76    15.90    31.80 
##      .25      .50      .75      .90      .95 
##    56.25    77.00    91.75   100.00   100.00 
## 
## lowest :   0   1   3   5   7, highest:  96  97  98  99 100
describe(CC$Und_BIO)
## CC$Und_BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696       91        1    47.78    32.06        1       10 
##      .25      .50      .75      .90      .95 
##       25       50       70       86       95 
## 
## lowest :   0   1   2   5   6, highest:  94  95  97  98 100
describe(CC$Und_BECCS)
## CC$Und_BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693       94    0.999    45.15       33     0.00     5.00 
##      .25      .50      .75      .90      .95 
##    21.75    44.00    67.00    85.00    92.15 
## 
## lowest :   0   1   2   4   5, highest:  95  96  97  99 100
describe(CC$Und_DACCS)
## CC$Und_DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675       93        1    45.77    34.78     0.00     5.00 
##      .25      .50      .75      .90      .95 
##    19.00    46.00    70.75    85.00    98.00 
## 
## lowest :   0   1   2   3   4, highest:  93  95  98  99 100
describe(CC$Und_EW)
## CC$Und_EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688       92    0.999    43.47    31.34      0.0      5.0 
##      .25      .50      .75      .90      .95 
##     22.0     42.0     63.0     80.0     87.8 
## 
## lowest :   0   1   2   3   4, highest:  88  91  93  94 100
describe(CC$Und_OF)
## CC$Und_OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697       88        1    51.06     32.2      5.0      9.5 
##      .25      .50      .75      .90      .95 
##     28.0     53.0     73.0     87.0     94.0 
## 
## lowest :   0   2   4   5   6, highest:  94  95  97  98 100
describe(CC$Und_BF)
## CC$Und_BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777       81    0.999    62.13     30.7     8.75    24.00 
##      .25      .50      .75      .90      .95 
##    42.75    66.50    82.25    99.00   100.00 
## 
## lowest :   0   1   5  10  12, highest:  96  97  98  99 100
describe(CC$Und_NE)
## CC$Und_NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772       83    0.998    65.22    30.76       11       23 
##      .25      .50      .75      .90      .95 
##       50       71       88      100      100 
## 
## lowest :   0   2   3   4   6, highest:  96  97  98  99 100
describe(CC$Und_SE)
## CC$Und_SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       57    0.978    83.55    19.37     50.0     56.2 
##      .25      .50      .75      .90      .95 
##     74.0     90.0    100.0    100.0    100.0 
## 
## lowest :   2   5  21  22  30, highest:  96  97  98  99 100
describe(CC$Und_WE)
## CC$Und_WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       53    0.983    82.83    18.92       51       62 
##      .25      .50      .75      .90      .95 
##       74       87      100      100      100 
## 
## lowest :   0  15  16  19  26, highest:  96  97  98  99 100
sd(CC$Und_AFSCS, na.rm = TRUE)
## [1] 26.13278
sd(CC$Und_BIO, na.rm = TRUE)
## [1] 27.80675
sd(CC$Und_BECCS, na.rm = TRUE)
## [1] 28.61283
sd(CC$Und_DACCS, na.rm = TRUE)
## [1] 30.14186
sd(CC$Und_EW, na.rm = TRUE)
## [1] 27.23946
sd(CC$Und_OF, na.rm = TRUE)
## [1] 27.95346
sd(CC$Und_BF, na.rm = TRUE)
## [1] 27.17169
sd(CC$Und_NE, na.rm = TRUE)
## [1] 27.32448
sd(CC$Und_SE, na.rm = TRUE)
## [1] 18.65695
sd(CC$Und_WE, na.rm = TRUE)
## [1] 18.27782
hist(CC$Und_AFSCS)

hist(CC$Und_BIO)

hist(CC$Und_BECCS)

hist(CC$Und_DACCS)

hist(CC$Und_EW)

hist(CC$Und_OF)

hist(CC$Und_BF)

hist(CC$Und_NE)

hist(CC$Und_SE)

hist(CC$Und_WE)

Score(s) & Scale(s)

# Note: Understanding scores & scales not present because measure is one item.)

Benefit - Risk Difference

Descriptives / Score(s) & Scale(s)

#Difference Score
CC$BRDiff.AFSCS <- (CC$Ben_AFSCS - CC$Risk_Score_AFSCS) 
CC$BRDiff.BIO <- (CC$Ben_BIO - CC$Risk_Score_BIO) 
CC$BRDiff.BECCS <- (CC$Ben_BECCS - CC$Risk_Score_BECCS) 
CC$BRDiff.DACCS <- (CC$Ben_DACCS - CC$Risk_Score_DACCS) 
CC$BRDiff.EW <- (CC$Ben_EW - CC$Risk_Score_EW) 
CC$BRDiff.OF <- (CC$Ben_OF - CC$Risk_Score_OF)
CC$BRDiff.BF <- (CC$Ben_BF - CC$Risk_Score_BF) 
CC$BRDiff.NE <- (CC$Ben_NE - CC$Risk_Score_NE) 
CC$BRDiff.SE <- (CC$Ben_SE - CC$Risk_Score_SE) 
CC$BRDiff.WE <- (CC$Ben_WE - CC$Risk_Score_WE) 

#Descriptives
describe(CC$BRDiff.AFSCS)
## CC$BRDiff.AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683      170        1     51.9    38.63   -11.28     1.50 
##      .25      .50      .75      .90      .95 
##    31.62    57.00    80.00    92.00   100.00 
## 
## lowest : -100.0  -56.5  -45.0  -42.0  -37.5, highest:   97.0   98.0   98.5   99.5  100.0
describe(CC$BRDiff.BIO)
## CC$BRDiff.BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696      184        1     19.7    44.41    -47.5    -27.4 
##      .25      .50      .75      .90      .95 
##     -6.0     18.5     45.5     74.2     87.0 
## 
## lowest : -90.0 -80.0 -77.5 -76.5 -75.0, highest:  91.5  93.0  95.5  99.5 100.0
describe(CC$BRDiff.BECCS)
## CC$BRDiff.BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693      191        1     16.6    48.06   -61.08   -36.05 
##      .25      .50      .75      .90      .95 
##    -9.25    19.00    47.00    73.15    81.15 
## 
## lowest : -100.0  -93.0  -92.5  -90.0  -87.0, highest:   87.5   88.0   90.0   94.0  100.0
describe(CC$BRDiff.DACCS)
## CC$BRDiff.DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675      205        1    12.77     48.7   -60.08   -40.00 
##      .25      .50      .75      .90      .95 
##   -14.88    11.75    44.00    68.80    86.15 
## 
## lowest : -100.0  -93.0  -92.0  -83.5  -80.0, highest:   95.0   96.0   98.0   99.0  100.0
describe(CC$BRDiff.EW)
## CC$BRDiff.EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688      189        1    13.51    44.37    -55.2    -37.0 
##      .25      .50      .75      .90      .95 
##    -10.0     11.0     43.5     62.1     72.8 
## 
## lowest : -100.0  -88.5  -87.5  -81.0  -80.0, highest:   89.0   91.0   95.0   97.5  100.0
describe(CC$BRDiff.OF)
## CC$BRDiff.OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697      191        1     7.78    47.63   -70.25   -54.50 
##      .25      .50      .75      .90      .95 
##   -16.62    10.00    35.25    62.75    73.00 
## 
## lowest : -100.0  -99.0  -90.5  -87.5  -87.0, highest:   87.5   88.0   89.0   98.0  100.0
describe(CC$BRDiff.BF)
## CC$BRDiff.BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777      154        1    26.55    41.89  -32.375  -21.500 
##      .25      .50      .75      .90      .95 
##    0.375   25.500   51.750   75.500   85.750 
## 
## lowest : -100.0  -81.0  -60.5  -58.5  -57.5, highest:   92.0   92.5   95.5   99.5  100.0
describe(CC$BRDiff.NE)
## CC$BRDiff.NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772      171        1    6.667    55.57    -82.0    -64.0 
##      .25      .50      .75      .90      .95 
##    -20.5      3.0     44.5     78.5     86.5 
## 
## lowest : -100.0  -90.0  -89.0  -87.5  -86.5, highest:   92.5   94.5   95.5   97.0  100.0
describe(CC$BRDiff.SE)
## CC$BRDiff.SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780      133    0.999    55.56    35.38     -1.2      8.1 
##      .25      .50      .75      .90      .95 
##     33.0     60.5     79.5     95.7    100.0 
## 
## lowest : -30.0 -27.5 -25.5 -22.5 -20.0, highest:  96.5  97.5  98.0  99.5 100.0
describe(CC$BRDiff.WE)
## CC$BRDiff.WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770      150        1    46.47    44.44   -30.00    -9.60 
##      .25      .50      .75      .90      .95 
##    23.50    56.00    74.75    90.90   100.00 
## 
## lowest : -92.5 -89.5 -84.0 -79.0 -74.5, highest:  95.0  96.5  98.5  99.5 100.0
#Histograms
hist(CC$BRDiff.AFSCS)

hist(CC$BRDiff.BIO)

hist(CC$BRDiff.BECCS)

hist(CC$BRDiff.DACCS)

hist(CC$BRDiff.EW)

hist(CC$BRDiff.OF)

hist(CC$BRDiff.BF)

hist(CC$BRDiff.NE)

hist(CC$BRDiff.SE)

hist(CC$BRDiff.WE)

#SD
sd(CC$BRDiff.AFSCS, na.rm = TRUE)
## [1] 34.90147
sd(CC$BRDiff.BIO, na.rm = TRUE)
## [1] 39.21167
sd(CC$BRDiff.BECCS, na.rm = TRUE)
## [1] 42.59757
sd(CC$BRDiff.DACCS, na.rm = TRUE)
## [1] 42.81352
sd(CC$BRDiff.EW, na.rm = TRUE)
## [1] 39.40072
sd(CC$BRDiff.OF, na.rm = TRUE)
## [1] 42.31704
sd(CC$BRDiff.BF, na.rm = TRUE)
## [1] 37.03572
sd(CC$BRDiff.NE, na.rm = TRUE)
## [1] 48.9671
sd(CC$BRDiff.SE, na.rm = TRUE)
## [1] 31.36065
sd(CC$BRDiff.WE, na.rm = TRUE)
## [1] 40.7655

Familiarity/Understanding

Descriptives / Score(s) & Scale(s)

#Mean understanding/familiarity scores  by technology
CC$FR.AFSCS <- rowMeans(CC [, c("Familiar_AFSCS", "Und_AFSCS")], na.rm=TRUE)
CC$FR.BIO <- rowMeans(CC [, c("Familiar_BIO", "Und_BIO")], na.rm=TRUE)
CC$FR.BECCS <- rowMeans(CC [, c("Familiar_BECCS", "Und_BECCS")], na.rm=TRUE)
CC$FR.DACCS <- rowMeans(CC [, c("Familiar_DACCS", "Und_DACCS")], na.rm=TRUE)
CC$FR.EW <- rowMeans(CC [, c("Familiar_EW", "Und_EW")], na.rm=TRUE)
CC$FR.OF <- rowMeans(CC [, c("Familiar_OF", "Und_OF")], na.rm=TRUE)
CC$FR.BF <- rowMeans(CC [, c("Familiar_BF", "Und_BF")], na.rm=TRUE)
CC$FR.NE <- rowMeans(CC [, c("Familiar_NE", "Und_NE")], na.rm=TRUE)
CC$FR.SE <- rowMeans(CC [, c("Familiar_SE", "Und_SE")], na.rm=TRUE)
CC$FR.WE <- rowMeans(CC [, c("Familiar_WE", "Und_WE")], na.rm=TRUE)

#Descriptives
describe(CC$FR.AFSCS)
## CC$FR.AFSCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      350      683      150    0.999    66.75    29.67    15.12    26.50 
##      .25      .50      .75      .90      .95 
##    50.00    71.00    88.50   100.00   100.00 
## 
## lowest :   0.0   0.5   2.5   3.5   5.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(CC$FR.BIO)
## CC$FR.BIO 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      337      696      138        1    37.65    27.51      1.0      8.4 
##      .25      .50      .75      .90      .95 
##     18.5     34.5     54.0     73.7     80.0 
## 
## lowest :   0.0   0.5   1.0   3.0   3.5, highest:  92.5  93.0  93.5  98.5 100.0
describe(CC$FR.BECCS)
## CC$FR.BECCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      340      693      143        1     37.4    28.27     0.00     4.50 
##      .25      .50      .75      .90      .95 
##    18.38    35.00    52.50    71.55    83.03 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  92.5  93.5  95.0  99.5 100.0
describe(CC$FR.DACCS)
## CC$FR.DACCS 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      358      675      149        1    36.21    28.49     0.50     5.00 
##      .25      .50      .75      .90      .95 
##    15.00    33.75    52.50    70.15    81.07 
## 
## lowest :   0.0   0.5   1.0   2.0   2.5, highest:  93.0  93.5  95.0  99.5 100.0
describe(CC$FR.EW)
## CC$FR.EW 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      345      688      129        1    32.98     25.2      0.0      3.0 
##      .25      .50      .75      .90      .95 
##     16.0     30.5     48.0     63.6     75.3 
## 
## lowest :  0.0  1.0  1.5  2.0  2.5, highest: 86.0 88.5 89.5 95.0 95.5
describe(CC$FR.OF)
## CC$FR.OF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      336      697      145        1    38.29    25.47     4.50     7.50 
##      .25      .50      .75      .90      .95 
##    20.00    38.00    52.50    67.50    80.12 
## 
## lowest :   0.0   0.5   1.0   2.0   3.5, highest:  86.5  87.0  92.5  93.0 100.0
describe(CC$FR.BF)
## CC$FR.BF 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      256      777      119        1    60.25    28.45    13.50    27.00 
##      .25      .50      .75      .90      .95 
##    44.88    61.25    78.50    93.00    99.62 
## 
## lowest :   0.0   0.5   2.5  10.0  11.5, highest:  97.5  98.5  99.0  99.5 100.0
describe(CC$FR.NE)
## CC$FR.NE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      261      772      120        1    67.29    26.86     19.5     34.0 
##      .25      .50      .75      .90      .95 
##     51.0     72.5     87.5     95.0    100.0 
## 
## lowest :   0.0   2.5   3.0   6.0   7.5, highest:  96.5  97.0  97.5  99.0 100.0
describe(CC$FR.SE)
## CC$FR.SE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      253      780       82    0.987     85.6    16.53     51.3     63.6 
##      .25      .50      .75      .90      .95 
##     78.0     90.0     98.5    100.0    100.0 
## 
## lowest :  23.0  25.0  33.0  36.0  40.5, highest:  98.0  98.5  99.0  99.5 100.0
describe(CC$FR.WE)
## CC$FR.WE 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##      263      770       89    0.995    82.25    17.68    51.00    63.00 
##      .25      .50      .75      .90      .95 
##    73.25    86.00    94.75   100.00   100.00 
## 
## lowest :   1.5   8.0  16.0  23.5  34.0, highest:  97.0  97.5  98.0  99.5 100.0
#SD
sd(CC$FR.AFSCS, na.rm = TRUE)
## [1] 26.39931
sd(CC$FR.BIO, na.rm = TRUE)
## [1] 24.27756
sd(CC$FR.BECCS, na.rm = TRUE)
## [1] 24.92032
sd(CC$FR.DACCS, na.rm = TRUE)
## [1] 25.01702
sd(CC$FR.EW, na.rm = TRUE)
## [1] 22.18373
sd(CC$FR.OF, na.rm = TRUE)
## [1] 22.352
sd(CC$FR.BF, na.rm = TRUE)
## [1] 25.06071
sd(CC$FR.NE, na.rm = TRUE)
## [1] 24.04511
sd(CC$FR.SE, na.rm = TRUE)
## [1] 15.83442
sd(CC$FR.WE, na.rm = TRUE)
## [1] 16.89572
#Histograms
hist(CC$FR.AFSCS)

hist(CC$FR.BIO)

hist(CC$FR.BECCS)

hist(CC$FR.DACCS)

hist(CC$FR.EW)

hist(CC$FR.OF)

hist(CC$FR.BF)

hist(CC$FR.NE)

hist(CC$FR.SE)

hist(CC$FR.WE)

#Scales
CC$FR2.AFSCS <- data.frame(CC$Familiar_AFSCS, CC$Und_AFSCS)
CC$FR2.BIO <- data.frame(CC$Familiar_BIO, CC$Und_BIO)
CC$FR2.BECCS <- data.frame(CC$Familiar_BECCS, CC$Und_BECCS)
CC$FR2.DACCS <- data.frame(CC$Familiar_DACCS, CC$Und_DACCS)
CC$FR2.EW <- data.frame(CC$Familiar_EW, CC$Und_EW)
CC$FR2.OF <- data.frame(CC$Familiar_OF, CC$Und_OF)
CC$FR2.BF <- data.frame(CC$Familiar_BF, CC$Und_BF)
CC$FR2.NE <- data.frame(CC$Familiar_NE, CC$Und_NE)
CC$FR2.SE <- data.frame(CC$Familiar_SE, CC$Und_SE)
CC$FR2.WE <- data.frame(CC$Familiar_WE, CC$Und_WE)

#Alphas
psych::alpha(CC$FR2.AFSCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.AFSCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N  ase mean sd median_r
##       0.83      0.84    0.72      0.72 5.2 0.01   67 26     0.72
## 
##  lower alpha upper     95% confidence boundaries
## 0.81 0.83 0.85 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_AFSCS      0.85      0.72    0.52      0.72 2.6       NA     0
## CC.Und_AFSCS           0.61      0.72    0.52      0.72 2.6       NA     0
##                   med.r
## CC.Familiar_AFSCS  0.72
## CC.Und_AFSCS       0.72
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_AFSCS 350  0.94  0.93  0.79   0.72   63 31
## CC.Und_AFSCS      350  0.92  0.93  0.79   0.72   71 26
psych::alpha(CC$FR2.BIO)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BIO)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.73      0.73    0.57      0.57 2.7 0.017   38 24     0.57
## 
##  lower alpha upper     95% confidence boundaries
## 0.7 0.73 0.76 
## 
##  Reliability if an item is dropped:
##                 raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_BIO      0.56      0.57    0.33      0.57 1.3       NA     0  0.57
## CC.Und_BIO           0.59      0.57    0.33      0.57 1.3       NA     0  0.57
## 
##  Item statistics 
##                   n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BIO 337  0.88  0.89  0.67   0.57   28 27
## CC.Und_BIO      337  0.89  0.89  0.67   0.57   48 28
psych::alpha(CC$FR2.BECCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BECCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.72      0.72    0.56      0.56 2.6 0.017   37 25     0.56
## 
##  lower alpha upper     95% confidence boundaries
## 0.69 0.72 0.75 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_BECCS      0.55      0.56    0.32      0.56 1.3       NA     0
## CC.Und_BECCS           0.58      0.56    0.32      0.56 1.3       NA     0
##                   med.r
## CC.Familiar_BECCS  0.56
## CC.Und_BECCS       0.56
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BECCS 340  0.88  0.88  0.66   0.56   30 28
## CC.Und_BECCS      340  0.89  0.88  0.66   0.56   45 29
psych::alpha(CC$FR2.DACCS)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.DACCS)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.74      0.75     0.6       0.6   3 0.016   36 25      0.6
## 
##  lower alpha upper     95% confidence boundaries
## 0.71 0.74 0.77 
## 
##  Reliability if an item is dropped:
##                   raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r
## CC.Familiar_DACCS      0.51       0.6    0.36       0.6 1.5       NA     0
## CC.Und_DACCS           0.70       0.6    0.36       0.6 1.5       NA     0
##                   med.r
## CC.Familiar_DACCS   0.6
## CC.Und_DACCS        0.6
## 
##  Item statistics 
##                     n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_DACCS 358  0.88  0.89  0.69    0.6   27 26
## CC.Und_DACCS      358  0.91  0.89  0.69    0.6   46 30
psych::alpha(CC$FR2.EW)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.EW)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##        0.7      0.71    0.55      0.55 2.4 0.018   33 22     0.55
## 
##  lower alpha upper     95% confidence boundaries
## 0.67 0.7 0.74 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_EW      0.47      0.55     0.3      0.55 1.2       NA     0  0.55
## CC.Und_EW           0.65      0.55     0.3      0.55 1.2       NA     0  0.55
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_EW 345  0.86  0.88  0.65   0.55   22 23
## CC.Und_EW      345  0.90  0.88  0.65   0.55   43 27
psych::alpha(CC$FR2.OF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.OF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.58      0.58    0.41      0.41 1.4 0.026   38 22     0.41
## 
##  lower alpha upper     95% confidence boundaries
## 0.53 0.58 0.63 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Familiar_OF      0.37      0.41    0.17      0.41 0.69       NA     0  0.41
## CC.Und_OF           0.45      0.41    0.17      0.41 0.69       NA     0  0.41
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_OF 336  0.82  0.84  0.54   0.41   26 25
## CC.Und_OF      336  0.86  0.84  0.54   0.41   51 28
psych::alpha(CC$FR2.BF)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.BF)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.76      0.77    0.62      0.62 3.3 0.015   60 25     0.62
## 
##  lower alpha upper     95% confidence boundaries
## 0.74 0.76 0.79 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_BF      0.65      0.62    0.38      0.62 1.6       NA     0  0.62
## CC.Und_BF           0.59      0.62    0.38      0.62 1.6       NA     0  0.62
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_BF 256  0.91   0.9  0.71   0.62   58 29
## CC.Und_BF      256  0.89   0.9  0.71   0.62   62 27
psych::alpha(CC$FR2.NE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.NE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.75      0.75     0.6       0.6   3 0.016   67 24      0.6
## 
##  lower alpha upper     95% confidence boundaries
## 0.72 0.75 0.78 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_NE      0.58       0.6    0.36       0.6 1.5       NA     0   0.6
## CC.Und_NE           0.61       0.6    0.36       0.6 1.5       NA     0   0.6
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_NE 261  0.89  0.89  0.69    0.6   69 27
## CC.Und_NE      261  0.90  0.89  0.69    0.6   65 27
psych::alpha(CC$FR2.SE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.SE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.77      0.78    0.63      0.63 3.5 0.014   86 16     0.63
## 
##  lower alpha upper     95% confidence boundaries
## 0.74 0.77 0.8 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
## CC.Familiar_SE      0.56      0.63     0.4      0.63 1.7       NA     0  0.63
## CC.Und_SE           0.72      0.63     0.4      0.63 1.7       NA     0  0.63
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_SE 253  0.89   0.9  0.72   0.63   88 16
## CC.Und_SE      253  0.92   0.9  0.72   0.63   84 19
psych::alpha(CC$FR2.WE)
## Number of categories should be increased  in order to count frequencies.
## 
## Reliability analysis   
## Call: psych::alpha(x = CC$FR2.WE)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N   ase mean sd median_r
##       0.66      0.66    0.49      0.49 1.9 0.021   82 17     0.49
## 
##  lower alpha upper     95% confidence boundaries
## 0.61 0.66 0.7 
## 
##  Reliability if an item is dropped:
##                raw_alpha std.alpha G6(smc) average_r  S/N alpha se var.r med.r
## CC.Familiar_WE      0.56      0.49    0.24      0.49 0.97       NA     0  0.49
## CC.Und_WE           0.43      0.49    0.24      0.49 0.97       NA     0  0.49
## 
##  Item statistics 
##                  n raw.r std.r r.cor r.drop mean sd
## CC.Familiar_WE 263  0.88  0.86  0.61   0.49   82 21
## CC.Und_WE      263  0.84  0.86  0.61   0.49   83 18

Scale Correlations

Naturalness Scales by Technology

#Naturalness Scales by Technology (One scale per technology)
CC$corNat <- data.frame(CC$Nat_Scale_AFSCS, CC$Nat_Scale_BIO, CC$Nat_Scale_BECCS, CC$Nat_Scale_DACCS, CC$Nat_Scale_EW, CC$Nat_Scale_OF, CC$Nat_Scale_BF, CC$Nat_Scale_NE, CC$Nat_Scale_SE, CC$Nat_Scale_WE)

mydata.cor1 = cor(CC$corNat, use = "pairwise.complete.obs")
head(round(mydata.cor1,2))
##                 CC.Nat_1_AFSCS CC.Nat_2R_AFSCS CC.Nat_3R_AFSCS CC.Nat_4R_AFSCS
## CC.Nat_1_AFSCS            1.00            0.46            0.10            0.60
## CC.Nat_2R_AFSCS           0.46            1.00            0.23            0.54
## CC.Nat_3R_AFSCS           0.10            0.23            1.00            0.23
## CC.Nat_4R_AFSCS           0.60            0.54            0.23            1.00
## CC.Nat_1_BIO             -0.02           -0.07           -0.02            0.02
## CC.Nat_2R_BIO             0.10            0.30           -0.10            0.15
##                 CC.Nat_1_BIO CC.Nat_2R_BIO CC.Nat_3R_BIO CC.Nat_4R_BIO
## CC.Nat_1_AFSCS         -0.02          0.10         -0.36         -0.15
## CC.Nat_2R_AFSCS        -0.07          0.30         -0.24         -0.01
## CC.Nat_3R_AFSCS        -0.02         -0.10          0.35          0.11
## CC.Nat_4R_AFSCS         0.02          0.15         -0.09          0.01
## CC.Nat_1_BIO            1.00          0.38          0.06          0.63
## CC.Nat_2R_BIO           0.38          1.00          0.15          0.38
##                 CC.Nat_1_BECCS CC.Nat_2R_BECCS CC.Nat_3R_BECCS CC.Nat_4R_BECCS
## CC.Nat_1_AFSCS            0.19            0.01           -0.07            0.21
## CC.Nat_2R_AFSCS          -0.03            0.17            0.07            0.00
## CC.Nat_3R_AFSCS          -0.31           -0.08            0.17           -0.30
## CC.Nat_4R_AFSCS           0.06            0.06            0.07            0.12
## CC.Nat_1_BIO              0.19            0.22           -0.05            0.26
## CC.Nat_2R_BIO             0.01            0.30           -0.06            0.17
##                 CC.Nat_1_DACCS CC.Nat_2R_DACCS CC.Nat_3R_DACCS CC.Nat_4R_DACCS
## CC.Nat_1_AFSCS            0.09            0.07           -0.02            0.16
## CC.Nat_2R_AFSCS           0.16            0.38            0.04            0.31
## CC.Nat_3R_AFSCS           0.14            0.22            0.05            0.22
## CC.Nat_4R_AFSCS          -0.02            0.03           -0.06            0.12
## CC.Nat_1_BIO              0.41            0.05           -0.14            0.31
## CC.Nat_2R_BIO             0.04            0.13           -0.07            0.06
##                 CC.Nat_1_EW CC.Nat_2R_EW CC.Nat_3R_EW CC.Nat_4R_EW CC.Nat_1_OF
## CC.Nat_1_AFSCS         0.10        -0.04        -0.24         0.02        0.31
## CC.Nat_2R_AFSCS        0.01         0.26         0.13         0.05        0.08
## CC.Nat_3R_AFSCS       -0.04         0.20         0.41         0.04       -0.06
## CC.Nat_4R_AFSCS       -0.03         0.00        -0.10         0.01        0.18
## CC.Nat_1_BIO           0.27         0.21         0.10         0.37        0.51
## CC.Nat_2R_BIO          0.26         0.36         0.14         0.32        0.23
##                 CC.Nat_2R_OF CC.Nat_3R_OF CC.Nat_4R_OF CC.Nat_1_BF CC.Nat_2R_BF
## CC.Nat_1_AFSCS          0.09         0.23         0.23        0.03        -0.11
## CC.Nat_2R_AFSCS         0.14         0.13         0.10       -0.13         0.15
## CC.Nat_3R_AFSCS         0.14         0.42        -0.09       -0.17        -0.16
## CC.Nat_4R_AFSCS         0.18         0.07         0.21       -0.03         0.14
## CC.Nat_1_BIO            0.31        -0.24         0.40        0.35         0.07
## CC.Nat_2R_BIO           0.52         0.05         0.31        0.12         0.43
##                 CC.Nat_3R_BF CC.Nat_4R_BF CC.Nat_1_NE CC.Nat_2R_NE CC.Nat_3R_NE
## CC.Nat_1_AFSCS         -0.20        -0.02        0.09         0.01         0.01
## CC.Nat_2R_AFSCS        -0.23         0.08        0.05         0.25         0.01
## CC.Nat_3R_AFSCS         0.18        -0.11       -0.24         0.05         0.02
## CC.Nat_4R_AFSCS        -0.23         0.10       -0.21        -0.02        -0.08
## CC.Nat_1_BIO           -0.17         0.30        0.21         0.02         0.09
## CC.Nat_2R_BIO           0.26         0.20        0.15         0.15         0.22
##                 CC.Nat_4R_NE CC.Nat_1_SE CC.Nat_2R_SE CC.Nat_3R_SE CC.Nat_4R_SE
## CC.Nat_1_AFSCS         -0.04        0.08         0.12        -0.18         0.04
## CC.Nat_2R_AFSCS         0.04       -0.10         0.35        -0.07         0.02
## CC.Nat_3R_AFSCS        -0.11       -0.37         0.13         0.22        -0.20
## CC.Nat_4R_AFSCS         0.02       -0.09         0.21        -0.06        -0.03
## CC.Nat_1_BIO            0.15        0.24         0.08         0.04        -0.10
## CC.Nat_2R_BIO           0.13        0.03         0.19        -0.03         0.05
##                 CC.Nat_1_WE CC.Nat_2R_WE CC.Nat_3R_WE CC.Nat_4R_WE
## CC.Nat_1_AFSCS         0.17         0.30        -0.16         0.13
## CC.Nat_2R_AFSCS       -0.04         0.22         0.09        -0.05
## CC.Nat_3R_AFSCS       -0.25        -0.08         0.46        -0.29
## CC.Nat_4R_AFSCS        0.13         0.32        -0.17         0.16
## CC.Nat_1_BIO           0.20         0.07        -0.30         0.15
## CC.Nat_2R_BIO         -0.09         0.06        -0.06        -0.05
library("Hmisc")
mydata.rcorr1 = rcorr(as.matrix(mydata.cor1))
mydata.rcorr1
##                 CC.Nat_1_AFSCS CC.Nat_2R_AFSCS CC.Nat_3R_AFSCS CC.Nat_4R_AFSCS
## CC.Nat_1_AFSCS            1.00            0.60           -0.12            0.80
## CC.Nat_2R_AFSCS           0.60            1.00            0.29            0.70
## CC.Nat_3R_AFSCS          -0.12            0.29            1.00            0.10
## CC.Nat_4R_AFSCS           0.80            0.70            0.10            1.00
## CC.Nat_1_BIO             -0.04           -0.21           -0.36           -0.05
## CC.Nat_2R_BIO            -0.04            0.18           -0.16            0.08
## CC.Nat_3R_BIO            -0.65           -0.43            0.43           -0.50
## CC.Nat_4R_BIO            -0.28           -0.23           -0.09           -0.17
## CC.Nat_1_BECCS            0.13           -0.23           -0.56           -0.06
## CC.Nat_2R_BECCS          -0.09            0.20           -0.17           -0.02
## CC.Nat_3R_BECCS          -0.32           -0.07            0.50           -0.23
## CC.Nat_4R_BECCS           0.16           -0.20           -0.57            0.05
## CC.Nat_1_DACCS            0.03           -0.07           -0.08           -0.22
## CC.Nat_2R_DACCS           0.04            0.39            0.23           -0.01
## CC.Nat_3R_DACCS          -0.35           -0.21            0.34           -0.32
## CC.Nat_4R_DACCS          -0.01            0.08            0.03           -0.13
## CC.Nat_1_EW              -0.02           -0.13           -0.10           -0.19
## CC.Nat_2R_EW             -0.34            0.09            0.27           -0.23
## CC.Nat_3R_EW             -0.56           -0.18            0.61           -0.36
## CC.Nat_4R_EW             -0.20           -0.23           -0.09           -0.26
## CC.Nat_1_OF               0.23           -0.08           -0.24            0.02
## CC.Nat_2R_OF             -0.06            0.05            0.12           -0.05
## CC.Nat_3R_OF             -0.14            0.07            0.69           -0.08
## CC.Nat_4R_OF              0.20           -0.05           -0.21            0.07
## CC.Nat_1_BF              -0.07           -0.28           -0.63           -0.18
## CC.Nat_2R_BF             -0.27            0.05           -0.38           -0.07
## CC.Nat_3R_BF             -0.58           -0.37            0.37           -0.59
## CC.Nat_4R_BF             -0.23           -0.18           -0.41           -0.14
## CC.Nat_1_NE              -0.12           -0.27           -0.60           -0.42
## CC.Nat_2R_NE             -0.15            0.08           -0.15           -0.22
## CC.Nat_3R_NE             -0.39           -0.26            0.06           -0.38
## CC.Nat_4R_NE             -0.21           -0.25           -0.50           -0.33
## CC.Nat_1_SE               0.03           -0.28           -0.70           -0.25
## CC.Nat_2R_SE              0.11            0.43            0.07            0.19
## CC.Nat_3R_SE             -0.62           -0.45            0.31           -0.50
## CC.Nat_4R_SE              0.00           -0.16           -0.54           -0.19
## CC.Nat_1_WE               0.31           -0.21           -0.62            0.19
## CC.Nat_2R_WE              0.41            0.28           -0.27            0.45
## CC.Nat_3R_WE             -0.41           -0.06            0.58           -0.39
## CC.Nat_4R_WE              0.26           -0.21           -0.63            0.19
##                 CC.Nat_1_BIO CC.Nat_2R_BIO CC.Nat_3R_BIO CC.Nat_4R_BIO
## CC.Nat_1_AFSCS         -0.04         -0.04         -0.65         -0.28
## CC.Nat_2R_AFSCS        -0.21          0.18         -0.43         -0.23
## CC.Nat_3R_AFSCS        -0.36         -0.16          0.43         -0.09
## CC.Nat_4R_AFSCS        -0.05          0.08         -0.50         -0.17
## CC.Nat_1_BIO            1.00          0.45         -0.14          0.77
## CC.Nat_2R_BIO           0.45          1.00         -0.01          0.47
## CC.Nat_3R_BIO          -0.14         -0.01          1.00          0.22
## CC.Nat_4R_BIO           0.77          0.47          0.22          1.00
## CC.Nat_1_BECCS          0.46          0.04         -0.07          0.35
## CC.Nat_2R_BECCS         0.23          0.37         -0.14          0.26
## CC.Nat_3R_BECCS        -0.49         -0.19          0.60         -0.24
## CC.Nat_4R_BECCS         0.54          0.13         -0.14          0.54
## CC.Nat_1_DACCS          0.36         -0.05          0.03          0.28
## CC.Nat_2R_DACCS         0.01          0.21         -0.05         -0.07
## CC.Nat_3R_DACCS        -0.47         -0.23          0.56         -0.33
## CC.Nat_4R_DACCS         0.26          0.03          0.13          0.27
## CC.Nat_1_EW             0.52          0.34          0.13          0.48
## CC.Nat_2R_EW            0.23          0.51          0.33          0.46
## CC.Nat_3R_EW           -0.27          0.05          0.75          0.10
## CC.Nat_4R_EW            0.52          0.39          0.29          0.57
## CC.Nat_1_OF             0.58          0.33         -0.20          0.45
## CC.Nat_2R_OF            0.27          0.52          0.17          0.34
## CC.Nat_3R_OF           -0.54         -0.18          0.56         -0.25
## CC.Nat_4R_OF            0.50          0.39         -0.13          0.52
## CC.Nat_1_BF             0.54          0.13         -0.32          0.28
## CC.Nat_2R_BF            0.04          0.47         -0.11          0.02
## CC.Nat_3R_BF           -0.43         -0.13          0.67         -0.23
## CC.Nat_4R_BF            0.45          0.28         -0.14          0.36
## CC.Nat_1_NE             0.25          0.02         -0.13          0.09
## CC.Nat_2R_NE           -0.23         -0.01         -0.02         -0.17
## CC.Nat_3R_NE           -0.17         -0.03          0.37         -0.14
## CC.Nat_4R_NE            0.19          0.01          0.02          0.16
## CC.Nat_1_SE             0.31          0.03         -0.45          0.02
## CC.Nat_2R_SE           -0.23          0.03         -0.37         -0.20
## CC.Nat_3R_SE           -0.29         -0.32          0.57         -0.06
## CC.Nat_4R_SE           -0.10         -0.12         -0.33         -0.17
## CC.Nat_1_WE             0.18         -0.24         -0.53         -0.05
## CC.Nat_2R_WE           -0.06         -0.10         -0.52         -0.15
## CC.Nat_3R_WE           -0.41         -0.21          0.27         -0.11
## CC.Nat_4R_WE            0.12         -0.24         -0.52         -0.03
##                 CC.Nat_1_BECCS CC.Nat_2R_BECCS CC.Nat_3R_BECCS CC.Nat_4R_BECCS
## CC.Nat_1_AFSCS            0.13           -0.09           -0.32            0.16
## CC.Nat_2R_AFSCS          -0.23            0.20           -0.07           -0.20
## CC.Nat_3R_AFSCS          -0.56           -0.17            0.50           -0.57
## CC.Nat_4R_AFSCS          -0.06           -0.02           -0.23            0.05
## CC.Nat_1_BIO              0.46            0.23           -0.49            0.54
## CC.Nat_2R_BIO             0.04            0.37           -0.19            0.13
## CC.Nat_3R_BIO            -0.07           -0.14            0.60           -0.14
## CC.Nat_4R_BIO             0.35            0.26           -0.24            0.54
## CC.Nat_1_BECCS            1.00            0.19           -0.34            0.85
## CC.Nat_2R_BECCS           0.19            1.00           -0.06            0.23
## CC.Nat_3R_BECCS          -0.34           -0.06            1.00           -0.39
## CC.Nat_4R_BECCS           0.85            0.23           -0.39            1.00
## CC.Nat_1_DACCS            0.45           -0.02           -0.30            0.39
## CC.Nat_2R_DACCS          -0.10            0.51            0.03           -0.18
## CC.Nat_3R_DACCS          -0.30           -0.28            0.72           -0.36
## CC.Nat_4R_DACCS           0.32           -0.06           -0.19            0.26
## CC.Nat_1_EW               0.34            0.09           -0.36            0.30
## CC.Nat_2R_EW             -0.01            0.52            0.13            0.07
## CC.Nat_3R_EW             -0.35           -0.09            0.78           -0.37
## CC.Nat_4R_EW              0.32            0.20           -0.18            0.31
## CC.Nat_1_OF               0.44            0.20           -0.31            0.45
## CC.Nat_2R_OF              0.14            0.11            0.02            0.18
## CC.Nat_3R_OF             -0.40           -0.22            0.76           -0.43
## CC.Nat_4R_OF              0.42            0.23           -0.23            0.53
## CC.Nat_1_BF               0.40            0.28           -0.67            0.30
## CC.Nat_2R_BF             -0.05            0.35           -0.30           -0.08
## CC.Nat_3R_BF             -0.42           -0.25            0.69           -0.43
## CC.Nat_4R_BF              0.09            0.17           -0.60            0.07
## CC.Nat_1_NE               0.58           -0.13           -0.30            0.34
## CC.Nat_2R_NE              0.12            0.25            0.00           -0.12
## CC.Nat_3R_NE             -0.26           -0.17            0.67           -0.25
## CC.Nat_4R_NE              0.57           -0.11           -0.30            0.38
## CC.Nat_1_SE               0.26            0.02           -0.66            0.29
## CC.Nat_2R_SE             -0.37            0.21            0.02           -0.27
## CC.Nat_3R_SE             -0.33           -0.19            0.52           -0.27
## CC.Nat_4R_SE              0.05           -0.05           -0.43            0.22
## CC.Nat_1_WE               0.34           -0.22           -0.55            0.44
## CC.Nat_2R_WE             -0.18           -0.03           -0.39           -0.01
## CC.Nat_3R_WE             -0.38           -0.12            0.40           -0.42
## CC.Nat_4R_WE              0.28           -0.11           -0.44            0.43
##                 CC.Nat_1_DACCS CC.Nat_2R_DACCS CC.Nat_3R_DACCS CC.Nat_4R_DACCS
## CC.Nat_1_AFSCS            0.03            0.04           -0.35           -0.01
## CC.Nat_2R_AFSCS          -0.07            0.39           -0.21            0.08
## CC.Nat_3R_AFSCS          -0.08            0.23            0.34            0.03
## CC.Nat_4R_AFSCS          -0.22           -0.01           -0.32           -0.13
## CC.Nat_1_BIO              0.36            0.01           -0.47            0.26
## CC.Nat_2R_BIO            -0.05            0.21           -0.23            0.03
## CC.Nat_3R_BIO             0.03           -0.05            0.56            0.13
## CC.Nat_4R_BIO             0.28           -0.07           -0.33            0.27
## CC.Nat_1_BECCS            0.45           -0.10           -0.30            0.32
## CC.Nat_2R_BECCS          -0.02            0.51           -0.28           -0.06
## CC.Nat_3R_BECCS          -0.30            0.03            0.72           -0.19
## CC.Nat_4R_BECCS           0.39           -0.18           -0.36            0.26
## CC.Nat_1_DACCS            1.00            0.36           -0.06            0.79
## CC.Nat_2R_DACCS           0.36            1.00            0.10            0.41
## CC.Nat_3R_DACCS          -0.06            0.10            1.00            0.07
## CC.Nat_4R_DACCS           0.79            0.41            0.07            1.00
## CC.Nat_1_EW               0.51            0.24           -0.33            0.39
## CC.Nat_2R_EW              0.28            0.59            0.03            0.41
## CC.Nat_3R_EW             -0.34           -0.08            0.56           -0.23
## CC.Nat_4R_EW              0.33            0.20           -0.24            0.35
## CC.Nat_1_OF               0.30            0.17           -0.32            0.17
## CC.Nat_2R_OF              0.25            0.25            0.15            0.24
## CC.Nat_3R_OF             -0.20            0.07            0.59           -0.18
## CC.Nat_4R_OF              0.10           -0.02           -0.42           -0.01
## CC.Nat_1_BF               0.14            0.04           -0.42            0.23
## CC.Nat_2R_BF             -0.13            0.18           -0.09            0.14
## CC.Nat_3R_BF              0.00            0.10            0.84            0.02
## CC.Nat_4R_BF             -0.06           -0.02           -0.36            0.20
## CC.Nat_1_NE               0.29           -0.17           -0.26            0.19
## CC.Nat_2R_NE             -0.18            0.02           -0.15           -0.15
## CC.Nat_3R_NE             -0.28           -0.11            0.64            0.02
## CC.Nat_4R_NE              0.22           -0.28           -0.26            0.28
## CC.Nat_1_SE               0.36            0.01           -0.33            0.24
## CC.Nat_2R_SE             -0.26            0.04           -0.13           -0.14
## CC.Nat_3R_SE             -0.27           -0.15            0.48           -0.23
## CC.Nat_4R_SE              0.12           -0.06           -0.19            0.18
## CC.Nat_1_WE               0.10           -0.49           -0.31           -0.11
## CC.Nat_2R_WE             -0.07           -0.16           -0.28           -0.09
## CC.Nat_3R_WE             -0.19           -0.05            0.25           -0.14
## CC.Nat_4R_WE             -0.03           -0.49           -0.34           -0.17
##                 CC.Nat_1_EW CC.Nat_2R_EW CC.Nat_3R_EW CC.Nat_4R_EW CC.Nat_1_OF
## CC.Nat_1_AFSCS        -0.02        -0.34        -0.56        -0.20        0.23
## CC.Nat_2R_AFSCS       -0.13         0.09        -0.18        -0.23       -0.08
## CC.Nat_3R_AFSCS       -0.10         0.27         0.61        -0.09       -0.24
## CC.Nat_4R_AFSCS       -0.19        -0.23        -0.36        -0.26        0.02
## CC.Nat_1_BIO           0.52         0.23        -0.27         0.52        0.58
## CC.Nat_2R_BIO          0.34         0.51         0.05         0.39        0.33
## CC.Nat_3R_BIO          0.13         0.33         0.75         0.29       -0.20
## CC.Nat_4R_BIO          0.48         0.46         0.10         0.57        0.45
## CC.Nat_1_BECCS         0.34        -0.01        -0.35         0.32        0.44
## CC.Nat_2R_BECCS        0.09         0.52        -0.09         0.20        0.20
## CC.Nat_3R_BECCS       -0.36         0.13         0.78        -0.18       -0.31
## CC.Nat_4R_BECCS        0.30         0.07        -0.37         0.31        0.45
## CC.Nat_1_DACCS         0.51         0.28        -0.34         0.33        0.30
## CC.Nat_2R_DACCS        0.24         0.59        -0.08         0.20        0.17
## CC.Nat_3R_DACCS       -0.33         0.03         0.56        -0.24       -0.32
## CC.Nat_4R_DACCS        0.39         0.41        -0.23         0.35        0.17
## CC.Nat_1_EW            1.00         0.49        -0.14         0.88        0.67
## CC.Nat_2R_EW           0.49         1.00         0.30         0.60        0.31
## CC.Nat_3R_EW          -0.14         0.30         1.00         0.06       -0.20
## CC.Nat_4R_EW           0.88         0.60         0.06         1.00        0.55
## CC.Nat_1_OF            0.67         0.31        -0.20         0.55        1.00
## CC.Nat_2R_OF           0.30         0.49         0.22         0.25        0.49
## CC.Nat_3R_OF          -0.10         0.14         0.72        -0.02       -0.24
## CC.Nat_4R_OF           0.61         0.32        -0.04         0.59        0.86
## CC.Nat_1_BF            0.43         0.07        -0.53         0.43        0.48
## CC.Nat_2R_BF          -0.09         0.32        -0.21         0.01       -0.16
## CC.Nat_3R_BF          -0.21         0.20         0.67        -0.08       -0.42
## CC.Nat_4R_BF           0.30         0.18        -0.27         0.39        0.20
## CC.Nat_1_NE            0.09        -0.21        -0.23         0.08        0.07
## CC.Nat_2R_NE          -0.04        -0.08        -0.03         0.08       -0.31
## CC.Nat_3R_NE          -0.33         0.11         0.53        -0.10       -0.26
## CC.Nat_4R_NE           0.02        -0.13        -0.15         0.12       -0.06
## CC.Nat_1_SE            0.33        -0.12        -0.65         0.11        0.25
## CC.Nat_2R_SE          -0.41        -0.10         0.01        -0.37       -0.41
## CC.Nat_3R_SE          -0.13         0.05         0.63         0.02       -0.36
## CC.Nat_4R_SE           0.09        -0.16        -0.48        -0.03       -0.06
## CC.Nat_1_WE           -0.22        -0.56        -0.60        -0.26       -0.01
## CC.Nat_2R_WE          -0.39        -0.39        -0.52        -0.35       -0.44
## CC.Nat_3R_WE          -0.02         0.27         0.62        -0.01       -0.04
## CC.Nat_4R_WE          -0.30        -0.52        -0.57        -0.23       -0.09
##                 CC.Nat_2R_OF CC.Nat_3R_OF CC.Nat_4R_OF CC.Nat_1_BF CC.Nat_2R_BF
## CC.Nat_1_AFSCS         -0.06        -0.14         0.20       -0.07        -0.27
## CC.Nat_2R_AFSCS         0.05         0.07        -0.05       -0.28         0.05
## CC.Nat_3R_AFSCS         0.12         0.69        -0.21       -0.63        -0.38
## CC.Nat_4R_AFSCS        -0.05        -0.08         0.07       -0.18        -0.07
## CC.Nat_1_BIO            0.27        -0.54         0.50        0.54         0.04
## CC.Nat_2R_BIO           0.52        -0.18         0.39        0.13         0.47
## CC.Nat_3R_BIO           0.17         0.56        -0.13       -0.32        -0.11
## CC.Nat_4R_BIO           0.34        -0.25         0.52        0.28         0.02
## CC.Nat_1_BECCS          0.14        -0.40         0.42        0.40        -0.05
## CC.Nat_2R_BECCS         0.11        -0.22         0.23        0.28         0.35
## CC.Nat_3R_BECCS         0.02         0.76        -0.23       -0.67        -0.30
## CC.Nat_4R_BECCS         0.18        -0.43         0.53        0.30        -0.08
## CC.Nat_1_DACCS          0.25        -0.20         0.10        0.14        -0.13
## CC.Nat_2R_DACCS         0.25         0.07        -0.02        0.04         0.18
## CC.Nat_3R_DACCS         0.15         0.59        -0.42       -0.42        -0.09
## CC.Nat_4R_DACCS         0.24        -0.18        -0.01        0.23         0.14
## CC.Nat_1_EW             0.30        -0.10         0.61        0.43        -0.09
## CC.Nat_2R_EW            0.49         0.14         0.32        0.07         0.32
## CC.Nat_3R_EW            0.22         0.72        -0.04       -0.53        -0.21
## CC.Nat_4R_EW            0.25        -0.02         0.59        0.43         0.01
## CC.Nat_1_OF             0.49        -0.24         0.86        0.48        -0.16
## CC.Nat_2R_OF            1.00         0.14         0.51       -0.21         0.03
## CC.Nat_3R_OF            0.14         1.00        -0.11       -0.77        -0.39
## CC.Nat_4R_OF            0.51        -0.11         1.00        0.22        -0.25
## CC.Nat_1_BF            -0.21        -0.77         0.22        1.00         0.42
## CC.Nat_2R_BF            0.03        -0.39        -0.25        0.42         1.00
## CC.Nat_3R_BF            0.16         0.66        -0.42       -0.42        -0.02
## CC.Nat_4R_BF           -0.15        -0.62         0.08        0.82         0.58
## CC.Nat_1_NE            -0.08        -0.47         0.05        0.58         0.09
## CC.Nat_2R_NE           -0.30         0.02        -0.22        0.03         0.40
## CC.Nat_3R_NE            0.14         0.29        -0.22       -0.31         0.16
## CC.Nat_4R_NE           -0.04        -0.48        -0.01        0.51         0.33
## CC.Nat_1_SE             0.05        -0.67         0.18        0.80         0.22
## CC.Nat_2R_SE           -0.29        -0.01        -0.28       -0.32         0.35
## CC.Nat_3R_SE           -0.04         0.54        -0.23       -0.44        -0.14
## CC.Nat_4R_SE           -0.14        -0.43         0.04        0.49         0.27
## CC.Nat_1_WE            -0.19        -0.48        -0.02        0.40        -0.07
## CC.Nat_2R_WE           -0.39        -0.40        -0.38       -0.02         0.24
## CC.Nat_3R_WE            0.20         0.52         0.05       -0.43        -0.22
## CC.Nat_4R_WE           -0.33        -0.44        -0.03        0.38         0.04
##                 CC.Nat_3R_BF CC.Nat_4R_BF CC.Nat_1_NE CC.Nat_2R_NE CC.Nat_3R_NE
## CC.Nat_1_AFSCS         -0.58        -0.23       -0.12        -0.15        -0.39
## CC.Nat_2R_AFSCS        -0.37        -0.18       -0.27         0.08        -0.26
## CC.Nat_3R_AFSCS         0.37        -0.41       -0.60        -0.15         0.06
## CC.Nat_4R_AFSCS        -0.59        -0.14       -0.42        -0.22        -0.38
## CC.Nat_1_BIO           -0.43         0.45        0.25        -0.23        -0.17
## CC.Nat_2R_BIO          -0.13         0.28        0.02        -0.01        -0.03
## CC.Nat_3R_BIO           0.67        -0.14       -0.13        -0.02         0.37
## CC.Nat_4R_BIO          -0.23         0.36        0.09        -0.17        -0.14
## CC.Nat_1_BECCS         -0.42         0.09        0.58         0.12        -0.26
## CC.Nat_2R_BECCS        -0.25         0.17       -0.13         0.25        -0.17
## CC.Nat_3R_BECCS         0.69        -0.60       -0.30         0.00         0.67
## CC.Nat_4R_BECCS        -0.43         0.07        0.34        -0.12        -0.25
## CC.Nat_1_DACCS          0.00        -0.06        0.29        -0.18        -0.28
## CC.Nat_2R_DACCS         0.10        -0.02       -0.17         0.02        -0.11
## CC.Nat_3R_DACCS         0.84        -0.36       -0.26        -0.15         0.64
## CC.Nat_4R_DACCS         0.02         0.20        0.19        -0.15         0.02
## CC.Nat_1_EW            -0.21         0.30        0.09        -0.04        -0.33
## CC.Nat_2R_EW            0.20         0.18       -0.21        -0.08         0.11
## CC.Nat_3R_EW            0.67        -0.27       -0.23        -0.03         0.53
## CC.Nat_4R_EW           -0.08         0.39        0.08         0.08        -0.10
## CC.Nat_1_OF            -0.42         0.20        0.07        -0.31        -0.26
## CC.Nat_2R_OF            0.16        -0.15       -0.08        -0.30         0.14
## CC.Nat_3R_OF            0.66        -0.62       -0.47         0.02         0.29
## CC.Nat_4R_OF           -0.42         0.08        0.05        -0.22        -0.22
## CC.Nat_1_BF            -0.42         0.82        0.58         0.03        -0.31
## CC.Nat_2R_BF           -0.02         0.58        0.09         0.40         0.16
## CC.Nat_3R_BF            1.00        -0.29       -0.15        -0.03         0.83
## CC.Nat_4R_BF           -0.29         1.00        0.32         0.09        -0.13
## CC.Nat_1_NE            -0.15         0.32        1.00         0.28        -0.05
## CC.Nat_2R_NE           -0.03         0.09        0.28         1.00        -0.16
## CC.Nat_3R_NE            0.83        -0.13       -0.05        -0.16         1.00
## CC.Nat_4R_NE           -0.16         0.51        0.87         0.35        -0.03
## CC.Nat_1_SE            -0.36         0.55        0.70        -0.10        -0.31
## CC.Nat_2R_SE           -0.13        -0.08       -0.35         0.35        -0.05
## CC.Nat_3R_SE            0.79        -0.19       -0.29         0.10         0.64
## CC.Nat_4R_SE           -0.22         0.34        0.48         0.00        -0.18
## CC.Nat_1_WE            -0.59         0.11        0.49        -0.18        -0.47
## CC.Nat_2R_WE           -0.49         0.13       -0.13         0.01        -0.41
## CC.Nat_3R_WE            0.58        -0.27       -0.31         0.01         0.43
## CC.Nat_4R_WE           -0.60         0.15        0.39         0.00        -0.41
##                 CC.Nat_4R_NE CC.Nat_1_SE CC.Nat_2R_SE CC.Nat_3R_SE CC.Nat_4R_SE
## CC.Nat_1_AFSCS         -0.21        0.03         0.11        -0.62         0.00
## CC.Nat_2R_AFSCS        -0.25       -0.28         0.43        -0.45        -0.16
## CC.Nat_3R_AFSCS        -0.50       -0.70         0.07         0.31        -0.54
## CC.Nat_4R_AFSCS        -0.33       -0.25         0.19        -0.50        -0.19
## CC.Nat_1_BIO            0.19        0.31        -0.23        -0.29        -0.10
## CC.Nat_2R_BIO           0.01        0.03         0.03        -0.32        -0.12
## CC.Nat_3R_BIO           0.02       -0.45        -0.37         0.57        -0.33
## CC.Nat_4R_BIO           0.16        0.02        -0.20        -0.06        -0.17
## CC.Nat_1_BECCS          0.57        0.26        -0.37        -0.33         0.05
## CC.Nat_2R_BECCS        -0.11        0.02         0.21        -0.19        -0.05
## CC.Nat_3R_BECCS        -0.30       -0.66         0.02         0.52        -0.43
## CC.Nat_4R_BECCS         0.38        0.29        -0.27        -0.27         0.22
## CC.Nat_1_DACCS          0.22        0.36        -0.26        -0.27         0.12
## CC.Nat_2R_DACCS        -0.28        0.01         0.04        -0.15        -0.06
## CC.Nat_3R_DACCS        -0.26       -0.33        -0.13         0.48        -0.19
## CC.Nat_4R_DACCS         0.28        0.24        -0.14        -0.23         0.18
## CC.Nat_1_EW             0.02        0.33        -0.41        -0.13         0.09
## CC.Nat_2R_EW           -0.13       -0.12        -0.10         0.05        -0.16
## CC.Nat_3R_EW           -0.15       -0.65         0.01         0.63        -0.48
## CC.Nat_4R_EW            0.12        0.11        -0.37         0.02        -0.03
## CC.Nat_1_OF            -0.06        0.25        -0.41        -0.36        -0.06
## CC.Nat_2R_OF           -0.04        0.05        -0.29        -0.04        -0.14
## CC.Nat_3R_OF           -0.48       -0.67        -0.01         0.54        -0.43
## CC.Nat_4R_OF           -0.01        0.18        -0.28        -0.23         0.04
## CC.Nat_1_BF             0.51        0.80        -0.32        -0.44         0.49
## CC.Nat_2R_BF            0.33        0.22         0.35        -0.14         0.27
## CC.Nat_3R_BF           -0.16       -0.36        -0.13         0.79        -0.22
## CC.Nat_4R_BF            0.51        0.55        -0.08        -0.19         0.34
## CC.Nat_1_NE             0.87        0.70        -0.35        -0.29         0.48
## CC.Nat_2R_NE            0.35       -0.10         0.35         0.10         0.00
## CC.Nat_3R_NE           -0.03       -0.31        -0.05         0.64        -0.18
## CC.Nat_4R_NE            1.00        0.47        -0.18        -0.13         0.49
## CC.Nat_1_SE             0.47        1.00         0.09        -0.19         0.79
## CC.Nat_2R_SE           -0.18        0.09         1.00        -0.03         0.23
## CC.Nat_3R_SE           -0.13       -0.19        -0.03         1.00         0.06
## CC.Nat_4R_SE            0.49        0.79         0.23         0.06         1.00
## CC.Nat_1_WE             0.48        0.58        -0.08        -0.53         0.45
## CC.Nat_2R_WE            0.03        0.09         0.60        -0.58         0.23
## CC.Nat_3R_WE           -0.28       -0.46         0.05         0.64        -0.26
## CC.Nat_4R_WE            0.44        0.44         0.08        -0.51         0.48
##                 CC.Nat_1_WE CC.Nat_2R_WE CC.Nat_3R_WE CC.Nat_4R_WE
## CC.Nat_1_AFSCS         0.31         0.41        -0.41         0.26
## CC.Nat_2R_AFSCS       -0.21         0.28        -0.06        -0.21
## CC.Nat_3R_AFSCS       -0.62        -0.27         0.58        -0.63
## CC.Nat_4R_AFSCS        0.19         0.45        -0.39         0.19
## CC.Nat_1_BIO           0.18        -0.06        -0.41         0.12
## CC.Nat_2R_BIO         -0.24        -0.10        -0.21        -0.24
## CC.Nat_3R_BIO         -0.53        -0.52         0.27        -0.52
## CC.Nat_4R_BIO         -0.05        -0.15        -0.11        -0.03
## CC.Nat_1_BECCS         0.34        -0.18        -0.38         0.28
## CC.Nat_2R_BECCS       -0.22        -0.03        -0.12        -0.11
## CC.Nat_3R_BECCS       -0.55        -0.39         0.40        -0.44
## CC.Nat_4R_BECCS        0.44        -0.01        -0.42         0.43
## CC.Nat_1_DACCS         0.10        -0.07        -0.19        -0.03
## CC.Nat_2R_DACCS       -0.49        -0.16        -0.05        -0.49
## CC.Nat_3R_DACCS       -0.31        -0.28         0.25        -0.34
## CC.Nat_4R_DACCS       -0.11        -0.09        -0.14        -0.17
## CC.Nat_1_EW           -0.22        -0.39        -0.02        -0.30
## CC.Nat_2R_EW          -0.56        -0.39         0.27        -0.52
## CC.Nat_3R_EW          -0.60        -0.52         0.62        -0.57
## CC.Nat_4R_EW          -0.26        -0.35        -0.01        -0.23
## CC.Nat_1_OF           -0.01        -0.44        -0.04        -0.09
## CC.Nat_2R_OF          -0.19        -0.39         0.20        -0.33
## CC.Nat_3R_OF          -0.48        -0.40         0.52        -0.44
## CC.Nat_4R_OF          -0.02        -0.38         0.05        -0.03
## CC.Nat_1_BF            0.40        -0.02        -0.43         0.38
## CC.Nat_2R_BF          -0.07         0.24        -0.22         0.04
## CC.Nat_3R_BF          -0.59        -0.49         0.58        -0.60
## CC.Nat_4R_BF           0.11         0.13        -0.27         0.15
## CC.Nat_1_NE            0.49        -0.13        -0.31         0.39
## CC.Nat_2R_NE          -0.18         0.01         0.01         0.00
## CC.Nat_3R_NE          -0.47        -0.41         0.43        -0.41
## CC.Nat_4R_NE           0.48         0.03        -0.28         0.44
## CC.Nat_1_SE            0.58         0.09        -0.46         0.44
## CC.Nat_2R_SE          -0.08         0.60         0.05         0.08
## CC.Nat_3R_SE          -0.53        -0.58         0.64        -0.51
## CC.Nat_4R_SE           0.45         0.23        -0.26         0.48
## CC.Nat_1_WE            1.00         0.53        -0.38         0.93
## CC.Nat_2R_WE           0.53         1.00        -0.40         0.59
## CC.Nat_3R_WE          -0.38        -0.40         1.00        -0.35
## CC.Nat_4R_WE           0.93         0.59        -0.35         1.00
## 
## n
##                 CC.Nat_1_AFSCS CC.Nat_2R_AFSCS CC.Nat_3R_AFSCS CC.Nat_4R_AFSCS
## CC.Nat_1_AFSCS              40              40              40              40
## CC.Nat_2R_AFSCS             40              40              40              40
## CC.Nat_3R_AFSCS             40              40              40              40
## CC.Nat_4R_AFSCS             40              40              40              40
## CC.Nat_1_BIO                40              40              40              40
## CC.Nat_2R_BIO               40              40              40              40
## CC.Nat_3R_BIO               40              40              40              40
## CC.Nat_4R_BIO               40              40              40              40
## CC.Nat_1_BECCS              40              40              40              40
## CC.Nat_2R_BECCS             40              40              40              40
## CC.Nat_3R_BECCS             40              40              40              40
## CC.Nat_4R_BECCS             40              40              40              40
## CC.Nat_1_DACCS              40              40              40              40
## CC.Nat_2R_DACCS             40              40              40              40
## CC.Nat_3R_DACCS             40              40              40              40
## CC.Nat_4R_DACCS             40              40              40              40
## CC.Nat_1_EW                 40              40              40              40
## CC.Nat_2R_EW                40              40              40              40
## CC.Nat_3R_EW                40              40              40              40
## CC.Nat_4R_EW                40              40              40              40
## CC.Nat_1_OF                 40              40              40              40
## CC.Nat_2R_OF                40              40              40              40
## CC.Nat_3R_OF                40              40              40              40
## CC.Nat_4R_OF                40              40              40              40
## CC.Nat_1_BF                 28              28              28              28
## CC.Nat_2R_BF                28              28              28              28
## CC.Nat_3R_BF                28              28              28              28
## CC.Nat_4R_BF                28              28              28              28
## CC.Nat_1_NE                 28              28              28              28
## CC.Nat_2R_NE                28              28              28              28
## CC.Nat_3R_NE                28              28              28              28
## CC.Nat_4R_NE                28              28              28              28
## CC.Nat_1_SE                 28              28              28              28
## CC.Nat_2R_SE                28              28              28              28
## CC.Nat_3R_SE                28              28              28              28
## CC.Nat_4R_SE                28              28              28              28
## CC.Nat_1_WE                 28              28              28              28
## CC.Nat_2R_WE                28              28              28              28
## CC.Nat_3R_WE                28              28              28              28
## CC.Nat_4R_WE                28              28              28              28
##                 CC.Nat_1_BIO CC.Nat_2R_BIO CC.Nat_3R_BIO CC.Nat_4R_BIO
## CC.Nat_1_AFSCS            40            40            40            40
## CC.Nat_2R_AFSCS           40            40            40            40
## CC.Nat_3R_AFSCS           40            40            40            40
## CC.Nat_4R_AFSCS           40            40            40            40
## CC.Nat_1_BIO              40            40            40            40
## CC.Nat_2R_BIO             40            40            40            40
## CC.Nat_3R_BIO             40            40            40            40
## CC.Nat_4R_BIO             40            40            40            40
## CC.Nat_1_BECCS            40            40            40            40
## CC.Nat_2R_BECCS           40            40            40            40
## CC.Nat_3R_BECCS           40            40            40            40
## CC.Nat_4R_BECCS           40            40            40            40
## CC.Nat_1_DACCS            40            40            40            40
## CC.Nat_2R_DACCS           40            40            40            40
## CC.Nat_3R_DACCS           40            40            40            40
## CC.Nat_4R_DACCS           40            40            40            40
## CC.Nat_1_EW               40            40            40            40
## CC.Nat_2R_EW              40            40            40            40
## CC.Nat_3R_EW              40            40            40            40
## CC.Nat_4R_EW              40            40            40            40
## CC.Nat_1_OF               40            40            40            40
## CC.Nat_2R_OF              40            40            40            40
## CC.Nat_3R_OF              40            40            40            40
## CC.Nat_4R_OF              40            40            40            40
## CC.Nat_1_BF               28            28            28            28
## CC.Nat_2R_BF              28            28            28            28
## CC.Nat_3R_BF              28            28            28            28
## CC.Nat_4R_BF              28            28            28            28
## CC.Nat_1_NE               28            28            28            28
## CC.Nat_2R_NE              28            28            28            28
## CC.Nat_3R_NE              28            28            28            28
## CC.Nat_4R_NE              28            28            28            28
## CC.Nat_1_SE               28            28            28            28
## CC.Nat_2R_SE              28            28            28            28
## CC.Nat_3R_SE              28            28            28            28
## CC.Nat_4R_SE              28            28            28            28
## CC.Nat_1_WE               28            28            28            28
## CC.Nat_2R_WE              28            28            28            28
## CC.Nat_3R_WE              28            28            28            28
## CC.Nat_4R_WE              28            28            28            28
##                 CC.Nat_1_BECCS CC.Nat_2R_BECCS CC.Nat_3R_BECCS CC.Nat_4R_BECCS
## CC.Nat_1_AFSCS              40              40              40              40
## CC.Nat_2R_AFSCS             40              40              40              40
## CC.Nat_3R_AFSCS             40              40              40              40
## CC.Nat_4R_AFSCS             40              40              40              40
## CC.Nat_1_BIO                40              40              40              40
## CC.Nat_2R_BIO               40              40              40              40
## CC.Nat_3R_BIO               40              40              40              40
## CC.Nat_4R_BIO               40              40              40              40
## CC.Nat_1_BECCS              40              40              40              40
## CC.Nat_2R_BECCS             40              40              40              40
## CC.Nat_3R_BECCS             40              40              40              40
## CC.Nat_4R_BECCS             40              40              40              40
## CC.Nat_1_DACCS              40              40              40              40
## CC.Nat_2R_DACCS             40              40              40              40
## CC.Nat_3R_DACCS             40              40              40              40
## CC.Nat_4R_DACCS             40              40              40              40
## CC.Nat_1_EW                 40              40              40              40
## CC.Nat_2R_EW                40              40              40              40
## CC.Nat_3R_EW                40              40              40              40
## CC.Nat_4R_EW                40              40              40              40
## CC.Nat_1_OF                 40              40              40              40
## CC.Nat_2R_OF                40              40              40              40
## CC.Nat_3R_OF                40              40              40              40
## CC.Nat_4R_OF                40              40              40              40
## CC.Nat_1_BF                 28              28              28              28
## CC.Nat_2R_BF                28              28              28              28
## CC.Nat_3R_BF                28              28              28              28
## CC.Nat_4R_BF                28              28              28              28
## CC.Nat_1_NE                 28              28              28              28
## CC.Nat_2R_NE                28              28              28              28
## CC.Nat_3R_NE                28              28              28              28
## CC.Nat_4R_NE                28              28              28              28
## CC.Nat_1_SE                 28              28              28              28
## CC.Nat_2R_SE                28              28              28              28
## CC.Nat_3R_SE                28              28              28              28
## CC.Nat_4R_SE                28              28              28              28
## CC.Nat_1_WE                 28              28              28              28
## CC.Nat_2R_WE                28              28              28              28
## CC.Nat_3R_WE                28              28              28              28
## CC.Nat_4R_WE                28              28              28              28
##                 CC.Nat_1_DACCS CC.Nat_2R_DACCS CC.Nat_3R_DACCS CC.Nat_4R_DACCS
## CC.Nat_1_AFSCS              40              40              40              40
## CC.Nat_2R_AFSCS             40              40              40              40
## CC.Nat_3R_AFSCS             40              40              40              40
## CC.Nat_4R_AFSCS             40              40              40              40
## CC.Nat_1_BIO                40              40              40              40
## CC.Nat_2R_BIO               40              40              40              40
## CC.Nat_3R_BIO               40              40              40              40
## CC.Nat_4R_BIO               40              40              40              40
## CC.Nat_1_BECCS              40              40              40              40
## CC.Nat_2R_BECCS             40              40              40              40
## CC.Nat_3R_BECCS             40              40              40              40
## CC.Nat_4R_BECCS             40              40              40              40
## CC.Nat_1_DACCS              40              40              40              40
## CC.Nat_2R_DACCS             40              40              40              40
## CC.Nat_3R_DACCS             40              40              40              40
## CC.Nat_4R_DACCS             40              40              40              40
## CC.Nat_1_EW                 40              40              40              40
## CC.Nat_2R_EW                40              40              40              40
## CC.Nat_3R_EW                40              40              40              40
## CC.Nat_4R_EW                40              40              40              40
## CC.Nat_1_OF                 40              40              40              40
## CC.Nat_2R_OF                40              40              40              40
## CC.Nat_3R_OF                40              40              40              40
## CC.Nat_4R_OF                40              40              40              40
## CC.Nat_1_BF                 28              28              28              28
## CC.Nat_2R_BF                28              28              28              28
## CC.Nat_3R_BF                28              28              28              28
## CC.Nat_4R_BF                28              28              28              28
## CC.Nat_1_NE                 28              28              28              28
## CC.Nat_2R_NE                28              28              28              28
## CC.Nat_3R_NE                28              28              28              28
## CC.Nat_4R_NE                28              28              28              28
## CC.Nat_1_SE                 28              28              28              28
## CC.Nat_2R_SE                28              28              28              28
## CC.Nat_3R_SE                28              28              28              28
## CC.Nat_4R_SE                28              28              28              28
## CC.Nat_1_WE                 28              28              28              28
## CC.Nat_2R_WE                28              28              28              28
## CC.Nat_3R_WE                28              28              28              28
## CC.Nat_4R_WE                28              28              28              28
##                 CC.Nat_1_EW CC.Nat_2R_EW CC.Nat_3R_EW CC.Nat_4R_EW CC.Nat_1_OF
## CC.Nat_1_AFSCS           40           40           40           40          40
## CC.Nat_2R_AFSCS          40           40           40           40          40
## CC.Nat_3R_AFSCS          40           40           40           40          40
## CC.Nat_4R_AFSCS          40           40           40           40          40
## CC.Nat_1_BIO             40           40           40           40          40
## CC.Nat_2R_BIO            40           40           40           40          40
## CC.Nat_3R_BIO            40           40           40           40          40
## CC.Nat_4R_BIO            40           40           40           40          40
## CC.Nat_1_BECCS           40           40           40           40          40
## CC.Nat_2R_BECCS          40           40           40           40          40
## CC.Nat_3R_BECCS          40           40           40           40          40
## CC.Nat_4R_BECCS          40           40           40           40          40
## CC.Nat_1_DACCS           40           40           40           40          40
## CC.Nat_2R_DACCS          40           40           40           40          40
## CC.Nat_3R_DACCS          40           40           40           40          40
## CC.Nat_4R_DACCS          40           40           40           40          40
## CC.Nat_1_EW              40           40           40           40          40
## CC.Nat_2R_EW             40           40           40           40          40
## CC.Nat_3R_EW             40           40           40           40          40
## CC.Nat_4R_EW             40           40           40           40          40
## CC.Nat_1_OF              40           40           40           40          40
## CC.Nat_2R_OF             40           40           40           40          40
## CC.Nat_3R_OF             40           40           40           40          40
## CC.Nat_4R_OF             40           40           40           40          40
## CC.Nat_1_BF              28           28           28           28          28
## CC.Nat_2R_BF             28           28           28           28          28
## CC.Nat_3R_BF             28           28           28           28          28
## CC.Nat_4R_BF             28           28           28           28          28
## CC.Nat_1_NE              28           28           28           28          28
## CC.Nat_2R_NE             28           28           28           28          28
## CC.Nat_3R_NE             28           28           28           28          28
## CC.Nat_4R_NE             28           28           28           28          28
## CC.Nat_1_SE              28           28           28           28          28
## CC.Nat_2R_SE             28           28           28           28          28
## CC.Nat_3R_SE             28           28           28           28          28
## CC.Nat_4R_SE             28           28           28           28          28
## CC.Nat_1_WE              28           28           28           28          28
## CC.Nat_2R_WE             28           28           28           28          28
## CC.Nat_3R_WE             28           28           28           28          28
## CC.Nat_4R_WE             28           28           28           28          28
##                 CC.Nat_2R_OF CC.Nat_3R_OF CC.Nat_4R_OF CC.Nat_1_BF CC.Nat_2R_BF
## CC.Nat_1_AFSCS            40           40           40          28           28
## CC.Nat_2R_AFSCS           40           40           40          28           28
## CC.Nat_3R_AFSCS           40           40           40          28           28
## CC.Nat_4R_AFSCS           40           40           40          28           28
## CC.Nat_1_BIO              40           40           40          28           28
## CC.Nat_2R_BIO             40           40           40          28           28
## CC.Nat_3R_BIO             40           40           40          28           28
## CC.Nat_4R_BIO             40           40           40          28           28
## CC.Nat_1_BECCS            40           40           40          28           28
## CC.Nat_2R_BECCS           40           40           40          28           28
## CC.Nat_3R_BECCS           40           40           40          28           28
## CC.Nat_4R_BECCS           40           40           40          28           28
## CC.Nat_1_DACCS            40           40           40          28           28
## CC.Nat_2R_DACCS           40           40           40          28           28
## CC.Nat_3R_DACCS           40           40           40          28           28
## CC.Nat_4R_DACCS           40           40           40          28           28
## CC.Nat_1_EW               40           40           40          28           28
## CC.Nat_2R_EW              40           40           40          28           28
## CC.Nat_3R_EW              40           40           40          28           28
## CC.Nat_4R_EW              40           40           40          28           28
## CC.Nat_1_OF               40           40           40          28           28
## CC.Nat_2R_OF              40           40           40          28           28
## CC.Nat_3R_OF              40           40           40          28           28
## CC.Nat_4R_OF              40           40           40          28           28
## CC.Nat_1_BF               28           28           28          28           28
## CC.Nat_2R_BF              28           28           28          28           28
## CC.Nat_3R_BF              28           28           28          28           28
## CC.Nat_4R_BF              28           28           28          28           28
## CC.Nat_1_NE               28           28           28          24           24
## CC.Nat_2R_NE              28           28           28          24           24
## CC.Nat_3R_NE              28           28           28          24           24
## CC.Nat_4R_NE              28           28           28          24           24
## CC.Nat_1_SE               28           28           28          24           24
## CC.Nat_2R_SE              28           28           28          24           24
## CC.Nat_3R_SE              28           28           28          24           24
## CC.Nat_4R_SE              28           28           28          24           24
## CC.Nat_1_WE               28           28           28          24           24
## CC.Nat_2R_WE              28           28           28          24           24
## CC.Nat_3R_WE              28           28           28          24           24
## CC.Nat_4R_WE              28           28           28          24           24
##                 CC.Nat_3R_BF CC.Nat_4R_BF CC.Nat_1_NE CC.Nat_2R_NE CC.Nat_3R_NE
## CC.Nat_1_AFSCS            28           28          28           28           28
## CC.Nat_2R_AFSCS           28           28          28           28           28
## CC.Nat_3R_AFSCS           28           28          28           28           28
## CC.Nat_4R_AFSCS           28           28          28           28           28
## CC.Nat_1_BIO              28           28          28           28           28
## CC.Nat_2R_BIO             28           28          28           28           28
## CC.Nat_3R_BIO             28           28          28           28           28
## CC.Nat_4R_BIO             28           28          28           28           28
## CC.Nat_1_BECCS            28           28          28           28           28
## CC.Nat_2R_BECCS           28           28          28           28           28
## CC.Nat_3R_BECCS           28           28          28           28           28
## CC.Nat_4R_BECCS           28           28          28           28           28
## CC.Nat_1_DACCS            28           28          28           28           28
## CC.Nat_2R_DACCS           28           28          28           28           28
## CC.Nat_3R_DACCS           28           28          28           28           28
## CC.Nat_4R_DACCS           28           28          28           28           28
## CC.Nat_1_EW               28           28          28           28           28
## CC.Nat_2R_EW              28           28          28           28           28
## CC.Nat_3R_EW              28           28          28           28           28
## CC.Nat_4R_EW              28           28          28           28           28
## CC.Nat_1_OF               28           28          28           28           28
## CC.Nat_2R_OF              28           28          28           28           28
## CC.Nat_3R_OF              28           28          28           28           28
## CC.Nat_4R_OF              28           28          28           28           28
## CC.Nat_1_BF               28           28          24           24           24
## CC.Nat_2R_BF              28           28          24           24           24
## CC.Nat_3R_BF              28           28          24           24           24
## CC.Nat_4R_BF              28           28          24           24           24
## CC.Nat_1_NE               24           24          28           28           28
## CC.Nat_2R_NE              24           24          28           28           28
## CC.Nat_3R_NE              24           24          28           28           28
## CC.Nat_4R_NE              24           24          28           28           28
## CC.Nat_1_SE               24           24          24           24           24
## CC.Nat_2R_SE              24           24          24           24           24
## CC.Nat_3R_SE              24           24          24           24           24
## CC.Nat_4R_SE              24           24          24           24           24
## CC.Nat_1_WE               24           24          24           24           24
## CC.Nat_2R_WE              24           24          24           24           24
## CC.Nat_3R_WE              24           24          24           24           24
## CC.Nat_4R_WE              24           24          24           24           24
##                 CC.Nat_4R_NE CC.Nat_1_SE CC.Nat_2R_SE CC.Nat_3R_SE CC.Nat_4R_SE
## CC.Nat_1_AFSCS            28          28           28           28           28
## CC.Nat_2R_AFSCS           28          28           28           28           28
## CC.Nat_3R_AFSCS           28          28           28           28           28
## CC.Nat_4R_AFSCS           28          28           28           28           28
## CC.Nat_1_BIO              28          28           28           28           28
## CC.Nat_2R_BIO             28          28           28           28           28
## CC.Nat_3R_BIO             28          28           28           28           28
## CC.Nat_4R_BIO             28          28           28           28           28
## CC.Nat_1_BECCS            28          28           28           28           28
## CC.Nat_2R_BECCS           28          28           28           28           28
## CC.Nat_3R_BECCS           28          28           28           28           28
## CC.Nat_4R_BECCS           28          28           28           28           28
## CC.Nat_1_DACCS            28          28           28           28           28
## CC.Nat_2R_DACCS           28          28           28           28           28
## CC.Nat_3R_DACCS           28          28           28           28           28
## CC.Nat_4R_DACCS           28          28           28           28           28
## CC.Nat_1_EW               28          28           28           28           28
## CC.Nat_2R_EW              28          28           28           28           28
## CC.Nat_3R_EW              28          28           28           28           28
## CC.Nat_4R_EW              28          28           28           28           28
## CC.Nat_1_OF               28          28           28           28           28
## CC.Nat_2R_OF              28          28           28           28           28
## CC.Nat_3R_OF              28          28           28           28           28
## CC.Nat_4R_OF              28          28           28           28           28
## CC.Nat_1_BF               24          24           24           24           24
## CC.Nat_2R_BF              24          24           24           24           24
## CC.Nat_3R_BF              24          24           24           24           24
## CC.Nat_4R_BF              24          24           24           24           24
## CC.Nat_1_NE               28          24           24           24           24
## CC.Nat_2R_NE              28          24           24           24           24
## CC.Nat_3R_NE              28          24           24           24           24
## CC.Nat_4R_NE              28          24           24           24           24
## CC.Nat_1_SE               24          28           28           28           28
## CC.Nat_2R_SE              24          28           28           28           28
## CC.Nat_3R_SE              24          28           28           28           28
## CC.Nat_4R_SE              24          28           28           28           28
## CC.Nat_1_WE               24          24           24           24           24
## CC.Nat_2R_WE              24          24           24           24           24
## CC.Nat_3R_WE              24          24           24           24           24
## CC.Nat_4R_WE              24          24           24           24           24
##                 CC.Nat_1_WE CC.Nat_2R_WE CC.Nat_3R_WE CC.Nat_4R_WE
## CC.Nat_1_AFSCS           28           28           28           28
## CC.Nat_2R_AFSCS          28           28           28           28
## CC.Nat_3R_AFSCS          28           28           28           28
## CC.Nat_4R_AFSCS          28           28           28           28
## CC.Nat_1_BIO             28           28           28           28
## CC.Nat_2R_BIO            28           28           28           28
## CC.Nat_3R_BIO            28           28           28           28
## CC.Nat_4R_BIO            28           28           28           28
## CC.Nat_1_BECCS           28           28           28           28
## CC.Nat_2R_BECCS          28           28           28           28
## CC.Nat_3R_BECCS          28           28           28           28
## CC.Nat_4R_BECCS          28           28           28           28
## CC.Nat_1_DACCS           28           28           28           28
## CC.Nat_2R_DACCS          28           28           28           28
## CC.Nat_3R_DACCS          28           28           28           28
## CC.Nat_4R_DACCS          28           28           28           28
## CC.Nat_1_EW              28           28           28           28
## CC.Nat_2R_EW             28           28           28           28
## CC.Nat_3R_EW             28           28           28           28
## CC.Nat_4R_EW             28           28           28           28
## CC.Nat_1_OF              28           28           28           28
## CC.Nat_2R_OF             28           28           28           28
## CC.Nat_3R_OF             28           28           28           28
## CC.Nat_4R_OF             28           28           28           28
## CC.Nat_1_BF              24           24           24           24
## CC.Nat_2R_BF             24           24           24           24
## CC.Nat_3R_BF             24           24           24           24
## CC.Nat_4R_BF             24           24           24           24
## CC.Nat_1_NE              24           24           24           24
## CC.Nat_2R_NE             24           24           24           24
## CC.Nat_3R_NE             24           24           24           24
## CC.Nat_4R_NE             24           24           24           24
## CC.Nat_1_SE              24           24           24           24
## CC.Nat_2R_SE             24           24           24           24
## CC.Nat_3R_SE             24           24           24           24
## CC.Nat_4R_SE             24           24           24           24
## CC.Nat_1_WE              28           28           28           28
## CC.Nat_2R_WE             28           28           28           28
## CC.Nat_3R_WE             28           28           28           28
## CC.Nat_4R_WE             28           28           28           28
## 
## P
##                 CC.Nat_1_AFSCS CC.Nat_2R_AFSCS CC.Nat_3R_AFSCS CC.Nat_4R_AFSCS
## CC.Nat_1_AFSCS                 0.0000          0.4787          0.0000         
## CC.Nat_2R_AFSCS 0.0000                         0.0652          0.0000         
## CC.Nat_3R_AFSCS 0.4787         0.0652                          0.5506         
## CC.Nat_4R_AFSCS 0.0000         0.0000          0.5506                         
## CC.Nat_1_BIO    0.7978         0.2002          0.0228          0.7566         
## CC.Nat_2R_BIO   0.8278         0.2684          0.3245          0.6252         
## CC.Nat_3R_BIO   0.0000         0.0058          0.0059          0.0010         
## CC.Nat_4R_BIO   0.0800         0.1551          0.5869          0.2945         
## CC.Nat_1_BECCS  0.4264         0.1582          0.0002          0.7250         
## CC.Nat_2R_BECCS 0.5940         0.2201          0.2805          0.9144         
## CC.Nat_3R_BECCS 0.0426         0.6729          0.0011          0.1552         
## CC.Nat_4R_BECCS 0.3130         0.2053          0.0001          0.7533         
## CC.Nat_1_DACCS  0.8473         0.6754          0.6282          0.1767         
## CC.Nat_2R_DACCS 0.7848         0.0130          0.1519          0.9581         
## CC.Nat_3R_DACCS 0.0253         0.1868          0.0340          0.0474         
## CC.Nat_4R_DACCS 0.9325         0.6198          0.8459          0.4213         
## CC.Nat_1_EW     0.9070         0.4072          0.5521          0.2448         
## CC.Nat_2R_EW    0.0342         0.5907          0.0951          0.1523         
## CC.Nat_3R_EW    0.0002         0.2557          0.0000          0.0234         
## CC.Nat_4R_EW    0.2165         0.1586          0.6002          0.1039         
## CC.Nat_1_OF     0.1495         0.6240          0.1373          0.9164         
## CC.Nat_2R_OF    0.7352         0.7803          0.4614          0.7515         
## CC.Nat_3R_OF    0.3969         0.6616          0.0000          0.6280         
## CC.Nat_4R_OF    0.2091         0.7615          0.1841          0.6497         
## CC.Nat_1_BF     0.7120         0.1417          0.0003          0.3482         
## CC.Nat_2R_BF    0.1725         0.8023          0.0461          0.7115         
## CC.Nat_3R_BF    0.0012         0.0534          0.0552          0.0009         
## CC.Nat_4R_BF    0.2356         0.3576          0.0293          0.4707         
## CC.Nat_1_NE     0.5357         0.1720          0.0007          0.0246         
## CC.Nat_2R_NE    0.4346         0.6848          0.4369          0.2511         
## CC.Nat_3R_NE    0.0382         0.1794          0.7640          0.0462         
## CC.Nat_4R_NE    0.2791         0.1992          0.0072          0.0867         
## CC.Nat_1_SE     0.8716         0.1556          0.0000          0.2023         
## CC.Nat_2R_SE    0.5911         0.0213          0.7409          0.3229         
## CC.Nat_3R_SE    0.0004         0.0175          0.1040          0.0073         
## CC.Nat_4R_SE    0.9910         0.4260          0.0031          0.3221         
## CC.Nat_1_WE     0.1140         0.2928          0.0004          0.3328         
## CC.Nat_2R_WE    0.0322         0.1491          0.1599          0.0155         
## CC.Nat_3R_WE    0.0316         0.7453          0.0012          0.0423         
## CC.Nat_4R_WE    0.1737         0.2940          0.0003          0.3280         
##                 CC.Nat_1_BIO CC.Nat_2R_BIO CC.Nat_3R_BIO CC.Nat_4R_BIO
## CC.Nat_1_AFSCS  0.7978       0.8278        0.0000        0.0800       
## CC.Nat_2R_AFSCS 0.2002       0.2684        0.0058        0.1551       
## CC.Nat_3R_AFSCS 0.0228       0.3245        0.0059        0.5869       
## CC.Nat_4R_AFSCS 0.7566       0.6252        0.0010        0.2945       
## CC.Nat_1_BIO                 0.0035        0.3893        0.0000       
## CC.Nat_2R_BIO   0.0035                     0.9734        0.0022       
## CC.Nat_3R_BIO   0.3893       0.9734                      0.1708       
## CC.Nat_4R_BIO   0.0000       0.0022        0.1708                     
## CC.Nat_1_BECCS  0.0029       0.8287        0.6833        0.0287       
## CC.Nat_2R_BECCS 0.1622       0.0191        0.3833        0.1112       
## CC.Nat_3R_BECCS 0.0014       0.2377        0.0000        0.1415       
## CC.Nat_4R_BECCS 0.0003       0.4151        0.4018        0.0003       
## CC.Nat_1_DACCS  0.0219       0.7591        0.8308        0.0768       
## CC.Nat_2R_DACCS 0.9492       0.1939        0.7456        0.6775       
## CC.Nat_3R_DACCS 0.0021       0.1493        0.0001        0.0375       
## CC.Nat_4R_DACCS 0.1015       0.8640        0.4310        0.0901       
## CC.Nat_1_EW     0.0006       0.0319        0.4343        0.0017       
## CC.Nat_2R_EW    0.1523       0.0008        0.0386        0.0031       
## CC.Nat_3R_EW    0.0939       0.7773        0.0000        0.5264       
## CC.Nat_4R_EW    0.0006       0.0118        0.0730        0.0001       
## CC.Nat_1_OF     0.0000       0.0372        0.2153        0.0039       
## CC.Nat_2R_OF    0.0962       0.0006        0.2989        0.0302       
## CC.Nat_3R_OF    0.0003       0.2593        0.0002        0.1265       
## CC.Nat_4R_OF    0.0011       0.0121        0.4252        0.0006       
## CC.Nat_1_BF     0.0028       0.5137        0.0950        0.1531       
## CC.Nat_2R_BF    0.8377       0.0115        0.5642        0.9233       
## CC.Nat_3R_BF    0.0236       0.5106        0.0000        0.2395       
## CC.Nat_4R_BF    0.0163       0.1470        0.4834        0.0577       
## CC.Nat_1_NE     0.1979       0.9213        0.4966        0.6654       
## CC.Nat_2R_NE    0.2329       0.9674        0.9213        0.3964       
## CC.Nat_3R_NE    0.3859       0.8637        0.0493        0.4869       
## CC.Nat_4R_NE    0.3407       0.9448        0.9274        0.4047       
## CC.Nat_1_SE     0.1075       0.8870        0.0170        0.9242       
## CC.Nat_2R_SE    0.2290       0.8936        0.0524        0.2961       
## CC.Nat_3R_SE    0.1378       0.0929        0.0014        0.7589       
## CC.Nat_4R_SE    0.6167       0.5593        0.0854        0.3786       
## CC.Nat_1_WE     0.3693       0.2188        0.0038        0.8191       
## CC.Nat_2R_WE    0.7470       0.6020        0.0047        0.4495       
## CC.Nat_3R_WE    0.0303       0.2937        0.1714        0.5851       
## CC.Nat_4R_WE    0.5576       0.2230        0.0048        0.8950       
##                 CC.Nat_1_BECCS CC.Nat_2R_BECCS CC.Nat_3R_BECCS CC.Nat_4R_BECCS
## CC.Nat_1_AFSCS  0.4264         0.5940          0.0426          0.3130         
## CC.Nat_2R_AFSCS 0.1582         0.2201          0.6729          0.2053         
## CC.Nat_3R_AFSCS 0.0002         0.2805          0.0011          0.0001         
## CC.Nat_4R_AFSCS 0.7250         0.9144          0.1552          0.7533         
## CC.Nat_1_BIO    0.0029         0.1622          0.0014          0.0003         
## CC.Nat_2R_BIO   0.8287         0.0191          0.2377          0.4151         
## CC.Nat_3R_BIO   0.6833         0.3833          0.0000          0.4018         
## CC.Nat_4R_BIO   0.0287         0.1112          0.1415          0.0003         
## CC.Nat_1_BECCS                 0.2432          0.0318          0.0000         
## CC.Nat_2R_BECCS 0.2432                         0.6982          0.1449         
## CC.Nat_3R_BECCS 0.0318         0.6982                          0.0134         
## CC.Nat_4R_BECCS 0.0000         0.1449          0.0134                         
## CC.Nat_1_DACCS  0.0039         0.9155          0.0607          0.0121         
## CC.Nat_2R_DACCS 0.5423         0.0008          0.8636          0.2566         
## CC.Nat_3R_DACCS 0.0641         0.0776          0.0000          0.0232         
## CC.Nat_4R_DACCS 0.0473         0.7162          0.2279          0.1048         
## CC.Nat_1_EW     0.0341         0.5614          0.0228          0.0582         
## CC.Nat_2R_EW    0.9422         0.0006          0.4414          0.6587         
## CC.Nat_3R_EW    0.0282         0.5708          0.0000          0.0200         
## CC.Nat_4R_EW    0.0424         0.2230          0.2673          0.0483         
## CC.Nat_1_OF     0.0043         0.2150          0.0538          0.0037         
## CC.Nat_2R_OF    0.4009         0.5178          0.9043          0.2682         
## CC.Nat_3R_OF    0.0096         0.1717          0.0000          0.0056         
## CC.Nat_4R_OF    0.0065         0.1623          0.1556          0.0004         
## CC.Nat_1_BF     0.0368         0.1418          0.0000          0.1262         
## CC.Nat_2R_BF    0.8035         0.0696          0.1246          0.6700         
## CC.Nat_3R_BF    0.0253         0.1964          0.0000          0.0214         
## CC.Nat_4R_BF    0.6322         0.3815          0.0007          0.7268         
## CC.Nat_1_NE     0.0012         0.5247          0.1269          0.0762         
## CC.Nat_2R_NE    0.5278         0.2079          0.9805          0.5589         
## CC.Nat_3R_NE    0.1751         0.3871          0.0000          0.1913         
## CC.Nat_4R_NE    0.0015         0.5666          0.1233          0.0490         
## CC.Nat_1_SE     0.1842         0.9301          0.0001          0.1303         
## CC.Nat_2R_SE    0.0544         0.2843          0.9000          0.1675         
## CC.Nat_3R_SE    0.0834         0.3342          0.0044          0.1728         
## CC.Nat_4R_SE    0.7834         0.7826          0.0213          0.2551         
## CC.Nat_1_WE     0.0741         0.2694          0.0027          0.0190         
## CC.Nat_2R_WE    0.3510         0.8626          0.0414          0.9612         
## CC.Nat_3R_WE    0.0453         0.5377          0.0330          0.0262         
## CC.Nat_4R_WE    0.1424         0.5874          0.0179          0.0227         
##                 CC.Nat_1_DACCS CC.Nat_2R_DACCS CC.Nat_3R_DACCS CC.Nat_4R_DACCS
## CC.Nat_1_AFSCS  0.8473         0.7848          0.0253          0.9325         
## CC.Nat_2R_AFSCS 0.6754         0.0130          0.1868          0.6198         
## CC.Nat_3R_AFSCS 0.6282         0.1519          0.0340          0.8459         
## CC.Nat_4R_AFSCS 0.1767         0.9581          0.0474          0.4213         
## CC.Nat_1_BIO    0.0219         0.9492          0.0021          0.1015         
## CC.Nat_2R_BIO   0.7591         0.1939          0.1493          0.8640         
## CC.Nat_3R_BIO   0.8308         0.7456          0.0001          0.4310         
## CC.Nat_4R_BIO   0.0768         0.6775          0.0375          0.0901         
## CC.Nat_1_BECCS  0.0039         0.5423          0.0641          0.0473         
## CC.Nat_2R_BECCS 0.9155         0.0008          0.0776          0.7162         
## CC.Nat_3R_BECCS 0.0607         0.8636          0.0000          0.2279         
## CC.Nat_4R_BECCS 0.0121         0.2566          0.0232          0.1048         
## CC.Nat_1_DACCS                 0.0228          0.7250          0.0000         
## CC.Nat_2R_DACCS 0.0228                         0.5456          0.0091         
## CC.Nat_3R_DACCS 0.7250         0.5456                          0.6894         
## CC.Nat_4R_DACCS 0.0000         0.0091          0.6894                         
## CC.Nat_1_EW     0.0008         0.1279          0.0384          0.0128         
## CC.Nat_2R_EW    0.0753         0.0000          0.8526          0.0093         
## CC.Nat_3R_EW    0.0292         0.6397          0.0002          0.1560         
## CC.Nat_4R_EW    0.0358         0.2140          0.1340          0.0248         
## CC.Nat_1_OF     0.0612         0.2816          0.0446          0.2868         
## CC.Nat_2R_OF    0.1148         0.1164          0.3460          0.1425         
## CC.Nat_3R_OF    0.2066         0.6475          0.0000          0.2645         
## CC.Nat_4R_OF    0.5405         0.9120          0.0064          0.9571         
## CC.Nat_1_BF     0.4633         0.8344          0.0263          0.2421         
## CC.Nat_2R_BF    0.4949         0.3590          0.6498          0.4856         
## CC.Nat_3R_BF    0.9805         0.6275          0.0000          0.9244         
## CC.Nat_4R_BF    0.7496         0.9316          0.0621          0.2981         
## CC.Nat_1_NE     0.1317         0.3921          0.1876          0.3246         
## CC.Nat_2R_NE    0.3673         0.9288          0.4480          0.4431         
## CC.Nat_3R_NE    0.1499         0.5637          0.0002          0.9166         
## CC.Nat_4R_NE    0.2657         0.1525          0.1778          0.1475         
## CC.Nat_1_SE     0.0629         0.9400          0.0833          0.2126         
## CC.Nat_2R_SE    0.1749         0.8226          0.5160          0.4894         
## CC.Nat_3R_SE    0.1587         0.4409          0.0099          0.2305         
## CC.Nat_4R_SE    0.5336         0.7614          0.3276          0.3634         
## CC.Nat_1_WE     0.6155         0.0074          0.1068          0.5791         
## CC.Nat_2R_WE    0.7107         0.4296          0.1513          0.6412         
## CC.Nat_3R_WE    0.3402         0.8165          0.1988          0.4678         
## CC.Nat_4R_WE    0.8991         0.0074          0.0748          0.3845         
##                 CC.Nat_1_EW CC.Nat_2R_EW CC.Nat_3R_EW CC.Nat_4R_EW CC.Nat_1_OF
## CC.Nat_1_AFSCS  0.9070      0.0342       0.0002       0.2165       0.1495     
## CC.Nat_2R_AFSCS 0.4072      0.5907       0.2557       0.1586       0.6240     
## CC.Nat_3R_AFSCS 0.5521      0.0951       0.0000       0.6002       0.1373     
## CC.Nat_4R_AFSCS 0.2448      0.1523       0.0234       0.1039       0.9164     
## CC.Nat_1_BIO    0.0006      0.1523       0.0939       0.0006       0.0000     
## CC.Nat_2R_BIO   0.0319      0.0008       0.7773       0.0118       0.0372     
## CC.Nat_3R_BIO   0.4343      0.0386       0.0000       0.0730       0.2153     
## CC.Nat_4R_BIO   0.0017      0.0031       0.5264       0.0001       0.0039     
## CC.Nat_1_BECCS  0.0341      0.9422       0.0282       0.0424       0.0043     
## CC.Nat_2R_BECCS 0.5614      0.0006       0.5708       0.2230       0.2150     
## CC.Nat_3R_BECCS 0.0228      0.4414       0.0000       0.2673       0.0538     
## CC.Nat_4R_BECCS 0.0582      0.6587       0.0200       0.0483       0.0037     
## CC.Nat_1_DACCS  0.0008      0.0753       0.0292       0.0358       0.0612     
## CC.Nat_2R_DACCS 0.1279      0.0000       0.6397       0.2140       0.2816     
## CC.Nat_3R_DACCS 0.0384      0.8526       0.0002       0.1340       0.0446     
## CC.Nat_4R_DACCS 0.0128      0.0093       0.1560       0.0248       0.2868     
## CC.Nat_1_EW                 0.0013       0.3990       0.0000       0.0000     
## CC.Nat_2R_EW    0.0013                   0.0616       0.0000       0.0524     
## CC.Nat_3R_EW    0.3990      0.0616                    0.7165       0.2240     
## CC.Nat_4R_EW    0.0000      0.0000       0.7165                    0.0002     
## CC.Nat_1_OF     0.0000      0.0524       0.2240       0.0002                  
## CC.Nat_2R_OF    0.0597      0.0012       0.1802       0.1136       0.0012     
## CC.Nat_3R_OF    0.5301      0.3792       0.0000       0.9166       0.1408     
## CC.Nat_4R_OF    0.0000      0.0441       0.8163       0.0000       0.0000     
## CC.Nat_1_BF     0.0237      0.7105       0.0038       0.0229       0.0103     
## CC.Nat_2R_BF    0.6462      0.0985       0.2852       0.9497       0.4027     
## CC.Nat_3R_BF    0.2755      0.3088       0.0000       0.6818       0.0264     
## CC.Nat_4R_BF    0.1164      0.3670       0.1626       0.0395       0.3025     
## CC.Nat_1_NE     0.6450      0.2904       0.2296       0.6926       0.7109     
## CC.Nat_2R_NE    0.8361      0.6758       0.8888       0.6909       0.1121     
## CC.Nat_3R_NE    0.0852      0.5840       0.0041       0.6038       0.1876     
## CC.Nat_4R_NE    0.9087      0.5041       0.4371       0.5452       0.7456     
## CC.Nat_1_SE     0.0884      0.5552       0.0002       0.5645       0.1939     
## CC.Nat_2R_SE    0.0302      0.6077       0.9739       0.0504       0.0296     
## CC.Nat_3R_SE    0.5061      0.8163       0.0003       0.9309       0.0624     
## CC.Nat_4R_SE    0.6613      0.4067       0.0092       0.8751       0.7531     
## CC.Nat_1_WE     0.2543      0.0020       0.0008       0.1846       0.9693     
## CC.Nat_2R_WE    0.0402      0.0377       0.0044       0.0686       0.0207     
## CC.Nat_3R_WE    0.9009      0.1676       0.0004       0.9670       0.8430     
## CC.Nat_4R_WE    0.1170      0.0044       0.0015       0.2287       0.6552     
##                 CC.Nat_2R_OF CC.Nat_3R_OF CC.Nat_4R_OF CC.Nat_1_BF CC.Nat_2R_BF
## CC.Nat_1_AFSCS  0.7352       0.3969       0.2091       0.7120      0.1725      
## CC.Nat_2R_AFSCS 0.7803       0.6616       0.7615       0.1417      0.8023      
## CC.Nat_3R_AFSCS 0.4614       0.0000       0.1841       0.0003      0.0461      
## CC.Nat_4R_AFSCS 0.7515       0.6280       0.6497       0.3482      0.7115      
## CC.Nat_1_BIO    0.0962       0.0003       0.0011       0.0028      0.8377      
## CC.Nat_2R_BIO   0.0006       0.2593       0.0121       0.5137      0.0115      
## CC.Nat_3R_BIO   0.2989       0.0002       0.4252       0.0950      0.5642      
## CC.Nat_4R_BIO   0.0302       0.1265       0.0006       0.1531      0.9233      
## CC.Nat_1_BECCS  0.4009       0.0096       0.0065       0.0368      0.8035      
## CC.Nat_2R_BECCS 0.5178       0.1717       0.1623       0.1418      0.0696      
## CC.Nat_3R_BECCS 0.9043       0.0000       0.1556       0.0000      0.1246      
## CC.Nat_4R_BECCS 0.2682       0.0056       0.0004       0.1262      0.6700      
## CC.Nat_1_DACCS  0.1148       0.2066       0.5405       0.4633      0.4949      
## CC.Nat_2R_DACCS 0.1164       0.6475       0.9120       0.8344      0.3590      
## CC.Nat_3R_DACCS 0.3460       0.0000       0.0064       0.0263      0.6498      
## CC.Nat_4R_DACCS 0.1425       0.2645       0.9571       0.2421      0.4856      
## CC.Nat_1_EW     0.0597       0.5301       0.0000       0.0237      0.6462      
## CC.Nat_2R_EW    0.0012       0.3792       0.0441       0.7105      0.0985      
## CC.Nat_3R_EW    0.1802       0.0000       0.8163       0.0038      0.2852      
## CC.Nat_4R_EW    0.1136       0.9166       0.0000       0.0229      0.9497      
## CC.Nat_1_OF     0.0012       0.1408       0.0000       0.0103      0.4027      
## CC.Nat_2R_OF                 0.4047       0.0008       0.2812      0.8985      
## CC.Nat_3R_OF    0.4047                    0.4830       0.0000      0.0388      
## CC.Nat_4R_OF    0.0008       0.4830                    0.2671      0.1957      
## CC.Nat_1_BF     0.2812       0.0000       0.2671                   0.0244      
## CC.Nat_2R_BF    0.8985       0.0388       0.1957       0.0244                  
## CC.Nat_3R_BF    0.4245       0.0001       0.0267       0.0278      0.9200      
## CC.Nat_4R_BF    0.4490       0.0005       0.7017       0.0000      0.0013      
## CC.Nat_1_NE     0.6971       0.0121       0.8118       0.0032      0.6800      
## CC.Nat_2R_NE    0.1259       0.9232       0.2554       0.8985      0.0511      
## CC.Nat_3R_NE    0.4837       0.1309       0.2617       0.1414      0.4555      
## CC.Nat_4R_NE    0.8405       0.0092       0.9620       0.0111      0.1170      
## CC.Nat_1_SE     0.8018       0.0001       0.3690       0.0000      0.2944      
## CC.Nat_2R_SE    0.1400       0.9454       0.1511       0.1256      0.0943      
## CC.Nat_3R_SE    0.8273       0.0028       0.2304       0.0316      0.5154      
## CC.Nat_4R_SE    0.4816       0.0229       0.8541       0.0144      0.2026      
## CC.Nat_1_WE     0.3404       0.0105       0.9039       0.0500      0.7436      
## CC.Nat_2R_WE    0.0380       0.0359       0.0438       0.9140      0.2548      
## CC.Nat_3R_WE    0.3173       0.0043       0.7813       0.0350      0.3071      
## CC.Nat_4R_WE    0.0850       0.0183       0.8646       0.0638      0.8693      
##                 CC.Nat_3R_BF CC.Nat_4R_BF CC.Nat_1_NE CC.Nat_2R_NE CC.Nat_3R_NE
## CC.Nat_1_AFSCS  0.0012       0.2356       0.5357      0.4346       0.0382      
## CC.Nat_2R_AFSCS 0.0534       0.3576       0.1720      0.6848       0.1794      
## CC.Nat_3R_AFSCS 0.0552       0.0293       0.0007      0.4369       0.7640      
## CC.Nat_4R_AFSCS 0.0009       0.4707       0.0246      0.2511       0.0462      
## CC.Nat_1_BIO    0.0236       0.0163       0.1979      0.2329       0.3859      
## CC.Nat_2R_BIO   0.5106       0.1470       0.9213      0.9674       0.8637      
## CC.Nat_3R_BIO   0.0000       0.4834       0.4966      0.9213       0.0493      
## CC.Nat_4R_BIO   0.2395       0.0577       0.6654      0.3964       0.4869      
## CC.Nat_1_BECCS  0.0253       0.6322       0.0012      0.5278       0.1751      
## CC.Nat_2R_BECCS 0.1964       0.3815       0.5247      0.2079       0.3871      
## CC.Nat_3R_BECCS 0.0000       0.0007       0.1269      0.9805       0.0000      
## CC.Nat_4R_BECCS 0.0214       0.7268       0.0762      0.5589       0.1913      
## CC.Nat_1_DACCS  0.9805       0.7496       0.1317      0.3673       0.1499      
## CC.Nat_2R_DACCS 0.6275       0.9316       0.3921      0.9288       0.5637      
## CC.Nat_3R_DACCS 0.0000       0.0621       0.1876      0.4480       0.0002      
## CC.Nat_4R_DACCS 0.9244       0.2981       0.3246      0.4431       0.9166      
## CC.Nat_1_EW     0.2755       0.1164       0.6450      0.8361       0.0852      
## CC.Nat_2R_EW    0.3088       0.3670       0.2904      0.6758       0.5840      
## CC.Nat_3R_EW    0.0000       0.1626       0.2296      0.8888       0.0041      
## CC.Nat_4R_EW    0.6818       0.0395       0.6926      0.6909       0.6038      
## CC.Nat_1_OF     0.0264       0.3025       0.7109      0.1121       0.1876      
## CC.Nat_2R_OF    0.4245       0.4490       0.6971      0.1259       0.4837      
## CC.Nat_3R_OF    0.0001       0.0005       0.0121      0.9232       0.1309      
## CC.Nat_4R_OF    0.0267       0.7017       0.8118      0.2554       0.2617      
## CC.Nat_1_BF     0.0278       0.0000       0.0032      0.8985       0.1414      
## CC.Nat_2R_BF    0.9200       0.0013       0.6800      0.0511       0.4555      
## CC.Nat_3R_BF                 0.1397       0.4813      0.8820       0.0000      
## CC.Nat_4R_BF    0.1397                    0.1305      0.6810       0.5389      
## CC.Nat_1_NE     0.4813       0.1305                   0.1542       0.7822      
## CC.Nat_2R_NE    0.8820       0.6810       0.1542                   0.4135      
## CC.Nat_3R_NE    0.0000       0.5389       0.7822      0.4135                   
## CC.Nat_4R_NE    0.4592       0.0105       0.0000      0.0672       0.8663      
## CC.Nat_1_SE     0.0806       0.0054       0.0001      0.6303       0.1470      
## CC.Nat_2R_SE    0.5515       0.7111       0.0888      0.0952       0.8218      
## CC.Nat_3R_SE    0.0000       0.3816       0.1673      0.6498       0.0007      
## CC.Nat_4R_SE    0.2988       0.1048       0.0182      0.9866       0.4017      
## CC.Nat_1_WE     0.0024       0.6040       0.0157      0.4109       0.0218      
## CC.Nat_2R_WE    0.0149       0.5326       0.5371      0.9685       0.0469      
## CC.Nat_3R_WE    0.0032       0.1942       0.1440      0.9491       0.0353      
## CC.Nat_4R_WE    0.0019       0.4816       0.0628      0.9894       0.0461      
##                 CC.Nat_4R_NE CC.Nat_1_SE CC.Nat_2R_SE CC.Nat_3R_SE CC.Nat_4R_SE
## CC.Nat_1_AFSCS  0.2791       0.8716      0.5911       0.0004       0.9910      
## CC.Nat_2R_AFSCS 0.1992       0.1556      0.0213       0.0175       0.4260      
## CC.Nat_3R_AFSCS 0.0072       0.0000      0.7409       0.1040       0.0031      
## CC.Nat_4R_AFSCS 0.0867       0.2023      0.3229       0.0073       0.3221      
## CC.Nat_1_BIO    0.3407       0.1075      0.2290       0.1378       0.6167      
## CC.Nat_2R_BIO   0.9448       0.8870      0.8936       0.0929       0.5593      
## CC.Nat_3R_BIO   0.9274       0.0170      0.0524       0.0014       0.0854      
## CC.Nat_4R_BIO   0.4047       0.9242      0.2961       0.7589       0.3786      
## CC.Nat_1_BECCS  0.0015       0.1842      0.0544       0.0834       0.7834      
## CC.Nat_2R_BECCS 0.5666       0.9301      0.2843       0.3342       0.7826      
## CC.Nat_3R_BECCS 0.1233       0.0001      0.9000       0.0044       0.0213      
## CC.Nat_4R_BECCS 0.0490       0.1303      0.1675       0.1728       0.2551      
## CC.Nat_1_DACCS  0.2657       0.0629      0.1749       0.1587       0.5336      
## CC.Nat_2R_DACCS 0.1525       0.9400      0.8226       0.4409       0.7614      
## CC.Nat_3R_DACCS 0.1778       0.0833      0.5160       0.0099       0.3276      
## CC.Nat_4R_DACCS 0.1475       0.2126      0.4894       0.2305       0.3634      
## CC.Nat_1_EW     0.9087       0.0884      0.0302       0.5061       0.6613      
## CC.Nat_2R_EW    0.5041       0.5552      0.6077       0.8163       0.4067      
## CC.Nat_3R_EW    0.4371       0.0002      0.9739       0.0003       0.0092      
## CC.Nat_4R_EW    0.5452       0.5645      0.0504       0.9309       0.8751      
## CC.Nat_1_OF     0.7456       0.1939      0.0296       0.0624       0.7531      
## CC.Nat_2R_OF    0.8405       0.8018      0.1400       0.8273       0.4816      
## CC.Nat_3R_OF    0.0092       0.0001      0.9454       0.0028       0.0229      
## CC.Nat_4R_OF    0.9620       0.3690      0.1511       0.2304       0.8541      
## CC.Nat_1_BF     0.0111       0.0000      0.1256       0.0316       0.0144      
## CC.Nat_2R_BF    0.1170       0.2944      0.0943       0.5154       0.2026      
## CC.Nat_3R_BF    0.4592       0.0806      0.5515       0.0000       0.2988      
## CC.Nat_4R_BF    0.0105       0.0054      0.7111       0.3816       0.1048      
## CC.Nat_1_NE     0.0000       0.0001      0.0888       0.1673       0.0182      
## CC.Nat_2R_NE    0.0672       0.6303      0.0952       0.6498       0.9866      
## CC.Nat_3R_NE    0.8663       0.1470      0.8218       0.0007       0.4017      
## CC.Nat_4R_NE                 0.0213      0.4072       0.5490       0.0144      
## CC.Nat_1_SE     0.0213                   0.6647       0.3231       0.0000      
## CC.Nat_2R_SE    0.4072       0.6647                   0.8882       0.2325      
## CC.Nat_3R_SE    0.5490       0.3231      0.8882                    0.7659      
## CC.Nat_4R_SE    0.0144       0.0000      0.2325       0.7659                   
## CC.Nat_1_WE     0.0174       0.0031      0.6983       0.0075       0.0287      
## CC.Nat_2R_WE    0.8754       0.6859      0.0018       0.0031       0.2771      
## CC.Nat_3R_WE    0.1874       0.0254      0.8186       0.0008       0.2109      
## CC.Nat_4R_WE    0.0323       0.0302      0.7183       0.0117       0.0177      
##                 CC.Nat_1_WE CC.Nat_2R_WE CC.Nat_3R_WE CC.Nat_4R_WE
## CC.Nat_1_AFSCS  0.1140      0.0322       0.0316       0.1737      
## CC.Nat_2R_AFSCS 0.2928      0.1491       0.7453       0.2940      
## CC.Nat_3R_AFSCS 0.0004      0.1599       0.0012       0.0003      
## CC.Nat_4R_AFSCS 0.3328      0.0155       0.0423       0.3280      
## CC.Nat_1_BIO    0.3693      0.7470       0.0303       0.5576      
## CC.Nat_2R_BIO   0.2188      0.6020       0.2937       0.2230      
## CC.Nat_3R_BIO   0.0038      0.0047       0.1714       0.0048      
## CC.Nat_4R_BIO   0.8191      0.4495       0.5851       0.8950      
## CC.Nat_1_BECCS  0.0741      0.3510       0.0453       0.1424      
## CC.Nat_2R_BECCS 0.2694      0.8626       0.5377       0.5874      
## CC.Nat_3R_BECCS 0.0027      0.0414       0.0330       0.0179      
## CC.Nat_4R_BECCS 0.0190      0.9612       0.0262       0.0227      
## CC.Nat_1_DACCS  0.6155      0.7107       0.3402       0.8991      
## CC.Nat_2R_DACCS 0.0074      0.4296       0.8165       0.0074      
## CC.Nat_3R_DACCS 0.1068      0.1513       0.1988       0.0748      
## CC.Nat_4R_DACCS 0.5791      0.6412       0.4678       0.3845      
## CC.Nat_1_EW     0.2543      0.0402       0.9009       0.1170      
## CC.Nat_2R_EW    0.0020      0.0377       0.1676       0.0044      
## CC.Nat_3R_EW    0.0008      0.0044       0.0004       0.0015      
## CC.Nat_4R_EW    0.1846      0.0686       0.9670       0.2287      
## CC.Nat_1_OF     0.9693      0.0207       0.8430       0.6552      
## CC.Nat_2R_OF    0.3404      0.0380       0.3173       0.0850      
## CC.Nat_3R_OF    0.0105      0.0359       0.0043       0.0183      
## CC.Nat_4R_OF    0.9039      0.0438       0.7813       0.8646      
## CC.Nat_1_BF     0.0500      0.9140       0.0350       0.0638      
## CC.Nat_2R_BF    0.7436      0.2548       0.3071       0.8693      
## CC.Nat_3R_BF    0.0024      0.0149       0.0032       0.0019      
## CC.Nat_4R_BF    0.6040      0.5326       0.1942       0.4816      
## CC.Nat_1_NE     0.0157      0.5371       0.1440       0.0628      
## CC.Nat_2R_NE    0.4109      0.9685       0.9491       0.9894      
## CC.Nat_3R_NE    0.0218      0.0469       0.0353       0.0461      
## CC.Nat_4R_NE    0.0174      0.8754       0.1874       0.0323      
## CC.Nat_1_SE     0.0031      0.6859       0.0254       0.0302      
## CC.Nat_2R_SE    0.6983      0.0018       0.8186       0.7183      
## CC.Nat_3R_SE    0.0075      0.0031       0.0008       0.0117      
## CC.Nat_4R_SE    0.0287      0.2771       0.2109       0.0177      
## CC.Nat_1_WE                 0.0037       0.0487       0.0000      
## CC.Nat_2R_WE    0.0037                   0.0372       0.0010      
## CC.Nat_3R_WE    0.0487      0.0372                    0.0702      
## CC.Nat_4R_WE    0.0000      0.0010       0.0702
library(corrplot)
## corrplot 0.92 loaded
corrplot(mydata.cor1, method="color")

corrplot(mydata.cor1, addCoef.col = 1,  number.cex = 0.3, method = 'number')

Individual Differences

#Individual Differences
CC$corID <- data.frame(CC$ATNS_Scale, CC$CCB_Scale, CC$CNS_Scale, CC$IndScale, CC$CollScale, CC$Party, CC$PI_Orientation)

length(CC$ATNS_Scale)
## [1] 5
length(CC$CCB_Scale)
## [1] 4
length(CC$CNS_Scale)
## [1] 3
length(CC$IndScale)
## [1] 4
length(CC$CollScale)
## [1] 4
length(CC$PartyFull)
## [1] 1033
length(CC$Orientation)
## [1] 1033
mydata.cor2 = cor(CC$corID, use = "pairwise.complete.obs")
head(round(mydata.cor2,2))
##             CC.ATNS_1 CC.ATNS_2R CC.ATNS_3 CC.ATNS_4 CC.ATNS_5 CC.CCB_1_48
## CC.ATNS_1        1.00       0.26      0.39      0.36      0.41       -0.22
## CC.ATNS_2R       0.26       1.00      0.55      0.54      0.49       -0.02
## CC.ATNS_3        0.39       0.55      1.00      0.70      0.61       -0.01
## CC.ATNS_4        0.36       0.54      0.70      1.00      0.61        0.01
## CC.ATNS_5        0.41       0.49      0.61      0.61      1.00        0.01
## CC.CCB_1_48     -0.22      -0.02     -0.01      0.01      0.01        1.00
##             CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51 CC.CNS_1 CC.CNS_2 CC.CNS_3
## CC.ATNS_1         -0.20       -0.24       -0.27     0.05     0.01     0.11
## CC.ATNS_2R         0.01       -0.03       -0.03     0.20     0.15     0.18
## CC.ATNS_3          0.03        0.01       -0.01     0.21     0.17     0.28
## CC.ATNS_4          0.06        0.03        0.00     0.29     0.21     0.30
## CC.ATNS_5          0.07        0.04       -0.03     0.23     0.16     0.25
## CC.CCB_1_48        0.87        0.78        0.71     0.21     0.22     0.15
##             CC.Ind_1 CC.Ind_2 CC.Ind_5 CC.Ind_6 CC.Ind_3 CC.Ind_4 CC.Ind_7
## CC.ATNS_1       0.03     0.11     0.05     0.08     0.12     0.11     0.13
## CC.ATNS_2R      0.06     0.08     0.05     0.00     0.04     0.05     0.00
## CC.ATNS_3       0.12     0.16     0.06     0.07     0.07     0.08     0.03
## CC.ATNS_4       0.11     0.15     0.07     0.07     0.06     0.09     0.05
## CC.ATNS_5       0.07     0.14     0.05     0.03     0.00     0.03     0.00
## CC.CCB_1_48     0.14    -0.05     0.07     0.07    -0.17    -0.13    -0.16
##             CC.Ind_8 CC.Party CC.PI_Orientation
## CC.ATNS_1       0.07     0.02             -0.22
## CC.ATNS_2R      0.05     0.05              0.00
## CC.ATNS_3       0.06     0.01              0.01
## CC.ATNS_4       0.06     0.02              0.02
## CC.ATNS_5       0.01     0.09              0.00
## CC.CCB_1_48    -0.09     0.13              0.56
library("Hmisc")
mydata.rcorr2 = rcorr(as.matrix(mydata.cor2))
mydata.rcorr2
##                   CC.ATNS_1 CC.ATNS_2R CC.ATNS_3 CC.ATNS_4 CC.ATNS_5
## CC.ATNS_1              1.00       0.55      0.66      0.62      0.65
## CC.ATNS_2R             0.55       1.00      0.84      0.84      0.80
## CC.ATNS_3              0.66       0.84      1.00      0.94      0.89
## CC.ATNS_4              0.62       0.84      0.94      1.00      0.89
## CC.ATNS_5              0.65       0.80      0.89      0.89      1.00
## CC.CCB_1_48           -0.72      -0.36     -0.40     -0.37     -0.33
## CC.CCB_1_49           -0.70      -0.32     -0.35     -0.31     -0.28
## CC.CCB_1_50           -0.71      -0.33     -0.36     -0.33     -0.29
## CC.CCB_1_51           -0.75      -0.37     -0.40     -0.37     -0.35
## CC.CNS_1              -0.11       0.13      0.13      0.21      0.14
## CC.CNS_2              -0.22       0.01      0.01      0.07      0.01
## CC.CNS_3               0.02       0.14      0.22      0.26      0.18
## CC.Ind_1              -0.12      -0.23     -0.17     -0.19     -0.24
## CC.Ind_2               0.22       0.06      0.14      0.12      0.11
## CC.Ind_5              -0.09      -0.20     -0.18     -0.19     -0.21
## CC.Ind_6               0.03      -0.28     -0.20     -0.21     -0.29
## CC.Ind_3               0.25      -0.08     -0.06     -0.08     -0.17
## CC.Ind_4               0.24      -0.07     -0.05     -0.06     -0.15
## CC.Ind_7               0.30      -0.09     -0.06     -0.07     -0.14
## CC.Ind_8               0.18      -0.09     -0.08     -0.09     -0.18
## CC.Party              -0.16      -0.04     -0.11     -0.10      0.02
## CC.PI_Orientation     -0.65      -0.25     -0.28     -0.26     -0.22
##                   CC.CCB_1_48 CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51 CC.CNS_1
## CC.ATNS_1               -0.72       -0.70       -0.71       -0.75    -0.11
## CC.ATNS_2R              -0.36       -0.32       -0.33       -0.37     0.13
## CC.ATNS_3               -0.40       -0.35       -0.36       -0.40     0.13
## CC.ATNS_4               -0.37       -0.31       -0.33       -0.37     0.21
## CC.ATNS_5               -0.33       -0.28       -0.29       -0.35     0.14
## CC.CCB_1_48              1.00        0.99        0.98        0.96     0.13
## CC.CCB_1_49              0.99        1.00        0.99        0.98     0.15
## CC.CCB_1_50              0.98        0.99        1.00        0.98     0.13
## CC.CCB_1_51              0.96        0.98        0.98        1.00     0.14
## CC.CNS_1                 0.13        0.15        0.13        0.14     1.00
## CC.CNS_2                 0.21        0.23        0.20        0.22     0.90
## CC.CNS_3                -0.05       -0.02       -0.04       -0.02     0.81
## CC.Ind_1                -0.11       -0.14       -0.16       -0.14     0.00
## CC.Ind_2                -0.39       -0.40       -0.40       -0.41    -0.15
## CC.Ind_5                -0.12       -0.15       -0.16       -0.14     0.02
## CC.Ind_6                -0.32       -0.37       -0.38       -0.35    -0.06
## CC.Ind_3                -0.65       -0.68       -0.68       -0.61    -0.10
## CC.Ind_4                -0.63       -0.66       -0.66       -0.60     0.00
## CC.Ind_7                -0.67       -0.70       -0.70       -0.64    -0.23
## CC.Ind_8                -0.57       -0.60       -0.60       -0.53    -0.02
## CC.Party                 0.27        0.28        0.28        0.21    -0.14
## CC.PI_Orientation        0.90        0.92        0.92        0.89     0.14
##                   CC.CNS_2 CC.CNS_3 CC.Ind_1 CC.Ind_2 CC.Ind_5 CC.Ind_6
## CC.ATNS_1            -0.22     0.02    -0.12     0.22    -0.09     0.03
## CC.ATNS_2R            0.01     0.14    -0.23     0.06    -0.20    -0.28
## CC.ATNS_3             0.01     0.22    -0.17     0.14    -0.18    -0.20
## CC.ATNS_4             0.07     0.26    -0.19     0.12    -0.19    -0.21
## CC.ATNS_5             0.01     0.18    -0.24     0.11    -0.21    -0.29
## CC.CCB_1_48           0.21    -0.05    -0.11    -0.39    -0.12    -0.32
## CC.CCB_1_49           0.23    -0.02    -0.14    -0.40    -0.15    -0.37
## CC.CCB_1_50           0.20    -0.04    -0.16    -0.40    -0.16    -0.38
## CC.CCB_1_51           0.22    -0.02    -0.14    -0.41    -0.14    -0.35
## CC.CNS_1              0.90     0.81     0.00    -0.15     0.02    -0.06
## CC.CNS_2              1.00     0.76     0.03    -0.19     0.04    -0.01
## CC.CNS_3              0.76     1.00     0.01    -0.08     0.02     0.04
## CC.Ind_1              0.03     0.01     1.00     0.51     0.87     0.66
## CC.Ind_2             -0.19    -0.08     0.51     1.00     0.49     0.27
## CC.Ind_5              0.04     0.02     0.87     0.49     1.00     0.56
## CC.Ind_6             -0.01     0.04     0.66     0.27     0.56     1.00
## CC.Ind_3             -0.08     0.08     0.10    -0.03    -0.01     0.50
## CC.Ind_4              0.00     0.17     0.15    -0.05     0.04     0.52
## CC.Ind_7             -0.21    -0.07     0.05     0.05    -0.07     0.43
## CC.Ind_8             -0.02     0.14     0.09    -0.09    -0.03     0.45
## CC.Party             -0.17    -0.22    -0.23    -0.02    -0.07    -0.48
## CC.PI_Orientation     0.19    -0.03    -0.12    -0.27    -0.08    -0.42
##                   CC.Ind_3 CC.Ind_4 CC.Ind_7 CC.Ind_8 CC.Party
## CC.ATNS_1             0.25     0.24     0.30     0.18    -0.16
## CC.ATNS_2R           -0.08    -0.07    -0.09    -0.09    -0.04
## CC.ATNS_3            -0.06    -0.05    -0.06    -0.08    -0.11
## CC.ATNS_4            -0.08    -0.06    -0.07    -0.09    -0.10
## CC.ATNS_5            -0.17    -0.15    -0.14    -0.18     0.02
## CC.CCB_1_48          -0.65    -0.63    -0.67    -0.57     0.27
## CC.CCB_1_49          -0.68    -0.66    -0.70    -0.60     0.28
## CC.CCB_1_50          -0.68    -0.66    -0.70    -0.60     0.28
## CC.CCB_1_51          -0.61    -0.60    -0.64    -0.53     0.21
## CC.CNS_1             -0.10     0.00    -0.23    -0.02    -0.14
## CC.CNS_2             -0.08     0.00    -0.21    -0.02    -0.17
## CC.CNS_3              0.08     0.17    -0.07     0.14    -0.22
## CC.Ind_1              0.10     0.15     0.05     0.09    -0.23
## CC.Ind_2             -0.03    -0.05     0.05    -0.09    -0.02
## CC.Ind_5             -0.01     0.04    -0.07    -0.03    -0.07
## CC.Ind_6              0.50     0.52     0.43     0.45    -0.48
## CC.Ind_3              1.00     0.92     0.90     0.88    -0.61
## CC.Ind_4              0.92     1.00     0.80     0.93    -0.61
## CC.Ind_7              0.90     0.80     1.00     0.79    -0.55
## CC.Ind_8              0.88     0.93     0.79     1.00    -0.62
## CC.Party             -0.61    -0.61    -0.55    -0.62     1.00
## CC.PI_Orientation    -0.79    -0.78    -0.81    -0.74     0.40
##                   CC.PI_Orientation
## CC.ATNS_1                     -0.65
## CC.ATNS_2R                    -0.25
## CC.ATNS_3                     -0.28
## CC.ATNS_4                     -0.26
## CC.ATNS_5                     -0.22
## CC.CCB_1_48                    0.90
## CC.CCB_1_49                    0.92
## CC.CCB_1_50                    0.92
## CC.CCB_1_51                    0.89
## CC.CNS_1                       0.14
## CC.CNS_2                       0.19
## CC.CNS_3                      -0.03
## CC.Ind_1                      -0.12
## CC.Ind_2                      -0.27
## CC.Ind_5                      -0.08
## CC.Ind_6                      -0.42
## CC.Ind_3                      -0.79
## CC.Ind_4                      -0.78
## CC.Ind_7                      -0.81
## CC.Ind_8                      -0.74
## CC.Party                       0.40
## CC.PI_Orientation              1.00
## 
## n= 22 
## 
## 
## P
##                   CC.ATNS_1 CC.ATNS_2R CC.ATNS_3 CC.ATNS_4 CC.ATNS_5
## CC.ATNS_1                   0.0077     0.0009    0.0019    0.0010   
## CC.ATNS_2R        0.0077               0.0000    0.0000    0.0000   
## CC.ATNS_3         0.0009    0.0000               0.0000    0.0000   
## CC.ATNS_4         0.0019    0.0000     0.0000              0.0000   
## CC.ATNS_5         0.0010    0.0000     0.0000    0.0000             
## CC.CCB_1_48       0.0001    0.0960     0.0660    0.0916    0.1318   
## CC.CCB_1_49       0.0003    0.1508     0.1145    0.1561    0.2152   
## CC.CCB_1_50       0.0002    0.1299     0.1035    0.1355    0.1953   
## CC.CCB_1_51       0.0000    0.0917     0.0661    0.0886    0.1088   
## CC.CNS_1          0.6106    0.5567     0.5552    0.3416    0.5235   
## CC.CNS_2          0.3230    0.9736     0.9673    0.7457    0.9785   
## CC.CNS_3          0.9354    0.5295     0.3292    0.2437    0.4109   
## CC.Ind_1          0.5882    0.3028     0.4464    0.3986    0.2856   
## CC.Ind_2          0.3276    0.8015     0.5234    0.6090    0.6287   
## CC.Ind_5          0.6971    0.3781     0.4242    0.3962    0.3442   
## CC.Ind_6          0.9100    0.2154     0.3666    0.3369    0.1926   
## CC.Ind_3          0.2558    0.7102     0.7813    0.7248    0.4598   
## CC.Ind_4          0.2869    0.7422     0.8213    0.7854    0.4996   
## CC.Ind_7          0.1802    0.7046     0.7982    0.7587    0.5401   
## CC.Ind_8          0.4147    0.7002     0.7256    0.6891    0.4287   
## CC.Party          0.4908    0.8488     0.6326    0.6678    0.9167   
## CC.PI_Orientation 0.0010    0.2625     0.2023    0.2465    0.3281   
##                   CC.CCB_1_48 CC.CCB_1_49 CC.CCB_1_50 CC.CCB_1_51 CC.CNS_1
## CC.ATNS_1         0.0001      0.0003      0.0002      0.0000      0.6106  
## CC.ATNS_2R        0.0960      0.1508      0.1299      0.0917      0.5567  
## CC.ATNS_3         0.0660      0.1145      0.1035      0.0661      0.5552  
## CC.ATNS_4         0.0916      0.1561      0.1355      0.0886      0.3416  
## CC.ATNS_5         0.1318      0.2152      0.1953      0.1088      0.5235  
## CC.CCB_1_48                   0.0000      0.0000      0.0000      0.5574  
## CC.CCB_1_49       0.0000                  0.0000      0.0000      0.4933  
## CC.CCB_1_50       0.0000      0.0000                  0.0000      0.5779  
## CC.CCB_1_51       0.0000      0.0000      0.0000                  0.5299  
## CC.CNS_1          0.5574      0.4933      0.5779      0.5299              
## CC.CNS_2          0.3535      0.3109      0.3759      0.3184      0.0000  
## CC.CNS_3          0.8393      0.9356      0.8556      0.9218      0.0000  
## CC.Ind_1          0.6261      0.5261      0.4790      0.5403      0.9870  
## CC.Ind_2          0.0764      0.0643      0.0639      0.0610      0.5074  
## CC.Ind_5          0.5909      0.5036      0.4907      0.5229      0.9168  
## CC.Ind_6          0.1412      0.0911      0.0770      0.1111      0.8071  
## CC.Ind_3          0.0010      0.0005      0.0006      0.0023      0.6650  
## CC.Ind_4          0.0017      0.0009      0.0008      0.0034      0.9936  
## CC.Ind_7          0.0007      0.0003      0.0003      0.0013      0.3102  
## CC.Ind_8          0.0057      0.0034      0.0033      0.0109      0.9176  
## CC.Party          0.2293      0.2149      0.2037      0.3397      0.5273  
## CC.PI_Orientation 0.0000      0.0000      0.0000      0.0000      0.5303  
##                   CC.CNS_2 CC.CNS_3 CC.Ind_1 CC.Ind_2 CC.Ind_5 CC.Ind_6
## CC.ATNS_1         0.3230   0.9354   0.5882   0.3276   0.6971   0.9100  
## CC.ATNS_2R        0.9736   0.5295   0.3028   0.8015   0.3781   0.2154  
## CC.ATNS_3         0.9673   0.3292   0.4464   0.5234   0.4242   0.3666  
## CC.ATNS_4         0.7457   0.2437   0.3986   0.6090   0.3962   0.3369  
## CC.ATNS_5         0.9785   0.4109   0.2856   0.6287   0.3442   0.1926  
## CC.CCB_1_48       0.3535   0.8393   0.6261   0.0764   0.5909   0.1412  
## CC.CCB_1_49       0.3109   0.9356   0.5261   0.0643   0.5036   0.0911  
## CC.CCB_1_50       0.3759   0.8556   0.4790   0.0639   0.4907   0.0770  
## CC.CCB_1_51       0.3184   0.9218   0.5403   0.0610   0.5229   0.1111  
## CC.CNS_1          0.0000   0.0000   0.9870   0.5074   0.9168   0.8071  
## CC.CNS_2                   0.0000   0.9047   0.3952   0.8436   0.9757  
## CC.CNS_3          0.0000            0.9493   0.7203   0.9210   0.8749  
## CC.Ind_1          0.9047   0.9493            0.0158   0.0000   0.0007  
## CC.Ind_2          0.3952   0.7203   0.0158            0.0192   0.2312  
## CC.Ind_5          0.8436   0.9210   0.0000   0.0192            0.0067  
## CC.Ind_6          0.9757   0.8749   0.0007   0.2312   0.0067           
## CC.Ind_3          0.7116   0.7256   0.6650   0.8912   0.9482   0.0183  
## CC.Ind_4          0.9987   0.4544   0.5008   0.8315   0.8526   0.0129  
## CC.Ind_7          0.3555   0.7636   0.8397   0.8102   0.7510   0.0443  
## CC.Ind_8          0.9292   0.5356   0.6998   0.6869   0.8913   0.0374  
## CC.Party          0.4408   0.3314   0.3008   0.9329   0.7684   0.0246  
## CC.PI_Orientation 0.3935   0.9089   0.5870   0.2293   0.7241   0.0501  
##                   CC.Ind_3 CC.Ind_4 CC.Ind_7 CC.Ind_8 CC.Party
## CC.ATNS_1         0.2558   0.2869   0.1802   0.4147   0.4908  
## CC.ATNS_2R        0.7102   0.7422   0.7046   0.7002   0.8488  
## CC.ATNS_3         0.7813   0.8213   0.7982   0.7256   0.6326  
## CC.ATNS_4         0.7248   0.7854   0.7587   0.6891   0.6678  
## CC.ATNS_5         0.4598   0.4996   0.5401   0.4287   0.9167  
## CC.CCB_1_48       0.0010   0.0017   0.0007   0.0057   0.2293  
## CC.CCB_1_49       0.0005   0.0009   0.0003   0.0034   0.2149  
## CC.CCB_1_50       0.0006   0.0008   0.0003   0.0033   0.2037  
## CC.CCB_1_51       0.0023   0.0034   0.0013   0.0109   0.3397  
## CC.CNS_1          0.6650   0.9936   0.3102   0.9176   0.5273  
## CC.CNS_2          0.7116   0.9987   0.3555   0.9292   0.4408  
## CC.CNS_3          0.7256   0.4544   0.7636   0.5356   0.3314  
## CC.Ind_1          0.6650   0.5008   0.8397   0.6998   0.3008  
## CC.Ind_2          0.8912   0.8315   0.8102   0.6869   0.9329  
## CC.Ind_5          0.9482   0.8526   0.7510   0.8913   0.7684  
## CC.Ind_6          0.0183   0.0129   0.0443   0.0374   0.0246  
## CC.Ind_3                   0.0000   0.0000   0.0000   0.0025  
## CC.Ind_4          0.0000            0.0000   0.0000   0.0028  
## CC.Ind_7          0.0000   0.0000            0.0000   0.0087  
## CC.Ind_8          0.0000   0.0000   0.0000            0.0020  
## CC.Party          0.0025   0.0028   0.0087   0.0020           
## CC.PI_Orientation 0.0000   0.0000   0.0000   0.0000   0.0658  
##                   CC.PI_Orientation
## CC.ATNS_1         0.0010           
## CC.ATNS_2R        0.2625           
## CC.ATNS_3         0.2023           
## CC.ATNS_4         0.2465           
## CC.ATNS_5         0.3281           
## CC.CCB_1_48       0.0000           
## CC.CCB_1_49       0.0000           
## CC.CCB_1_50       0.0000           
## CC.CCB_1_51       0.0000           
## CC.CNS_1          0.5303           
## CC.CNS_2          0.3935           
## CC.CNS_3          0.9089           
## CC.Ind_1          0.5870           
## CC.Ind_2          0.2293           
## CC.Ind_5          0.7241           
## CC.Ind_6          0.0501           
## CC.Ind_3          0.0000           
## CC.Ind_4          0.0000           
## CC.Ind_7          0.0000           
## CC.Ind_8          0.0000           
## CC.Party          0.0658           
## CC.PI_Orientation
library(corrplot)
corrplot(mydata.cor2, method="color")

corrplot(mydata.cor2, addCoef.col = 1,  number.cex = 0.3, method = 'number')

Long Form

Rename Variables

#Renaming variables to fit pivot_longer command

## Benefit
CC$Ben.AFSCS <- CC$Ben_AFSCS
length(CC$Ben.AFSCS)
## [1] 1033
CC$Ben.BIO <- CC$Ben_BIO
length(CC$Ben.BIO)
## [1] 1033
CC$Ben.BECCS <- CC$Ben_BECCS
length(CC$Ben.BECCS) 
## [1] 1033
CC$Ben.DACCS <- CC$Ben_DACCS
length(CC$Ben.DACCS)
## [1] 1033
CC$Ben.EW <- CC$Ben_EW
length(CC$Ben.EW) 
## [1] 1033
CC$Ben.OF <- CC$Ben_OF
length(CC$Ben.OF) 
## [1] 1033
CC$Ben.BF <- CC$Ben_BF
length(CC$Ben.BF) 
## [1] 1033
CC$Ben.NE <- CC$Ben_NE
length(CC$Ben.NE) 
## [1] 1033
CC$Ben.SE <- CC$Ben_SE
length(CC$Ben.SE) 
## [1] 1033
CC$Ben.WE <- CC$Ben_WE
length(CC$Ben.WE) 
## [1] 1033
## Control
CC$Control.AFSCS <- CC$Control_AFSCS
length(CC$Control.AFSCS)
## [1] 1033
CC$Control.BIO <- CC$Control_BIO
length(CC$Control.BIO)
## [1] 1033
CC$Control.BECCS <- CC$Control_BECCS
length(CC$Control.BECCS)
## [1] 1033
CC$Control.DACCS <- CC$Control_DACCS
length(CC$Control.DACCS)
## [1] 1033
CC$Control.EW <- CC$Control_EW
length(CC$Control.EW)
## [1] 1033
CC$Control.OF <- CC$Control_OF
length(CC$Control.OF)
## [1] 1033
CC$Control.BF <- CC$Control_BF
length(CC$Control.BF)
## [1] 1033
CC$Control.NE <- CC$Control_NE
length(CC$Control.NE)
## [1] 1033
CC$Control.SE <- CC$Control_SE
length(CC$Control.SE)
## [1] 1033
CC$Control.WE <- CC$Control_WE
length(CC$Control.WE)
## [1] 1033
## Familiarity
CC$Familiar.AFSCS <- CC$Familiar_AFSCS
length(CC$Familiar.AFSCS)
## [1] 1033
CC$Familiar.BIO <- CC$Familiar_BIO
length(CC$Familiar.BIO)
## [1] 1033
CC$Familiar.BECCS <- CC$Familiar_BECCS
length(CC$Familiar.BECCS)
## [1] 1033
CC$Familiar.DACCS <- CC$Familiar_DACCS
length(CC$Familiar.DACCS)
## [1] 1033
CC$Familiar.EW <- CC$Familiar_EW
length(CC$Familiar.EW)
## [1] 1033
CC$Familiar.OF <- CC$Familiar_OF
length(CC$Familiar.OF)
## [1] 1033
CC$Familiar.BF <- CC$Familiar_BF
length(CC$Familiar.BF)
## [1] 1033
CC$Familiar.NE <- CC$Familiar_NE
length(CC$Familiar.NE)
## [1] 1033
CC$Familiar.SE <- CC$Familiar_SE
length(CC$Familiar.SE)
## [1] 1033
CC$Familiar.WE <- CC$Familiar_WE
length(CC$Familiar.WE)
## [1] 1033
## Naturalness
CC$Naturalness.AFSCS <- CC$Nat_Score_AFSCS
length(CC$Naturalness.AFSCS)
## [1] 1033
CC$Naturalness.BIO <- CC$Nat_Score_BIO
length(CC$Naturalness.BIO)
## [1] 1033
CC$Naturalness.BECCS <- CC$Nat_Score_BECCS
length(CC$Naturalness.BECCS)
## [1] 1033
CC$Naturalness.DACCS <- CC$Nat_Score_DACCS
length(CC$Naturalness.DACCS)
## [1] 1033
CC$Naturalness.EW <- CC$Nat_Score_EW
length(CC$Naturalness.EW)
## [1] 1033
CC$Naturalness.OF <- CC$Nat_Score_OF
length(CC$Naturalness.OF)
## [1] 1033
CC$Naturalness.BF <- CC$Nat_Score_BF
length(CC$Naturalness.BF)
## [1] 1033
CC$Naturalness.NE <- CC$Nat_Score_NE
length(CC$Naturalness.NE)
## [1] 1033
CC$Naturalness.SE <- CC$Nat_Score_SE
length(CC$Naturalness.SE)
## [1] 1033
CC$Naturalness.WE <- CC$Nat_Score_WE
length(CC$Naturalness.WE)
## [1] 1033
## Risk
CC$Risk.AFSCS <- CC$Risk_Score_AFSCS
length(CC$Risk.AFSCS)
## [1] 1033
CC$Risk.BIO <- CC$Risk_Score_BIO
length(CC$Risk.BIO)
## [1] 1033
CC$Risk.BECCS <- CC$Risk_Score_BECCS
length(CC$Risk.BECCS)
## [1] 1033
CC$Risk.DACCS <- CC$Risk_Score_DACCS
length(CC$Risk.DACCS)
## [1] 1033
CC$Risk.EW <- CC$Risk_Score_EW
length(CC$Risk.EW)
## [1] 1033
CC$Risk.OF <- CC$Risk_Score_OF
length(CC$Risk.OF)
## [1] 1033
CC$Risk.BF <- CC$Risk_Score_BF
length(CC$Risk.BF)
## [1] 1033
CC$Risk.NE <- CC$Risk_Score_NE
length(CC$Risk.NE)
## [1] 1033
CC$Risk.SE <- CC$Risk_Score_SE
length(CC$Risk.SE)
## [1] 1033
CC$Risk.WE <- CC$Risk_Score_WE
length(CC$Risk.WE)
## [1] 1033
## Support
CC$Support.AFSCS <- CC$Support_Score_AFSCS
length(CC$Support.AFSCS)
## [1] 1033
CC$Support.BIO <- CC$Support_Score_BIO
length(CC$Support.BIO)
## [1] 1033
CC$Support.BECCS <- CC$Support_Score_BECCS
length(CC$Support.BECCS)
## [1] 1033
CC$Support.DACCS <- CC$Support_Score_DACCS
length(CC$Support.DACCS)
## [1] 1033
CC$Support.EW <- CC$Support_Score_EW
length(CC$Support.EW)
## [1] 1033
CC$Support.OF <- CC$Support_Score_OF
length(CC$Support.OF)
## [1] 1033
CC$Support.BF <- CC$Support_Score_BF
length(CC$Support.BF)
## [1] 1033
CC$Support.NE <- CC$Support_Score_NE
length(CC$Support.NE)
## [1] 1033
CC$Support.SE <- CC$Support_Score_SE
length(CC$Support.SE)
## [1] 1033
CC$Support.WE <- CC$Support_Score_WE
length(CC$Support.WE)
## [1] 1033
## Understanding
CC$Understanding.AFSCS <- CC$Und_AFSCS
length(CC$Understanding.AFSCS)
## [1] 1033
CC$Understanding.BIO <- CC$Und_BIO
length(CC$Understanding.BIO)
## [1] 1033
CC$Understanding.BECCS <- CC$Und_BECCS
length(CC$Understanding.BECCS)
## [1] 1033
CC$Understanding.DACCS <- CC$Und_DACCS
length(CC$Understanding.DACCS)
## [1] 1033
CC$Understanding.EW <- CC$Und_EW
length(CC$Understanding.EW)
## [1] 1033
CC$Understanding.OF <- CC$Und_OF
length(CC$Understanding.OF)
## [1] 1033
CC$Understanding.BF <- CC$Und_BF
length(CC$Understanding.BF)
## [1] 1033
CC$Understanding.NE <- CC$Und_NE
length(CC$Understanding.NE)
## [1] 1033
CC$Understanding.SE <- CC$Und_SE
length(CC$Understanding.SE)
## [1] 1033
CC$Understanding.WE <- CC$Und_AFSCS
length(CC$Understanding.WE)
## [1] 1033
## Familiarity/Understanding (Mean)
length(CC$FR.AFSCS)
## [1] 1033
length(CC$FR.BIO)
## [1] 1033
length(CC$FR.BECCS)
## [1] 1033
length(CC$FR.DACCS)
## [1] 1033
length(CC$FR.EW)
## [1] 1033
length(CC$FR.OF)
## [1] 1033
length(CC$FR.BF)
## [1] 1033
length(CC$FR.NE)
## [1] 1033
length(CC$FR.SE)
## [1] 1033
length(CC$FR.WE)
## [1] 1033
#Benefit - Risk Difference Score
length(CC$BRDiff.AFSCS)
## [1] 1033
length(CC$BRDiff.BIO)
## [1] 1033
length(CC$BRDiff.BECCS)
## [1] 1033
length(CC$BRDiff.DACCS)
## [1] 1033
length(CC$BRDiff.EW)
## [1] 1033
length(CC$BRDiff.OF)
## [1] 1033
length(CC$BRDiff.BF)
## [1] 1033
length(CC$BRDiff.NE)
## [1] 1033
length(CC$BRDiff.SE)
## [1] 1033
length(CC$BRDiff.WE)
## [1] 1033

Transform: Wide to Long

library(lmerTest)
## 
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
## 
##     lmer
## The following object is masked from 'package:stats':
## 
##     step
library(lme4)

#Reshape to long form
CCvector <- c("Ben.AFSCS", "Ben.BIO", "Ben.BECCS", "Ben.DACCS", "Ben.EW", "Ben.OF" , "Ben.BF", "Ben.NE", "Ben.SE", "Ben.WE", "Control.AFSCS" , "Control.BIO" , "Control.BECCS" , "Control.DACCS", "Control.EW", "Control.OF", "Control.BF", "Control.NE", "Control.SE", "Control.WE", "Familiar.AFSCS" , "Familiar.BIO", "Familiar.BECCS" , "Familiar.DACCS", "Familiar.EW", "Familiar.OF", "Familiar.BF", "Familiar.NE", "Familiar.SE", "Familiar.WE", "Naturalness.AFSCS", "Naturalness.BIO" , "Naturalness.BECCS", "Naturalness.DACCS", "Naturalness.EW", "Naturalness.OF", "Naturalness.BF", "Naturalness.NE", "Naturalness.SE", "Naturalness.WE", "Risk.AFSCS", "Risk.BIO", "Risk.BECCS", "Risk.DACCS", "Risk.EW", "Risk.OF", "Risk.BF", "Risk.NE" , "Risk.SE", "Risk.WE", "Support.AFSCS", "Support.BIO", "Support.BECCS" , "Support.DACCS", "Support.EW" , "Support.OF", "Support.BF", "Support.NE", "Support.SE", "Support.WE", "Understanding.AFSCS", "Understanding.BIO", "Understanding.BECCS", "Understanding.DACCS", "Understanding.EW", "Understanding.OF", "Understanding.BF", "Understanding.NE","Understanding.SE","Understanding.WE", "FR.AFSCS", "FR.BIO", "FR.BECCS", "FR.DACCS", "FR.EW", "FR.OF", "FR.BF", "FR.NE", "FR.SE", "FR.WE", "BRDiff.AFSCS", "BRDiff.BIO", "BRDiff.BECCS", "BRDiff.DACCS", "BRDiff.EW", "BRDiff.OF", "BRDiff.BF", "BRDiff.NE", "BRDiff.SE", "BRDiff.WE")

L <- reshape(data = CC,
       varying = CCvector,
       timevar = "Type",
       direction = "long")

Mixed Effects Models

Center Variables

# Describe & Mean Center Long Variables 

## By Technology Measures
table(L$Type) 
## 
## AFSCS BECCS    BF   BIO DACCS    EW    NE    OF    SE    WE 
##  1033  1033  1033  1033  1033  1033  1033  1033  1033  1033
describe(L$Ben) 
## L$Ben 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3099     7231      101    0.999    57.98    29.92        5       20 
##      .25      .50      .75      .90      .95 
##       40       61       77       90      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Control) 
## L$Control 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3099     7231      100    0.999    64.83     28.5       17       29 
##      .25      .50      .75      .90      .95 
##       50       69       85       99      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Familiar) 
## L$Familiar 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3099     7231      101    0.997    46.43    40.01        0        0 
##      .25      .50      .75      .90      .95 
##       13       45       79       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$Naturalness) 
## L$Naturalness 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3099     7231      368        1    39.99    24.45     5.00    12.00 
##      .25      .50      .75      .90      .95 
##    24.75    39.00    54.00    70.25    75.00 
## 
## lowest :   0.00   0.25   0.50   0.75   1.00, highest:  98.00  98.75  99.50  99.75 100.00
describe(L$Risk) 
## L$Risk 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3099     7231      201    0.998     33.1     30.8     0.00     0.00 
##      .25      .50      .75      .90      .95 
##     8.25    28.50    52.00    72.60    85.00 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(L$Support) 
## L$Support 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3099     7231      201    0.999     59.7    32.84     0.45    13.00 
##      .25      .50      .75      .90      .95 
##    42.00    62.50    82.50    99.50   100.00 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(L$Understanding) 
## L$Understanding 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3186     7144      101    0.999    57.62    34.31        4       12 
##      .25      .50      .75      .90      .95 
##       34       61       83       98      100 
## 
## lowest :   0   1   2   3   4, highest:  96  97  98  99 100
describe(L$FR) 
## L$FR 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3099     7231      201        1    52.35    34.45      4.0     11.0 
##      .25      .50      .75      .90      .95 
##     27.5     51.0     78.5     94.5    100.0 
## 
## lowest :   0.0   0.5   1.0   1.5   2.0, highest:  98.0  98.5  99.0  99.5 100.0
describe(L$BRDiff) 
## L$BRDiff 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##     3099     7231      366        1    24.88    49.59   -55.00   -31.00 
##      .25      .50      .75      .90      .95 
##    -3.25    25.50    58.50    82.00    91.50 
## 
## lowest : -100.0  -99.0  -93.0  -92.5  -92.0, highest:   98.0   98.5   99.0   99.5  100.0
L$Benefit.c <- L$Ben - 57.98
L$Control.c <- L$Control - 64.83
L$Familiarity <- L$Familiar
L$Familiarity.c <- L$Familiarity - 46.43
L$Naturalness.c <- L$Naturalness - 39.99 
L$Risk.c <- L$Risk - 33.1
L$Support.c <- L$Support - 59.7
L$Understanding.c <- L$Understanding - 57.62
L$FR.c <- L$FR - 52.35
L$BFDiff.c <- L$BRDiff - 24.88

## Individual Difference Measures 

describe(L$ATNS_Score)
## L$ATNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10330        0      368        1    54.69    24.41     18.6     26.0 
##      .25      .50      .75      .90      .95 
##     40.2     54.6     69.0     82.2     92.4 
## 
## lowest :   0.0   2.0   3.0   4.0   6.4, highest:  97.6  98.8  99.2  99.8 100.0
L$ATNS_Score.c <- L$ATNS_Score - 54.69
describe(L$CCB_Score)
## L$CCB_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10330        0      251    0.987    81.61    23.28    24.25    47.25 
##      .25      .50      .75      .90      .95 
##    75.00    91.25    99.00   100.00   100.00 
## 
## lowest :   0.00   2.00   3.75   4.00   4.75, highest:  99.00  99.25  99.50  99.75 100.00
L$CCBelief_Score.c <- L$CCB_Score -  81.61
describe(L$CNS_Score)
## L$CNS_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10330        0      323        1    63.42    18.65     35.0     43.2 
##      .25      .50      .75      .90      .95 
##     53.0     63.0     74.6     85.0     91.8 
## 
## lowest :   0.0   8.6  10.0  12.8  16.0, highest:  98.2  98.6  99.2  99.6 100.0
L$CNS_Score.c <- L$CNS_Score -63.42 
describe(L$Individualism_Score)
## L$Individualism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10330        0      267        1    70.81    18.89    40.75    49.75 
##      .25      .50      .75      .90      .95 
##    60.00    71.50    83.75    91.75    96.25 
## 
## lowest :   0.75   6.00   6.25   6.50  15.50, highest:  99.00  99.25  99.50  99.75 100.00
L$Individualism_Score.c <- L$Individualism_Score - 70.81
describe(L$Collectivism_Score)
## L$Collectivism_Score 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10330        0      342        1    54.17     27.2    12.75    21.50 
##      .25      .50      .75      .90      .95 
##    38.25    54.50    72.00    85.50    93.25 
## 
## lowest :   0.00   0.25   0.50   1.00   1.75, highest:  98.25  98.50  99.50  99.75 100.00
L$Collectivism_Score.c <- L$Collectivism_Score - 54.17 
describe(L$Ideology)
## L$Ideology 
##        n  missing distinct     Info     Mean      Gmd      .05      .10 
##    10330        0       13     0.87    1.947    0.569      1.0      1.5 
##      .25      .50      .75      .90      .95 
##      1.5      2.0      2.0      2.5      3.0 
## 
## lowest : -1.0 -0.5  0.0  0.5  1.0, highest:  3.0  3.5  4.0  5.0  6.0
##                                                                             
## Value       -1.0  -0.5   0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0
## Frequency     10    40    40   110   540  2420  5020  1370   640   110    10
## Proportion 0.001 0.004 0.004 0.011 0.052 0.234 0.486 0.133 0.062 0.011 0.001
##                       
## Value        5.0   6.0
## Frequency     10    10
## Proportion 0.001 0.001
L$Ideology.c <- L$Ideology - 1.947

Contrast Codes

#C1. DACCS vs. Grand Mean
L$C1 <- (0)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') +(1)*(L$Type == 'DACCS') +(0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C2. Biofuel vs. Grand Mean
L$C2 <- (0)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (1)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C3. Nuclear Energy vs. Grand Mean
L$C3 <- (0)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (1)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C4. BECCS vs. Grand Mean
L$C4 <- (0)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (1)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C5. Enhanced Weathering vs. Grand Mean
L$C5 <- (0)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (1)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C6. Ocean fertilization vs. Grand Mean
L$C6 <- (0)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (1)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')

#C7. Solar Energy vs. Grand Mean
L$C7 <- (0)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (1)*(L$Type == 'SE') + (0)*(L$Type == 'WE')
                                   
#C8. Afforestation/reforestation and Soil Carbon Sequestration vs. Grand Mean
L$C8 <- (1)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (0)*(L$Type == 'WE')
                                   
#C9. Wind Energy vs. Grand Mean
L$C9 <- (0)*(L$Type == 'AFSCS') + (0)*(L$Type == 'BIO') + (0)*(L$Type == 'BECCS') + (0)*(L$Type == 'DACCS') + (0)*(L$Type == 'EW') + (0)*(L$Type == 'OF') + (0)*(L$Type == 'BF') + (0)*(L$Type == 'NE') + (0)*(L$Type == 'SE') + (1)*(L$Type == 'WE')

ANOVAs

Benefit

modA.4 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.4 <- lmer(Ben ~ 1 + (1|id), data = L)

summary(modA.4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28385.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4352 -0.5146  0.0631  0.5681  3.1759 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 287.9    16.97   
##  Residual             378.5    19.46   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   53.2626     1.2720 3086.2930  41.874  < 2e-16 ***
## C1             1.9219     1.6360 2478.3405   1.175 0.240217    
## C2            -2.2926     1.7654 2441.2064  -1.299 0.194184    
## C3             6.2690     1.7668 2472.4609   3.548 0.000395 ***
## C4             2.1007     1.6569 2478.2035   1.268 0.204973    
## C5            -0.4471     1.6575 2495.9323  -0.270 0.787385    
## C6             0.5182     1.6618 2479.0967   0.312 0.755189    
## C7            13.7277     1.7846 2477.1998   7.692 2.07e-14 ***
## C8            15.3323     1.6432 2473.6132   9.330  < 2e-16 ***
## C9            12.5640     1.7683 2486.0313   7.105 1.56e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.664                                                        
## C2 -0.588  0.471                                                 
## C3 -0.597  0.478  0.388                                          
## C4 -0.654  0.509  0.467  0.469                                   
## C5 -0.660  0.516  0.469  0.478  0.508                            
## C6 -0.652  0.506  0.457  0.481  0.499  0.503                     
## C7 -0.592  0.471  0.385  0.391  0.469  0.472  0.462              
## C8 -0.659  0.512  0.468  0.466  0.503  0.509  0.506  0.478       
## C9 -0.601  0.486  0.391  0.398  0.475  0.476  0.473  0.395  0.480
tab_model(modA.4,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.26 1.27 50.77 – 55.76 41.87 <0.001
C1 1.92 1.64 -1.29 – 5.13 1.17 0.240
C2 -2.29 1.77 -5.75 – 1.17 -1.30 0.194
C3 6.27 1.77 2.80 – 9.73 3.55 <0.001
C4 2.10 1.66 -1.15 – 5.35 1.27 0.205
C5 -0.45 1.66 -3.70 – 2.80 -0.27 0.787
C6 0.52 1.66 -2.74 – 3.78 0.31 0.755
C7 13.73 1.78 10.23 – 17.23 7.69 <0.001
C8 15.33 1.64 12.11 – 18.55 9.33 <0.001
C9 12.56 1.77 9.10 – 16.03 7.11 <0.001
Random Effects
σ2 378.52
τ00 id 287.94
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.054 / 0.463
summary(modC.4)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28646.6
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.10563 -0.53235  0.05168  0.61065  2.84417 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 277.1    16.65   
##  Residual             421.3    20.53   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   57.9787     0.6358 1032.0000   91.19   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.4,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.98 0.64 56.73 – 59.23 91.19 <0.001
Random Effects
σ2 421.30
τ00 id 277.14
ICC 0.40
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.000 / 0.397
anova(modC.4, modA.4)
## refitting model(s) with ML (instead of REML)

Difference Benefit/Risk Scores

modA.5 <- lmer(BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.5 <- lmer(BRDiff ~ 1 + (1|id), data = L)

summary(modA.5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31282.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9132 -0.5398  0.0435  0.5736  3.1191 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  589.9   24.29   
##  Residual             1029.7   32.09   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   18.318      2.037 3078.449   8.992  < 2e-16 ***
## C1            -6.048      2.671 2553.236  -2.264   0.0236 *  
## C2             6.112      2.885 2506.924   2.119   0.0342 *  
## C3           -12.037      2.885 2541.897  -4.172 3.12e-05 ***
## C4            -1.060      2.705 2553.147  -0.392   0.6953    
## C5            -4.087      2.705 2573.268  -1.511   0.1309    
## C6           -10.680      2.713 2553.934  -3.936 8.49e-05 ***
## C7            37.559      2.914 2547.501  12.890  < 2e-16 ***
## C8            34.209      2.683 2547.793  12.750  < 2e-16 ***
## C9            30.287      2.887 2557.379  10.493  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.676                                                        
## C2 -0.601  0.472                                                 
## C3 -0.610  0.478  0.393                                          
## C4 -0.667  0.509  0.467  0.469                                   
## C5 -0.672  0.515  0.469  0.477  0.508                            
## C6 -0.665  0.506  0.458  0.479  0.499  0.503                     
## C7 -0.605  0.472  0.390  0.396  0.468  0.471  0.462              
## C8 -0.672  0.512  0.468  0.467  0.503  0.509  0.505  0.477       
## C9 -0.614  0.485  0.396  0.402  0.475  0.476  0.473  0.398  0.480
tab_model(modA.5,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.32 2.04 14.32 – 22.31 8.99 <0.001
C1 -6.05 2.67 -11.28 – -0.81 -2.26 0.024
C2 6.11 2.88 0.46 – 11.77 2.12 0.034
C3 -12.04 2.88 -17.69 – -6.38 -4.17 <0.001
C4 -1.06 2.71 -6.36 – 4.24 -0.39 0.695
C5 -4.09 2.70 -9.39 – 1.22 -1.51 0.131
C6 -10.68 2.71 -16.00 – -5.36 -3.94 <0.001
C7 37.56 2.91 31.85 – 43.27 12.89 <0.001
C8 34.21 2.68 28.95 – 39.47 12.75 <0.001
C9 30.29 2.89 24.63 – 35.95 10.49 <0.001
Random Effects
σ2 1029.74
τ00 id 589.87
ICC 0.36
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.163 / 0.468
summary(modC.5)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31994.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4838 -0.5754  0.0260  0.6643  2.7425 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  535.2   23.14   
##  Residual             1380.2   37.15   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   24.8814     0.9816 1032.0000   25.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.5,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 24.88 0.98 22.96 – 26.81 25.35 <0.001
Random Effects
σ2 1380.17
τ00 id 535.24
ICC 0.28
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.000 / 0.279
anova(modC.5, modA.5)
## refitting model(s) with ML (instead of REML)

Familiarity

modA.7 <- lmer(Familiarity ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.7 <- lmer(Familiarity ~ 1 + (1|id), data = L)
## boundary (singular) fit: see ?isSingular
summary(modA.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Familiarity ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 28667.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5108 -0.6389 -0.0497  0.6138  3.4708 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.3    13.54   
##  Residual             477.5    21.85   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   27.4596     1.3392 3070.9606  20.504  < 2e-16 ***
## C1            -0.9268     1.7912 2660.2651  -0.517  0.60492    
## C2            29.9723     1.9376 2600.4444  15.469  < 2e-16 ***
## C3            42.1717     1.9356 2639.3012  21.787  < 2e-16 ***
## C4             2.8784     1.8141 2660.2697   1.587  0.11271    
## C5            -5.6227     1.8128 2682.9563  -3.102  0.00194 ** 
## C6            -2.2287     1.8194 2660.7957  -1.225  0.22070    
## C7            60.8342     1.9546 2646.0179  31.123  < 2e-16 ***
## C8            35.7122     1.7996 2653.9923  19.844  < 2e-16 ***
## C9            54.2108     1.9357 2656.9459  28.005  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.690                                                        
## C2 -0.617  0.472                                                 
## C3 -0.624  0.477  0.400                                          
## C4 -0.680  0.509  0.467  0.469                                   
## C5 -0.685  0.514  0.469  0.476  0.507                            
## C6 -0.678  0.506  0.459  0.477  0.499  0.503                     
## C7 -0.619  0.471  0.397  0.402  0.468  0.471  0.463              
## C8 -0.685  0.512  0.469  0.468  0.504  0.508  0.505  0.476       
## C9 -0.628  0.483  0.403  0.408  0.474  0.475  0.472  0.404  0.478
tab_model(modA.7,
          show.stat = T, show.se = T)
  Familiarity
Predictors Estimates std. Error CI Statistic p
(Intercept) 27.46 1.34 24.83 – 30.09 20.50 <0.001
C1 -0.93 1.79 -4.44 – 2.59 -0.52 0.605
C2 29.97 1.94 26.17 – 33.77 15.47 <0.001
C3 42.17 1.94 38.38 – 45.97 21.79 <0.001
C4 2.88 1.81 -0.68 – 6.44 1.59 0.113
C5 -5.62 1.81 -9.18 – -2.07 -3.10 0.002
C6 -2.23 1.82 -5.80 – 1.34 -1.22 0.221
C7 60.83 1.95 57.00 – 64.67 31.12 <0.001
C8 35.71 1.80 32.18 – 39.24 19.84 <0.001
C9 54.21 1.94 50.42 – 58.01 28.01 <0.001
Random Effects
σ2 477.53
τ00 id 183.26
ICC 0.28
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.461 / 0.610
summary(modC.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Familiarity ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30804.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.33181 -0.95891 -0.04099  0.93431  1.53669 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)    0      0.00   
##  Residual             1215     34.86   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   46.4288     0.6262 3098.0000   74.14   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## optimizer (nloptwrap) convergence code: 0 (OK)
## boundary (singular) fit: see ?isSingular
tab_model(modC.7,
          show.stat = T, show.se = T)
  Familiarity
Predictors Estimates std. Error CI Statistic p
(Intercept) 46.43 0.63 45.20 – 47.66 74.14 <0.001
Random Effects
σ2 1215.31
τ00 id 0.00
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.000 / NA
anova(modC.7, modA.7)
## refitting model(s) with ML (instead of REML)
## Warning in optwrap(optimizer, devfun, x@theta, lower = x@lower, calc.derivs =
## TRUE, : convergence code 3 from bobyqa: bobyqa -- a trust region step failed to
## reduce q

Familiarity/Understanding Mean Scores (COMBINED)

modA.6 <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.6 <- lmer(FR ~ 1 + (1|id), data = L)

summary(modA.6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27833.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0364 -0.5885 -0.0151  0.5956  3.1054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 206.2    14.36   
##  Residual             331.1    18.20   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   37.4355     1.1648 3080.8192  32.140  < 2e-16 ***
## C1            -1.2691     1.5193 2532.2689  -0.835  0.40361    
## C2            22.4050     1.6405 2488.8121  13.657  < 2e-16 ***
## C3            29.9624     1.6409 2522.6960  18.259  < 2e-16 ***
## C4             0.2945     1.5387 2532.1634   0.191  0.84823    
## C5            -4.9841     1.5388 2551.5791  -3.239  0.00121 ** 
## C6             0.7724     1.5433 2532.9878   0.501  0.61676    
## C7            48.3596     1.6574 2528.0376  29.178  < 2e-16 ***
## C8            29.8444     1.5261 2527.0387  19.556  < 2e-16 ***
## C9            44.9082     1.6420 2537.6100  27.350  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.673                                                        
## C2 -0.598  0.472                                                 
## C3 -0.606  0.478  0.392                                          
## C4 -0.664  0.509  0.467  0.469                                   
## C5 -0.669  0.515  0.469  0.478  0.508                            
## C6 -0.661  0.506  0.457  0.480  0.499  0.503                     
## C7 -0.601  0.471  0.389  0.394  0.469  0.471  0.462              
## C8 -0.668  0.512  0.468  0.467  0.503  0.509  0.505  0.477       
## C9 -0.610  0.485  0.395  0.401  0.475  0.476  0.473  0.397  0.480
tab_model(modA.6,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.44 1.16 35.15 – 39.72 32.14 <0.001
C1 -1.27 1.52 -4.25 – 1.71 -0.84 0.404
C2 22.40 1.64 19.19 – 25.62 13.66 <0.001
C3 29.96 1.64 26.74 – 33.18 18.26 <0.001
C4 0.29 1.54 -2.72 – 3.31 0.19 0.848
C5 -4.98 1.54 -8.00 – -1.97 -3.24 0.001
C6 0.77 1.54 -2.25 – 3.80 0.50 0.617
C7 48.36 1.66 45.11 – 51.61 29.18 <0.001
C8 29.84 1.53 26.85 – 32.84 19.56 <0.001
C9 44.91 1.64 41.69 – 48.13 27.35 <0.001
Random Effects
σ2 331.14
τ00 id 206.19
ICC 0.38
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.401 / 0.631
summary(modC.6)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 29821.1
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -1.94080 -0.79495 -0.03855  0.83631  1.81154 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  74.84    8.651  
##  Residual             816.06   28.567  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   52.3541     0.5795 1032.0000   90.35   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.6,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.35 0.58 51.22 – 53.49 90.35 <0.001
Random Effects
σ2 816.06
τ00 id 74.84
ICC 0.08
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.000 / 0.084
anova(modC.6, modA.6)
## refitting model(s) with ML (instead of REML)

Naturalness

modA.2 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.2 <- lmer(Naturalness ~ 1 + (1|id), data = L)

summary(modA.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 26542.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5590 -0.6146 -0.0188  0.6110  3.4214 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  66.07    8.128  
##  Residual             255.98   15.999  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   38.7758     0.9529 3071.0207  40.694  < 2e-16 ***
## C1           -13.0130     1.2917 2757.1250 -10.074  < 2e-16 ***
## C2             0.6991     1.3996 2685.1901   0.499  0.61748    
## C3           -13.0158     1.3968 2725.9700  -9.318  < 2e-16 ***
## C4            -3.8060     1.3082 2757.2346  -2.909  0.00365 ** 
## C5            -3.0749     1.3065 2781.1438  -2.354  0.01866 *  
## C6            -6.8214     1.3121 2757.4352  -5.199 2.15e-07 ***
## C7            16.4597     1.4103 2733.5148  11.671  < 2e-16 ***
## C8            23.0426     1.2980 2750.3673  17.752  < 2e-16 ***
## C9            15.4236     1.3962 2744.8882  11.047  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.699                                                        
## C2 -0.628  0.472                                                 
## C3 -0.635  0.477  0.407                                          
## C4 -0.690  0.509  0.467  0.469                                   
## C5 -0.694  0.514  0.469  0.475  0.506                            
## C6 -0.687  0.506  0.461  0.475  0.499  0.503                     
## C7 -0.629  0.471  0.404  0.408  0.467  0.470  0.463              
## C8 -0.694  0.512  0.469  0.469  0.504  0.508  0.505  0.474       
## C9 -0.638  0.482  0.409  0.414  0.473  0.474  0.472  0.410  0.477
tab_model(modA.2,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.78 0.95 36.91 – 40.64 40.69 <0.001
C1 -13.01 1.29 -15.55 – -10.48 -10.07 <0.001
C2 0.70 1.40 -2.05 – 3.44 0.50 0.617
C3 -13.02 1.40 -15.75 – -10.28 -9.32 <0.001
C4 -3.81 1.31 -6.37 – -1.24 -2.91 0.004
C5 -3.07 1.31 -5.64 – -0.51 -2.35 0.019
C6 -6.82 1.31 -9.39 – -4.25 -5.20 <0.001
C7 16.46 1.41 13.69 – 19.22 11.67 <0.001
C8 23.04 1.30 20.50 – 25.59 17.75 <0.001
C9 15.42 1.40 12.69 – 18.16 11.05 <0.001
Random Effects
σ2 255.98
τ00 id 66.07
ICC 0.21
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.307 / 0.449
summary(modC.2)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27767.4
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.17900 -0.67989 -0.04767  0.61274  3.03592 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  52.78    7.265  
##  Residual             408.92   20.222  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   39.9898     0.4278 1032.0000   93.47   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.2,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 39.99 0.43 39.15 – 40.83 93.47 <0.001
Random Effects
σ2 408.92
τ00 id 52.78
ICC 0.11
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.000 / 0.114
anova(modC.2, modA.2)
## refitting model(s) with ML (instead of REML)

Risk

modA.3 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.3 <- lmer(Risk ~ 1 + (1|id), data = L)

summary(modA.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28183.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5937 -0.6121 -0.0692  0.5627  3.6688 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 186.0    13.64   
##  Residual             392.4    19.81   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   34.824      1.236 3073.917  28.180  < 2e-16 ***
## C1             8.104      1.637 2603.391   4.950 7.88e-07 ***
## C2            -8.219      1.769 2550.596  -4.645 3.57e-06 ***
## C3            18.477      1.769 2587.689  10.447  < 2e-16 ***
## C4             3.297      1.658 2603.343   1.988   0.0469 *  
## C5             3.725      1.657 2624.855   2.247   0.0247 *  
## C6            11.433      1.663 2604.021   6.876 7.70e-12 ***
## C7           -23.874      1.786 2593.853 -13.366  < 2e-16 ***
## C8           -18.746      1.645 2597.511 -11.398  < 2e-16 ***
## C9           -17.561      1.769 2604.314  -9.926  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.683                                                        
## C2 -0.609  0.472                                                 
## C3 -0.617  0.477  0.396                                          
## C4 -0.674  0.509  0.467  0.469                                   
## C5 -0.679  0.515  0.469  0.477  0.507                            
## C6 -0.672  0.506  0.458  0.478  0.499  0.503                     
## C7 -0.612  0.472  0.393  0.399  0.468  0.471  0.463              
## C8 -0.679  0.512  0.468  0.468  0.504  0.508  0.505  0.476       
## C9 -0.621  0.484  0.399  0.405  0.474  0.475  0.473  0.401  0.479
tab_model(modA.3,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.82 1.24 32.40 – 37.25 28.18 <0.001
C1 8.10 1.64 4.89 – 11.31 4.95 <0.001
C2 -8.22 1.77 -11.69 – -4.75 -4.65 <0.001
C3 18.48 1.77 15.01 – 21.94 10.45 <0.001
C4 3.30 1.66 0.05 – 6.55 1.99 0.047
C5 3.72 1.66 0.48 – 6.97 2.25 0.025
C6 11.43 1.66 8.17 – 14.69 6.88 <0.001
C7 -23.87 1.79 -27.38 – -20.37 -13.37 <0.001
C8 -18.75 1.64 -21.97 – -15.52 -11.40 <0.001
C9 -17.56 1.77 -21.03 – -14.09 -9.93 <0.001
Random Effects
σ2 392.45
τ00 id 186.03
ICC 0.32
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.225 / 0.474
summary(modC.3)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 29129.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.0387 -0.7433 -0.1324  0.6451  2.7981 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 174.3    13.20   
##  Residual             569.7    23.87   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   33.0973     0.5938 1032.0000   55.74   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.3,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 33.10 0.59 31.93 – 34.26 55.74 <0.001
Random Effects
σ2 569.75
τ00 id 174.31
ICC 0.23
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.000 / 0.234
anova(modC.3, modA.3)
## refitting model(s) with ML (instead of REML)

Support (Behavioral Intent)

modA.1 <- lmer(Support ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)


modC.1 <- lmer(Support ~ 1 + (1|id), data = L)

summary(modA.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28616.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2167 -0.5115  0.0664  0.5574  3.0875 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 310.2    17.61   
##  Residual             408.0    20.20   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   52.92592    1.32047 3086.28324  40.081  < 2e-16 ***
## C1            -0.03794    1.69842 2477.86487  -0.022 0.982180    
## C2             7.05492    1.83271 2440.69740   3.849 0.000121 ***
## C3            -1.81584    1.83417 2471.97653  -0.990 0.322267    
## C4             1.72122    1.72013 2477.72780   1.001 0.317099    
## C5            -2.64670    1.72070 2495.47117  -1.538 0.124138    
## C6            -2.83635    1.72523 2478.62149  -1.644 0.100294    
## C7            27.07239    1.85271 2476.71954  14.612  < 2e-16 ***
## C8            23.25155    1.70592 2473.13367  13.630  < 2e-16 ***
## C9            22.68855    1.83576 2485.55818  12.359  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.664                                                        
## C2 -0.588  0.471                                                 
## C3 -0.597  0.478  0.388                                          
## C4 -0.654  0.509  0.467  0.469                                   
## C5 -0.660  0.516  0.469  0.478  0.508                            
## C6 -0.652  0.506  0.457  0.481  0.499  0.503                     
## C7 -0.592  0.471  0.385  0.391  0.469  0.472  0.462              
## C8 -0.659  0.512  0.468  0.466  0.503  0.509  0.506  0.478       
## C9 -0.601  0.486  0.391  0.398  0.475  0.476  0.473  0.395  0.480
tab_model(modA.1,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.93 1.32 50.34 – 55.52 40.08 <0.001
C1 -0.04 1.70 -3.37 – 3.29 -0.02 0.982
C2 7.05 1.83 3.46 – 10.65 3.85 <0.001
C3 -1.82 1.83 -5.41 – 1.78 -0.99 0.322
C4 1.72 1.72 -1.65 – 5.09 1.00 0.317
C5 -2.65 1.72 -6.02 – 0.73 -1.54 0.124
C6 -2.84 1.73 -6.22 – 0.55 -1.64 0.100
C7 27.07 1.85 23.44 – 30.71 14.61 <0.001
C8 23.25 1.71 19.91 – 26.60 13.63 <0.001
C9 22.69 1.84 19.09 – 26.29 12.36 <0.001
Random Effects
σ2 407.95
τ00 id 310.24
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.148 / 0.516
summary(modC.1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 29317.5
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -2.73404 -0.56652  0.07057  0.65903  2.41427 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 290.7    17.05   
##  Residual             547.6    23.40   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   59.6997     0.6768 1031.9998    88.2   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.1,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 59.70 0.68 58.37 – 61.03 88.21 <0.001
Random Effects
σ2 547.60
τ00 id 290.68
ICC 0.35
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.000 / 0.347
anova(modC.1, modA.1)
## refitting model(s) with ML (instead of REML)

Understanding

modA.8 <- lmer(Understanding ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

modC.8  <- lmer(Understanding ~ 1 + (1|id), data = L)

summary(modA.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Understanding ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 29215.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9395 -0.5457  0.0369  0.5813  3.2128 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 380.7    19.51   
##  Residual             355.5    18.85   
## Number of obs: 3186, groups:  id, 1033
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   47.603      1.287 3166.241  36.977   <2e-16 ***
## C1            -1.984      1.608 2519.768  -1.233   0.2175    
## C2            14.904      1.721 2441.244   8.658   <2e-16 ***
## C3            17.557      1.725 2471.167  10.177   <2e-16 ***
## C4            -2.573      1.628 2516.214  -1.580   0.1142    
## C5            -4.333      1.630 2534.479  -2.658   0.0079 ** 
## C6             3.731      1.633 2517.827   2.285   0.0224 *  
## C7            35.499      1.741 2469.807  20.389   <2e-16 ***
## C8            23.527      1.622 2538.539  14.508   <2e-16 ***
## C9            23.527      1.622 2538.539  14.508   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.644                                                        
## C2 -0.573  0.474                                                 
## C3 -0.581  0.481  0.391                                          
## C4 -0.635  0.508  0.469  0.471                                   
## C5 -0.641  0.517  0.472  0.481  0.508                            
## C6 -0.633  0.505  0.459  0.484  0.498  0.503                     
## C7 -0.577  0.475  0.390  0.396  0.472  0.476  0.466              
## C8 -0.638  0.508  0.470  0.468  0.499  0.506  0.503  0.482       
## C9 -0.638  0.508  0.470  0.468  0.499  0.506  0.503  0.482  0.614
tab_model(modA.8,
          show.stat = T, show.se = T)
  Understanding
Predictors Estimates std. Error CI Statistic p
(Intercept) 47.60 1.29 45.08 – 50.13 36.98 <0.001
C1 -1.98 1.61 -5.14 – 1.17 -1.23 0.218
C2 14.90 1.72 11.53 – 18.28 8.66 <0.001
C3 17.56 1.73 14.17 – 20.94 10.18 <0.001
C4 -2.57 1.63 -5.77 – 0.62 -1.58 0.114
C5 -4.33 1.63 -7.53 – -1.14 -2.66 0.008
C6 3.73 1.63 0.53 – 6.93 2.28 0.022
C7 35.50 1.74 32.08 – 38.91 20.39 <0.001
C8 23.53 1.62 20.35 – 26.71 14.51 <0.001
C9 23.53 1.62 20.35 – 26.71 14.51 <0.001
Random Effects
σ2 355.47
τ00 id 380.68
ICC 0.52
N id 1033
Observations 3186
Marginal R2 / Conditional R2 0.186 / 0.607
summary(modC.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Understanding ~ 1 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30217.8
## 
## Scaled residuals: 
##      Min       1Q   Median       3Q      Max 
## -3.02681 -0.64709  0.08625  0.61808  2.86728 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 363.3    19.06   
##  Residual             536.5    23.16   
## Number of obs: 3186, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   56.8517     0.7248 1017.7886   78.44   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
tab_model(modC.8,
          show.stat = T, show.se = T)
  Understanding
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.85 0.72 55.43 – 58.27 78.44 <0.001
Random Effects
σ2 536.47
τ00 id 363.27
ICC 0.40
N id 1033
Observations 3186
Marginal R2 / Conditional R2 0.000 / 0.404
anova(modC.8, modA.8)
## refitting model(s) with ML (instead of REML)

Mixed Models

Support

Q.1: (SIMPLE MODEL) How do burger contrasts predict support?

#Do burger contrasts predict support? 
modA.71 <- lmer(Support ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.71)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28616.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2167 -0.5115  0.0664  0.5574  3.0875 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 310.2    17.61   
##  Residual             408.0    20.20   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   52.92592    1.32047 3086.28324  40.081  < 2e-16 ***
## C1            -0.03794    1.69842 2477.86487  -0.022 0.982180    
## C2             7.05492    1.83271 2440.69740   3.849 0.000121 ***
## C3            -1.81584    1.83417 2471.97653  -0.990 0.322267    
## C4             1.72122    1.72013 2477.72780   1.001 0.317099    
## C5            -2.64670    1.72070 2495.47117  -1.538 0.124138    
## C6            -2.83635    1.72523 2478.62149  -1.644 0.100294    
## C7            27.07239    1.85271 2476.71954  14.612  < 2e-16 ***
## C8            23.25155    1.70592 2473.13367  13.630  < 2e-16 ***
## C9            22.68855    1.83576 2485.55818  12.359  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.664                                                        
## C2 -0.588  0.471                                                 
## C3 -0.597  0.478  0.388                                          
## C4 -0.654  0.509  0.467  0.469                                   
## C5 -0.660  0.516  0.469  0.478  0.508                            
## C6 -0.652  0.506  0.457  0.481  0.499  0.503                     
## C7 -0.592  0.471  0.385  0.391  0.469  0.472  0.462              
## C8 -0.659  0.512  0.468  0.466  0.503  0.509  0.506  0.478       
## C9 -0.601  0.486  0.391  0.398  0.475  0.476  0.473  0.395  0.480
tab_model(modA.71,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.93 1.32 50.34 – 55.52 40.08 <0.001
C1 -0.04 1.70 -3.37 – 3.29 -0.02 0.982
C2 7.05 1.83 3.46 – 10.65 3.85 <0.001
C3 -1.82 1.83 -5.41 – 1.78 -0.99 0.322
C4 1.72 1.72 -1.65 – 5.09 1.00 0.317
C5 -2.65 1.72 -6.02 – 0.73 -1.54 0.124
C6 -2.84 1.73 -6.22 – 0.55 -1.64 0.100
C7 27.07 1.85 23.44 – 30.71 14.61 <0.001
C8 23.25 1.71 19.91 – 26.60 13.63 <0.001
C9 22.69 1.84 19.09 – 26.29 12.36 <0.001
Random Effects
σ2 407.95
τ00 id 310.24
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.148 / 0.516

Q.2: Does naturalness predict support, over and above burger contrasts?

#Does naturalness predict support? 
modA.7 <- lmer(Support ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.7)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28268.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4910 -0.5370  0.0329  0.5471  3.2926 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 295.0    17.18   
##  Residual             356.9    18.89   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     53.52996    1.24722 3087.00469  42.920  < 2e-16 ***
## Naturalness.c    0.45035    0.02323 2868.37846  19.387  < 2e-16 ***
## C1               5.78473    1.62105 2468.31920   3.569 0.000366 ***
## C2               6.64433    1.71873 2420.99352   3.866 0.000114 ***
## C3               4.09693    1.74683 2465.44214   2.345 0.019088 *  
## C4               3.33378    1.61543 2453.90143   2.064 0.039150 *  
## C5              -1.24857    1.61566 2472.47592  -0.773 0.439718    
## C6               0.11066    1.62536 2456.62988   0.068 0.945723    
## C7              19.49870    1.78155 2489.48852  10.945  < 2e-16 ***
## C8              12.78046    1.68925 2509.67281   7.566 5.38e-14 ***
## C9              15.71514    1.75968 2487.09403   8.931  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c  0.026                                                        
## C1          -0.643  0.185                                                 
## C2          -0.584 -0.012  0.461                                          
## C3          -0.579  0.173  0.494  0.379                                   
## C4          -0.648  0.050  0.509  0.465  0.470                            
## C5          -0.653  0.043  0.514  0.468  0.478  0.509                     
## C6          -0.642  0.094  0.512  0.453  0.488  0.500  0.504              
## C7          -0.579 -0.220  0.411  0.377  0.337  0.446  0.450  0.428       
## C8          -0.628 -0.321  0.417  0.447  0.379  0.460  0.468  0.447  0.513
## C9          -0.589 -0.206  0.429  0.384  0.347  0.454  0.457  0.442  0.421
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.511
tab_model(modA.7,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.53 1.25 51.08 – 55.98 42.92 <0.001
Naturalness c 0.45 0.02 0.40 – 0.50 19.39 <0.001
C1 5.78 1.62 2.61 – 8.96 3.57 <0.001
C2 6.64 1.72 3.27 – 10.01 3.87 <0.001
C3 4.10 1.75 0.67 – 7.52 2.35 0.019
C4 3.33 1.62 0.17 – 6.50 2.06 0.039
C5 -1.25 1.62 -4.42 – 1.92 -0.77 0.440
C6 0.11 1.63 -3.08 – 3.30 0.07 0.946
C7 19.50 1.78 16.01 – 22.99 10.94 <0.001
C8 12.78 1.69 9.47 – 16.09 7.57 <0.001
C9 15.72 1.76 12.26 – 19.17 8.93 <0.001
Random Effects
σ2 356.87
τ00 id 295.02
ICC 0.45
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.225 / 0.575

Q.3: Does perceived naturalness predict support, over and above risk perception and burger contrasts?

#Does naturalness predict support, over and above risk perception? 
modA.9 <- lmer(Support ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.9)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27337.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.6560 -0.4992  0.0365  0.5223  3.9479 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 246.0    15.68   
##  Residual             253.4    15.92   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     54.31967    1.07184 3086.73504  50.679  < 2e-16 ***
## Naturalness.c    0.19192    0.02127 2856.43872   9.022  < 2e-16 ***
## Risk.c          -0.55186    0.01663 2996.44355 -33.190  < 2e-16 ***
## C1               6.73346    1.37370 2425.14465   4.902 1.01e-06 ***
## C2               2.21646    1.46123 2391.37126   1.517  0.12944    
## C3              10.75468    1.49319 2426.54599   7.202 7.85e-13 ***
## C4               4.04074    1.36851 2411.79880   2.953  0.00318 ** 
## C5              -0.15398    1.36925 2428.21065  -0.112  0.91047    
## C6               4.39688    1.38295 2412.73150   3.179  0.00149 ** 
## C7              10.60035    1.53370 2469.36992   6.912 6.08e-12 ***
## C8               8.19726    1.43877 2476.93574   5.697 1.36e-08 ***
## C9               9.63641    1.50278 2471.06194   6.412 1.71e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c  0.016                                                        
## Risk.c      -0.023  0.366                                                 
## C1          -0.633  0.165 -0.021                                          
## C2          -0.574  0.022  0.090  0.457                                   
## C3          -0.561  0.112 -0.133  0.493  0.360                            
## C4          -0.638  0.041 -0.014  0.509  0.462  0.467                     
## C5          -0.644  0.032 -0.022  0.515  0.463  0.477  0.510              
## C6          -0.628  0.052 -0.094  0.512  0.440  0.494  0.499  0.504       
## C7          -0.565 -0.139  0.176  0.400  0.383  0.302  0.436  0.439  0.403
## C8          -0.618 -0.264  0.097  0.412  0.451  0.360  0.456  0.463  0.433
## C9          -0.578 -0.146  0.124  0.423  0.389  0.322  0.449  0.450  0.425
##             C7     C8    
## Naturlnss.c              
## Risk.c                   
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8           0.520       
## C9           0.431  0.518
tab_model(modA.9,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.32 1.07 52.22 – 56.42 50.68 <0.001
Naturalness c 0.19 0.02 0.15 – 0.23 9.02 <0.001
Risk c -0.55 0.02 -0.58 – -0.52 -33.19 <0.001
C1 6.73 1.37 4.04 – 9.43 4.90 <0.001
C2 2.22 1.46 -0.65 – 5.08 1.52 0.129
C3 10.75 1.49 7.83 – 13.68 7.20 <0.001
C4 4.04 1.37 1.36 – 6.72 2.95 0.003
C5 -0.15 1.37 -2.84 – 2.53 -0.11 0.910
C6 4.40 1.38 1.69 – 7.11 3.18 0.001
C7 10.60 1.53 7.59 – 13.61 6.91 <0.001
C8 8.20 1.44 5.38 – 11.02 5.70 <0.001
C9 9.64 1.50 6.69 – 12.58 6.41 <0.001
Random Effects
σ2 253.39
τ00 id 245.99
ICC 0.49
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.405 / 0.698

Q.4: Does perceived benefit predict behavioral intent, over and above naturalness and burger contrasts?

#Does perceived benefit predict behavioral intent, over and above naturalness and burger contrasts?
modA.10 <- lmer(Support ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.10)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27042.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8153 -0.5005  0.0110  0.5069  4.1441 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 169.3    13.01   
##  Residual             251.0    15.84   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     56.09373    1.02480 3081.19354  54.736  < 2e-16 ***
## Naturalness.c    0.31063    0.01952 2924.30679  15.913  < 2e-16 ***
## Benefit.c        0.57390    0.01470 3084.10134  39.048  < 2e-16 ***
## C1               2.85165    1.35163 2517.97955   2.110    0.035 *  
## C2               8.11019    1.43255 2465.56344   5.661 1.68e-08 ***
## C3              -1.43221    1.46103 2515.59778  -0.980    0.327    
## C4               1.52706    1.34592 2503.15348   1.135    0.257    
## C5              -1.52057    1.34498 2523.04742  -1.131    0.258    
## C6              -1.10090    1.35380 2504.32595  -0.813    0.416    
## C7              13.94600    1.48933 2553.76062   9.364  < 2e-16 ***
## C8               7.18639    1.41245 2577.67497   5.088 3.88e-07 ***
## C9              10.59315    1.47013 2549.10069   7.206 7.58e-13 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Bnft.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c  0.014                                                        
## Benefit.c    0.063 -0.184                                                 
## C1          -0.654  0.191 -0.055                                          
## C2          -0.591 -0.016  0.025  0.459                                   
## C3          -0.591  0.186 -0.095  0.496  0.378                            
## C4          -0.658  0.055 -0.032  0.510  0.464  0.471                     
## C5          -0.662  0.043 -0.003  0.513  0.467  0.476  0.509              
## C6          -0.652  0.096 -0.023  0.513  0.453  0.487  0.501  0.504       
## C7          -0.591 -0.196 -0.094  0.415  0.376  0.346  0.447  0.449  0.429
## C8          -0.640 -0.292 -0.100  0.421  0.442  0.387  0.461  0.466  0.447
## C9          -0.601 -0.184 -0.087  0.432  0.384  0.356  0.455  0.455  0.443
##             C7     C8    
## Naturlnss.c              
## Benefit.c                
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8           0.516       
## C9           0.428  0.514
tab_model(modA.10,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.09 1.02 54.08 – 58.10 54.74 <0.001
Naturalness c 0.31 0.02 0.27 – 0.35 15.91 <0.001
Benefit c 0.57 0.01 0.55 – 0.60 39.05 <0.001
C1 2.85 1.35 0.20 – 5.50 2.11 0.035
C2 8.11 1.43 5.30 – 10.92 5.66 <0.001
C3 -1.43 1.46 -4.30 – 1.43 -0.98 0.327
C4 1.53 1.35 -1.11 – 4.17 1.13 0.257
C5 -1.52 1.34 -4.16 – 1.12 -1.13 0.258
C6 -1.10 1.35 -3.76 – 1.55 -0.81 0.416
C7 13.95 1.49 11.03 – 16.87 9.36 <0.001
C8 7.19 1.41 4.42 – 9.96 5.09 <0.001
C9 10.59 1.47 7.71 – 13.48 7.21 <0.001
Random Effects
σ2 250.99
τ00 id 169.32
ICC 0.40
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.489 / 0.695

Q.5: Does perceived benefit predict support, over and above perceived risk, naturalness, and burger contrasts?

#Does perceived benefit predict support, over and above perceived risk, naturalness, and burger contrasts?
modA.101 <- lmer(Support ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.101)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26363.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4649 -0.5066  0.0307  0.5050  3.7502 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 148.2    12.17   
##  Residual             195.9    14.00   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     56.16585    0.91664 3083.19538  61.273  < 2e-16 ***
## Naturalness.c    0.14554    0.01840 2931.07853   7.910 3.62e-15 ***
## Risk.c          -0.41178    0.01484 3066.01967 -27.747  < 2e-16 ***
## Benefit.c        0.46785    0.01368 3085.49633  34.191  < 2e-16 ***
## C1               4.17712    1.20001 2480.02663   3.481 0.000508 ***
## C2               4.58609    1.27661 2446.05124   3.592 0.000334 ***
## C3               4.63514    1.31389 2487.91499   3.528 0.000427 ***
## C4               2.43944    1.19426 2465.95256   2.043 0.041195 *  
## C5              -0.61225    1.19365 2484.82056  -0.513 0.608055    
## C6               2.42408    1.20753 2465.17012   2.007 0.044808 *  
## C7               8.29217    1.33739 2531.99423   6.200 6.56e-10 ***
## C8               4.81081    1.25673 2546.50435   3.828 0.000132 ***
## C9               7.05879    1.31098 2532.49899   5.384 7.94e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.101,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 56.17 0.92 54.37 – 57.96 61.27 <0.001
Naturalness c 0.15 0.02 0.11 – 0.18 7.91 <0.001
Risk c -0.41 0.01 -0.44 – -0.38 -27.75 <0.001
Benefit c 0.47 0.01 0.44 – 0.49 34.19 <0.001
C1 4.18 1.20 1.82 – 6.53 3.48 0.001
C2 4.59 1.28 2.08 – 7.09 3.59 <0.001
C3 4.64 1.31 2.06 – 7.21 3.53 <0.001
C4 2.44 1.19 0.10 – 4.78 2.04 0.041
C5 -0.61 1.19 -2.95 – 1.73 -0.51 0.608
C6 2.42 1.21 0.06 – 4.79 2.01 0.045
C7 8.29 1.34 5.67 – 10.91 6.20 <0.001
C8 4.81 1.26 2.35 – 7.27 3.83 <0.001
C9 7.06 1.31 4.49 – 9.63 5.38 <0.001
Random Effects
σ2 195.90
τ00 id 148.21
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.578 / 0.760

Q.6: Does perceived familiarity/understanding predict support, over and above perceived benefit, risk, naturalness, and burger contrasts?

#How does perceived benefit and naturalness predict behavioral intent?
modA.115 <- lmer(Support ~ FR.c + Naturalness.c + Risk.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  (1|id), data = L)

summary(modA.115)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ FR.c + Naturalness.c + Risk.c + Benefit.c + C1 + C2 +  
##     C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26330.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4947 -0.5050  0.0353  0.5155  3.6622 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 145.2    12.05   
##  Residual             194.0    13.93   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     57.46660    0.93402 3081.89495  61.526  < 2e-16 ***
## FR.c             0.09334    0.01481 3084.87128   6.304 3.30e-10 ***
## Naturalness.c    0.12290    0.01864 2966.56654   6.593 5.07e-11 ***
## Risk.c          -0.40054    0.01486 3067.65237 -26.961  < 2e-16 ***
## Benefit.c        0.45952    0.01367 3084.03234  33.625  < 2e-16 ***
## C1               3.93027    1.19422 2484.15782   3.291  0.00101 ** 
## C2               2.59125    1.30875 2501.71789   1.980  0.04782 *  
## C3               1.38554    1.40441 2630.37661   0.987  0.32395    
## C4               2.31086    1.18805 2468.26054   1.945  0.05188 .  
## C5              -0.25711    1.18862 2490.15240  -0.216  0.82877    
## C6               2.08530    1.20229 2469.41951   1.734  0.08297 .  
## C7               4.54122    1.45711 2659.06106   3.117  0.00185 ** 
## C8               2.89030    1.28651 2584.28299   2.247  0.02475 *  
## C9               3.52728    1.41916 2648.09658   2.485  0.01300 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 14 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.115,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 57.47 0.93 55.64 – 59.30 61.53 <0.001
FR c 0.09 0.01 0.06 – 0.12 6.30 <0.001
Naturalness c 0.12 0.02 0.09 – 0.16 6.59 <0.001
Risk c -0.40 0.01 -0.43 – -0.37 -26.96 <0.001
Benefit c 0.46 0.01 0.43 – 0.49 33.62 <0.001
C1 3.93 1.19 1.59 – 6.27 3.29 0.001
C2 2.59 1.31 0.03 – 5.16 1.98 0.048
C3 1.39 1.40 -1.37 – 4.14 0.99 0.324
C4 2.31 1.19 -0.02 – 4.64 1.95 0.052
C5 -0.26 1.19 -2.59 – 2.07 -0.22 0.829
C6 2.09 1.20 -0.27 – 4.44 1.73 0.083
C7 4.54 1.46 1.68 – 7.40 3.12 0.002
C8 2.89 1.29 0.37 – 5.41 2.25 0.025
C9 3.53 1.42 0.74 – 6.31 2.49 0.013
Random Effects
σ2 193.96
τ00 id 145.15
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.583 / 0.761

Naturalness

Q.1: (SIMPLE MODEL) How do burger contrasts predict naturalness perception?

#How do burger contrasts predict naturalness perception?
modA.89 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.89)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 26542.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5590 -0.6146 -0.0188  0.6110  3.4214 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  66.07    8.128  
##  Residual             255.98   15.999  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   38.7758     0.9529 3071.0207  40.694  < 2e-16 ***
## C1           -13.0130     1.2917 2757.1250 -10.074  < 2e-16 ***
## C2             0.6991     1.3996 2685.1901   0.499  0.61748    
## C3           -13.0158     1.3968 2725.9700  -9.318  < 2e-16 ***
## C4            -3.8060     1.3082 2757.2346  -2.909  0.00365 ** 
## C5            -3.0749     1.3065 2781.1438  -2.354  0.01866 *  
## C6            -6.8214     1.3121 2757.4352  -5.199 2.15e-07 ***
## C7            16.4597     1.4103 2733.5148  11.671  < 2e-16 ***
## C8            23.0426     1.2980 2750.3673  17.752  < 2e-16 ***
## C9            15.4236     1.3962 2744.8882  11.047  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.699                                                        
## C2 -0.628  0.472                                                 
## C3 -0.635  0.477  0.407                                          
## C4 -0.690  0.509  0.467  0.469                                   
## C5 -0.694  0.514  0.469  0.475  0.506                            
## C6 -0.687  0.506  0.461  0.475  0.499  0.503                     
## C7 -0.629  0.471  0.404  0.408  0.467  0.470  0.463              
## C8 -0.694  0.512  0.469  0.469  0.504  0.508  0.505  0.474       
## C9 -0.638  0.482  0.409  0.414  0.473  0.474  0.472  0.410  0.477
tab_model(modA.89,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.78 0.95 36.91 – 40.64 40.69 <0.001
C1 -13.01 1.29 -15.55 – -10.48 -10.07 <0.001
C2 0.70 1.40 -2.05 – 3.44 0.50 0.617
C3 -13.02 1.40 -15.75 – -10.28 -9.32 <0.001
C4 -3.81 1.31 -6.37 – -1.24 -2.91 0.004
C5 -3.07 1.31 -5.64 – -0.51 -2.35 0.019
C6 -6.82 1.31 -9.39 – -4.25 -5.20 <0.001
C7 16.46 1.41 13.69 – 19.22 11.67 <0.001
C8 23.04 1.30 20.50 – 25.59 17.75 <0.001
C9 15.42 1.40 12.69 – 18.16 11.05 <0.001
Random Effects
σ2 255.98
τ00 id 66.07
ICC 0.21
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.307 / 0.449

Q.2: Does understanding/familiarity (mean score) predict naturalness perception, over and above burger contrasts?

#Does understanding/familiarity (mean score) predict naturalness perception, over and above burger contrasts?

#Note: Understanding/familiarity mean score taken from two item measure. 
modA.94 <- lmer(Naturalness ~ FR.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.94)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ FR.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26364.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6736 -0.6024 -0.0028  0.5820  3.4842 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  75.4     8.683  
##  Residual             232.8    15.258  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   41.65810    0.94636 3075.48603  44.019  < 2e-16 ***
## FR.c           0.19635    0.01406 2981.22493  13.968  < 2e-16 ***
## C1           -12.73469    1.24262 2692.27004 -10.248  < 2e-16 ***
## C2            -3.68111    1.38155 2680.94339  -2.664  0.00776 ** 
## C3           -18.88601    1.40714 2764.76443 -13.422  < 2e-16 ***
## C4            -3.76718    1.25837 2692.33909  -2.994  0.00278 ** 
## C5            -2.09696    1.25901 2720.37648  -1.666  0.09591 .  
## C6            -6.91316    1.26209 2692.81978  -5.478 4.71e-08 ***
## C7             7.06883    1.51620 2877.02147   4.662 3.27e-06 ***
## C8            17.27510    1.31610 2800.86277  13.126  < 2e-16 ***
## C9             6.65527    1.48328 2865.37825   4.487 7.51e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##      (Intr) FR.c   C1     C2     C3     C4     C5     C6     C7     C8    
## FR.c  0.221                                                               
## C1   -0.674  0.015                                                        
## C2   -0.641 -0.229  0.456                                                 
## C3   -0.651 -0.298  0.451  0.443                                          
## C4   -0.668 -0.002  0.509  0.455  0.448                                   
## C5   -0.659  0.055  0.514  0.443  0.437  0.506                            
## C6   -0.667 -0.008  0.506  0.450  0.457  0.499  0.501                     
## C7   -0.643 -0.447  0.415  0.450  0.479  0.419  0.395  0.418              
## C8   -0.708 -0.317  0.481  0.505  0.519  0.479  0.464  0.482  0.545       
## C9   -0.652 -0.425  0.430  0.454  0.481  0.429  0.406  0.431  0.519  0.545
tab_model(modA.94,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 41.66 0.95 39.80 – 43.51 44.02 <0.001
FR c 0.20 0.01 0.17 – 0.22 13.97 <0.001
C1 -12.73 1.24 -15.17 – -10.30 -10.25 <0.001
C2 -3.68 1.38 -6.39 – -0.97 -2.66 0.008
C3 -18.89 1.41 -21.65 – -16.13 -13.42 <0.001
C4 -3.77 1.26 -6.23 – -1.30 -2.99 0.003
C5 -2.10 1.26 -4.57 – 0.37 -1.67 0.096
C6 -6.91 1.26 -9.39 – -4.44 -5.48 <0.001
C7 7.07 1.52 4.10 – 10.04 4.66 <0.001
C8 17.28 1.32 14.69 – 19.86 13.13 <0.001
C9 6.66 1.48 3.75 – 9.56 4.49 <0.001
Random Effects
σ2 232.80
τ00 id 75.40
ICC 0.24
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.346 / 0.506

Q.3: Does familiarity predict naturalness perception, over and above familiarity and burger contrasts?

modA.9433 <- lmer(Naturalness ~ Familiarity.c + Understanding.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  (1|id), data = L)

summary(modA.9433)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Familiarity.c + Understanding.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 24884.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7110 -0.6046  0.0022  0.5710  3.4483 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  78.33    8.85   
##  Residual             226.70   15.06   
## Number of obs: 2929, groups:  id, 1033
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       42.01787    0.94747 2903.17266  44.347  < 2e-16 ***
## Familiarity.c      0.14100    0.01508 2914.45656   9.353  < 2e-16 ***
## Understanding.c    0.04953    0.01509 2750.41478   3.283 0.001040 ** 
## C1               -12.84913    1.23304 2543.70412 -10.421  < 2e-16 ***
## C2                -4.34262    1.38383 2488.27858  -3.138 0.001720 ** 
## C3               -19.95013    1.43350 2594.44614 -13.917  < 2e-16 ***
## C4                -4.11954    1.25042 2546.41950  -3.295 0.000999 ***
## C5                -2.23247    1.24960 2571.41221  -1.787 0.074128 .  
## C6                -6.78354    1.25467 2550.11694  -5.407 7.02e-08 ***
## C7                 6.11241    1.54410 2698.69182   3.959 7.74e-05 ***
## C8                16.77315    1.31793 2642.26883  12.727  < 2e-16 ***
## C9                 5.91420    2.03277 2706.76727   2.909 0.003650 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Fmlrt. Undrs. C1     C2     C3     C4     C5     C6    
## Familirty.c  0.212                                                        
## Undrstndng. -0.007 -0.555                                                 
## C1          -0.668  0.000  0.015                                          
## C2          -0.647 -0.237  0.019  0.452                                   
## C3          -0.657 -0.340  0.061  0.440  0.461                            
## C4          -0.668 -0.051  0.050  0.508  0.458  0.449                     
## C5          -0.651  0.040  0.013  0.514  0.436  0.422  0.504              
## C6          -0.652  0.052 -0.059  0.504  0.435  0.430  0.494  0.501       
## C7          -0.648 -0.400 -0.019  0.405  0.468  0.507  0.420  0.381  0.392
## C8          -0.711 -0.257 -0.043  0.476  0.516  0.531  0.480  0.457  0.469
## C9          -0.488 -0.280  0.030  0.310  0.348  0.373  0.317  0.292  0.301
##             C7     C8    
## Familirty.c              
## Undrstndng.              
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8           0.556       
## C9           0.393  0.443
tab_model(modA.9433,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 42.02 0.95 40.16 – 43.88 44.35 <0.001
Familiarity c 0.14 0.02 0.11 – 0.17 9.35 <0.001
Understanding c 0.05 0.02 0.02 – 0.08 3.28 0.001
C1 -12.85 1.23 -15.27 – -10.43 -10.42 <0.001
C2 -4.34 1.38 -7.06 – -1.63 -3.14 0.002
C3 -19.95 1.43 -22.76 – -17.14 -13.92 <0.001
C4 -4.12 1.25 -6.57 – -1.67 -3.29 0.001
C5 -2.23 1.25 -4.68 – 0.22 -1.79 0.074
C6 -6.78 1.25 -9.24 – -4.32 -5.41 <0.001
C7 6.11 1.54 3.08 – 9.14 3.96 <0.001
C8 16.77 1.32 14.19 – 19.36 12.73 <0.001
C9 5.91 2.03 1.93 – 9.90 2.91 0.004
Random Effects
σ2 226.70
τ00 id 78.33
ICC 0.26
N id 1033
Observations 2929
Marginal R2 / Conditional R2 0.341 / 0.510

Risk

Q.1: (SIMPLE MODEL) How do burger contrasts predict risk perception?

#Does naturalness predict risk perception? 
modA.82 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.82)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28183.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5937 -0.6121 -0.0692  0.5627  3.6688 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 186.0    13.64   
##  Residual             392.4    19.81   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   34.824      1.236 3073.917  28.180  < 2e-16 ***
## C1             8.104      1.637 2603.391   4.950 7.88e-07 ***
## C2            -8.219      1.769 2550.596  -4.645 3.57e-06 ***
## C3            18.477      1.769 2587.689  10.447  < 2e-16 ***
## C4             3.297      1.658 2603.343   1.988   0.0469 *  
## C5             3.725      1.657 2624.855   2.247   0.0247 *  
## C6            11.433      1.663 2604.021   6.876 7.70e-12 ***
## C7           -23.874      1.786 2593.853 -13.366  < 2e-16 ***
## C8           -18.746      1.645 2597.511 -11.398  < 2e-16 ***
## C9           -17.561      1.769 2604.314  -9.926  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.683                                                        
## C2 -0.609  0.472                                                 
## C3 -0.617  0.477  0.396                                          
## C4 -0.674  0.509  0.467  0.469                                   
## C5 -0.679  0.515  0.469  0.477  0.507                            
## C6 -0.672  0.506  0.458  0.478  0.499  0.503                     
## C7 -0.612  0.472  0.393  0.399  0.468  0.471  0.463              
## C8 -0.679  0.512  0.468  0.468  0.504  0.508  0.505  0.476       
## C9 -0.621  0.484  0.399  0.405  0.474  0.475  0.473  0.401  0.479
tab_model(modA.82,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.82 1.24 32.40 – 37.25 28.18 <0.001
C1 8.10 1.64 4.89 – 11.31 4.95 <0.001
C2 -8.22 1.77 -11.69 – -4.75 -4.65 <0.001
C3 18.48 1.77 15.01 – 21.94 10.45 <0.001
C4 3.30 1.66 0.05 – 6.55 1.99 0.047
C5 3.72 1.66 0.48 – 6.97 2.25 0.025
C6 11.43 1.66 8.17 – 14.69 6.88 <0.001
C7 -23.87 1.79 -27.38 – -20.37 -13.37 <0.001
C8 -18.75 1.64 -21.97 – -15.52 -11.40 <0.001
C9 -17.56 1.77 -21.03 – -14.09 -9.93 <0.001
Random Effects
σ2 392.45
τ00 id 186.03
ICC 0.32
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.225 / 0.474

Q.2: Does naturalness predict risk perception, over and above burger contrasts?

modA.8 <- lmer(Risk ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.8)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27768.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3450 -0.6028 -0.0208  0.5695  3.6980 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.6    13.44   
##  Residual             333.5    18.26   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     34.29243    1.15344 3076.08607  29.731  < 2e-16 ***
## Naturalness.c   -0.46313    0.02175 2999.47898 -21.298  < 2e-16 ***
## C1               2.03764    1.54266 2581.00506   1.321    0.187    
## C2              -7.87191    1.63865 2518.37582  -4.804 1.65e-06 ***
## C3              12.35689    1.66272 2570.48308   7.432 1.45e-13 ***
## C4               1.52699    1.53812 2564.68416   0.993    0.321    
## C5               2.22684    1.53727 2587.15427   1.449    0.148    
## C6               8.24283    1.54744 2567.52291   5.327 1.09e-07 ***
## C7             -16.17286    1.69427 2598.33439  -9.546  < 2e-16 ***
## C8              -8.10285    1.60514 2627.19172  -5.048 4.77e-07 ***
## C9             -10.54300    1.67360 2596.25957  -6.300 3.49e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c  0.025                                                        
## C1          -0.662  0.182                                                 
## C2          -0.604 -0.011  0.462                                          
## C3          -0.599  0.170  0.494  0.387                                   
## C4          -0.667  0.051  0.509  0.466  0.470                            
## C5          -0.672  0.043  0.514  0.468  0.477  0.509                     
## C6          -0.661  0.093  0.512  0.455  0.486  0.501  0.504              
## C7          -0.598 -0.215  0.414  0.384  0.345  0.446  0.451  0.430       
## C8          -0.647 -0.315  0.420  0.448  0.384  0.461  0.469  0.448  0.510
## C9          -0.608 -0.202  0.430  0.391  0.354  0.454  0.457  0.442  0.425
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.509
tab_model(modA.8,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.29 1.15 32.03 – 36.55 29.73 <0.001
Naturalness c -0.46 0.02 -0.51 – -0.42 -21.30 <0.001
C1 2.04 1.54 -0.99 – 5.06 1.32 0.187
C2 -7.87 1.64 -11.08 – -4.66 -4.80 <0.001
C3 12.36 1.66 9.10 – 15.62 7.43 <0.001
C4 1.53 1.54 -1.49 – 4.54 0.99 0.321
C5 2.23 1.54 -0.79 – 5.24 1.45 0.148
C6 8.24 1.55 5.21 – 11.28 5.33 <0.001
C7 -16.17 1.69 -19.49 – -12.85 -9.55 <0.001
C8 -8.10 1.61 -11.25 – -4.96 -5.05 <0.001
C9 -10.54 1.67 -13.82 – -7.26 -6.30 <0.001
Random Effects
σ2 333.49
τ00 id 180.57
ICC 0.35
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.314 / 0.555

Q.3: Does benefit predict risk perception, over and above burger contrasts?

modA.88 <- lmer(Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.88)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27868.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4788 -0.6142 -0.0510  0.5897  3.5700 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 177.5    13.32   
##  Residual             348.8    18.68   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   33.43858    1.17513 3074.71974  28.455  < 2e-16 ***
## Benefit.c     -0.30329    0.01647 3037.67164 -18.414  < 2e-16 ***
## C1             8.66339    1.54800 2581.39265   5.597 2.42e-08 ***
## C2            -8.86224    1.67266 2532.74825  -5.298 1.27e-07 ***
## C3            20.35550    1.67513 2570.00083  12.152  < 2e-16 ***
## C4             3.86402    1.56781 2581.98392   2.465   0.0138 *  
## C5             3.51145    1.56702 2602.18582   2.241   0.0251 *  
## C6            11.56279    1.57208 2581.73373   7.355 2.55e-13 ***
## C7           -19.78631    1.70320 2599.06517 -11.617  < 2e-16 ***
## C8           -14.16561    1.57503 2605.54589  -8.994  < 2e-16 ***
## C9           -13.88157    1.68503 2604.52362  -8.238 2.74e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##           (Intr) Bnft.c C1     C2     C3     C4     C5     C6     C7     C8    
## Benefit.c  0.066                                                               
## C1        -0.681 -0.021                                                        
## C2        -0.604  0.020  0.471                                                 
## C3        -0.616 -0.062  0.478  0.393                                          
## C4        -0.671 -0.022  0.509  0.466  0.470                                   
## C5        -0.675  0.006  0.515  0.469  0.476  0.507                            
## C6        -0.668 -0.007  0.506  0.458  0.478  0.499  0.503                     
## C7        -0.611 -0.131  0.470  0.386  0.401  0.467  0.466  0.459              
## C8        -0.677 -0.160  0.508  0.459  0.471  0.500  0.501  0.500  0.487       
## C9        -0.620 -0.122  0.483  0.392  0.407  0.473  0.471  0.470  0.410  0.489
tab_model(modA.88,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 33.44 1.18 31.13 – 35.74 28.46 <0.001
Benefit c -0.30 0.02 -0.34 – -0.27 -18.41 <0.001
C1 8.66 1.55 5.63 – 11.70 5.60 <0.001
C2 -8.86 1.67 -12.14 – -5.58 -5.30 <0.001
C3 20.36 1.68 17.07 – 23.64 12.15 <0.001
C4 3.86 1.57 0.79 – 6.94 2.46 0.014
C5 3.51 1.57 0.44 – 6.58 2.24 0.025
C6 11.56 1.57 8.48 – 14.65 7.36 <0.001
C7 -19.79 1.70 -23.13 – -16.45 -11.62 <0.001
C8 -14.17 1.58 -17.25 – -11.08 -8.99 <0.001
C9 -13.88 1.69 -17.19 – -10.58 -8.24 <0.001
Random Effects
σ2 348.84
τ00 id 177.53
ICC 0.34
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.302 / 0.537

Q.4: Does benefit predict risk perception, over and above naturalness and burger contrasts?

modA.99 <- lmer(Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.99)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27538.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1310 -0.5882 -0.0140  0.5795  3.7415 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 176.6    13.29   
##  Residual             304.6    17.45   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     33.23517    1.11184 3076.99253  29.892  < 2e-16 ***
## Naturalness.c   -0.40203    0.02126 2969.99565 -18.909  < 2e-16 ***
## Benefit.c       -0.24957    0.01591 3067.90331 -15.689  < 2e-16 ***
## C1               3.28213    1.48056 2558.92030   2.217 0.026724 *  
## C2              -8.46539    1.57022 2500.90707  -5.391 7.65e-08 ***
## C3              14.68630    1.60047 2553.74422   9.176  < 2e-16 ***
## C4               2.21565    1.47457 2543.46635   1.503 0.133073    
## C5               2.23734    1.47318 2564.72057   1.519 0.128957    
## C6               8.74500    1.48319 2544.59873   5.896 4.22e-09 ***
## C7             -13.81213    1.63071 2593.09324  -8.470  < 2e-16 ***
## C8              -5.75077    1.54605 2620.15997  -3.720 0.000204 ***
## C9              -8.46345    1.60978 2588.58288  -5.258 1.58e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Bnft.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c  0.013                                                        
## Benefit.c    0.063 -0.185                                                 
## C1          -0.661  0.190 -0.055                                          
## C2          -0.598 -0.015  0.024  0.459                                   
## C3          -0.598  0.185 -0.095  0.496  0.381                            
## C4          -0.665  0.055 -0.032  0.510  0.464  0.471                     
## C5          -0.668  0.043 -0.003  0.513  0.468  0.475  0.509              
## C6          -0.659  0.096 -0.024  0.513  0.454  0.486  0.501  0.504       
## C7          -0.597 -0.194 -0.092  0.416  0.379  0.349  0.447  0.449  0.430
## C8          -0.646 -0.290 -0.098  0.422  0.443  0.389  0.462  0.467  0.448
## C9          -0.607 -0.182 -0.085  0.432  0.386  0.358  0.455  0.455  0.443
##             C7     C8    
## Naturlnss.c              
## Benefit.c                
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8           0.515       
## C9           0.429  0.514
tab_model(modA.99,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 33.24 1.11 31.06 – 35.42 29.89 <0.001
Naturalness c -0.40 0.02 -0.44 – -0.36 -18.91 <0.001
Benefit c -0.25 0.02 -0.28 – -0.22 -15.69 <0.001
C1 3.28 1.48 0.38 – 6.19 2.22 0.027
C2 -8.47 1.57 -11.54 – -5.39 -5.39 <0.001
C3 14.69 1.60 11.55 – 17.82 9.18 <0.001
C4 2.22 1.47 -0.68 – 5.11 1.50 0.133
C5 2.24 1.47 -0.65 – 5.13 1.52 0.129
C6 8.74 1.48 5.84 – 11.65 5.90 <0.001
C7 -13.81 1.63 -17.01 – -10.61 -8.47 <0.001
C8 -5.75 1.55 -8.78 – -2.72 -3.72 <0.001
C9 -8.46 1.61 -11.62 – -5.31 -5.26 <0.001
Random Effects
σ2 304.62
τ00 id 176.64
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.365 / 0.598

Q.5: Does understanding/familiarity predict risk perception, over and above naturalness, benefit, and burger contrasts?

modA.100 <- lmer(Risk ~ Naturalness.c + Benefit.c + FR.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.100)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Naturalness.c + Benefit.c + FR.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27501
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.5699 -0.5970 -0.0079  0.5663  3.9521 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 175.3    13.24   
##  Residual             299.9    17.32   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     31.59616    1.13160 3078.18873  27.922  < 2e-16 ***
## Naturalness.c   -0.36859    0.02171 3011.64513 -16.981  < 2e-16 ***
## Benefit.c       -0.23540    0.01594 3066.22913 -14.763  < 2e-16 ***
## FR.c            -0.11774    0.01776 3070.86974  -6.628 4.01e-11 ***
## C1               3.53283    1.47007 2558.55122   2.403 0.016324 *  
## C2              -5.82553    1.60868 2562.33574  -3.621 0.000299 ***
## C3              18.55381    1.69267 2688.77738  10.961  < 2e-16 ***
## C4               2.33245    1.46372 2541.62702   1.594 0.111170    
## C5               1.75395    1.46401 2565.49882   1.198 0.231012    
## C6               9.04213    1.47287 2544.02515   6.139 9.60e-10 ***
## C7              -8.87417    1.78175 2732.00635  -4.981 6.73e-07 ***
## C8              -3.23870    1.58082 2658.70462  -2.049 0.040584 *  
## C9              -3.88311    1.74131 2717.29803  -2.230 0.025830 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.100,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 31.60 1.13 29.38 – 33.81 27.92 <0.001
Naturalness c -0.37 0.02 -0.41 – -0.33 -16.98 <0.001
Benefit c -0.24 0.02 -0.27 – -0.20 -14.76 <0.001
FR c -0.12 0.02 -0.15 – -0.08 -6.63 <0.001
C1 3.53 1.47 0.65 – 6.42 2.40 0.016
C2 -5.83 1.61 -8.98 – -2.67 -3.62 <0.001
C3 18.55 1.69 15.23 – 21.87 10.96 <0.001
C4 2.33 1.46 -0.54 – 5.20 1.59 0.111
C5 1.75 1.46 -1.12 – 4.62 1.20 0.231
C6 9.04 1.47 6.15 – 11.93 6.14 <0.001
C7 -8.87 1.78 -12.37 – -5.38 -4.98 <0.001
C8 -3.24 1.58 -6.34 – -0.14 -2.05 0.041
C9 -3.88 1.74 -7.30 – -0.47 -2.23 0.026
Random Effects
σ2 299.93
τ00 id 175.34
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.372 / 0.604

Benefit

Q.1: (SIMPLE MODEL) How do burger contrasts predict perceived benefit?

#How do burger contrasts predict perceived benefit?
modA.109 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.109)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28385.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4352 -0.5146  0.0631  0.5681  3.1759 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 287.9    16.97   
##  Residual             378.5    19.46   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   53.2626     1.2720 3086.2930  41.874  < 2e-16 ***
## C1             1.9219     1.6360 2478.3405   1.175 0.240217    
## C2            -2.2926     1.7654 2441.2064  -1.299 0.194184    
## C3             6.2690     1.7668 2472.4609   3.548 0.000395 ***
## C4             2.1007     1.6569 2478.2035   1.268 0.204973    
## C5            -0.4471     1.6575 2495.9323  -0.270 0.787385    
## C6             0.5182     1.6618 2479.0967   0.312 0.755189    
## C7            13.7277     1.7846 2477.1998   7.692 2.07e-14 ***
## C8            15.3323     1.6432 2473.6132   9.330  < 2e-16 ***
## C9            12.5640     1.7683 2486.0313   7.105 1.56e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.664                                                        
## C2 -0.588  0.471                                                 
## C3 -0.597  0.478  0.388                                          
## C4 -0.654  0.509  0.467  0.469                                   
## C5 -0.660  0.516  0.469  0.478  0.508                            
## C6 -0.652  0.506  0.457  0.481  0.499  0.503                     
## C7 -0.592  0.471  0.385  0.391  0.469  0.472  0.462              
## C8 -0.659  0.512  0.468  0.466  0.503  0.509  0.506  0.478       
## C9 -0.601  0.486  0.391  0.398  0.475  0.476  0.473  0.395  0.480
tab_model(modA.109,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.26 1.27 50.77 – 55.76 41.87 <0.001
C1 1.92 1.64 -1.29 – 5.13 1.17 0.240
C2 -2.29 1.77 -5.75 – 1.17 -1.30 0.194
C3 6.27 1.77 2.80 – 9.73 3.55 <0.001
C4 2.10 1.66 -1.15 – 5.35 1.27 0.205
C5 -0.45 1.66 -3.70 – 2.80 -0.27 0.787
C6 0.52 1.66 -2.74 – 3.78 0.31 0.755
C7 13.73 1.78 10.23 – 17.23 7.69 <0.001
C8 15.33 1.64 12.11 – 18.55 9.33 <0.001
C9 12.56 1.77 9.10 – 16.03 7.11 <0.001
Random Effects
σ2 378.52
τ00 id 287.94
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.054 / 0.463

Q.2: How does naturalness predict benefit, over and above burger contrasts?

#How does naturalness predict benefit, over and above burger contrasts?
modA.110 <- lmer(Ben ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.110)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28285.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4947 -0.5159  0.0513  0.5638  3.2861 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 273.0    16.52   
##  Residual             368.1    19.19   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     53.5969     1.2513 3084.7037  42.833  < 2e-16 ***
## Naturalness.c    0.2422     0.0234 2905.9943  10.350  < 2e-16 ***
## C1               5.0536     1.6401 2495.6541   3.081  0.00208 ** 
## C2              -2.4841     1.7397 2444.4560  -1.428  0.15344    
## C3               9.4326     1.7674 2491.1110   5.337 1.03e-07 ***
## C4               2.9426     1.6346 2480.6457   1.800  0.07195 .  
## C5               0.2737     1.6345 2500.3070   0.167  0.86704    
## C6               2.1167     1.6446 2483.4312   1.287  0.19820    
## C7               9.6348     1.8021 2516.2787   5.346 9.78e-08 ***
## C8               9.6878     1.7084 2538.5723   5.671 1.58e-08 ***
## C9               8.7829     1.7800 2513.9333   4.934 8.58e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c  0.026                                                        
## C1          -0.649  0.184                                                 
## C2          -0.589 -0.011  0.461                                          
## C3          -0.584  0.173  0.494  0.381                                   
## C4          -0.653  0.050  0.509  0.466  0.470                            
## C5          -0.659  0.043  0.514  0.468  0.478  0.509                     
## C6          -0.648  0.094  0.512  0.454  0.487  0.500  0.504              
## C7          -0.584 -0.219  0.412  0.379  0.339  0.446  0.450  0.429       
## C8          -0.634 -0.319  0.418  0.447  0.380  0.460  0.468  0.447  0.512
## C9          -0.594 -0.205  0.429  0.386  0.348  0.454  0.457  0.442  0.422
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.511
tab_model(modA.110,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.60 1.25 51.14 – 56.05 42.83 <0.001
Naturalness c 0.24 0.02 0.20 – 0.29 10.35 <0.001
C1 5.05 1.64 1.84 – 8.27 3.08 0.002
C2 -2.48 1.74 -5.90 – 0.93 -1.43 0.153
C3 9.43 1.77 5.97 – 12.90 5.34 <0.001
C4 2.94 1.63 -0.26 – 6.15 1.80 0.072
C5 0.27 1.63 -2.93 – 3.48 0.17 0.867
C6 2.12 1.64 -1.11 – 5.34 1.29 0.198
C7 9.63 1.80 6.10 – 13.17 5.35 <0.001
C8 9.69 1.71 6.34 – 13.04 5.67 <0.001
C9 8.78 1.78 5.29 – 12.27 4.93 <0.001
Random Effects
σ2 368.12
τ00 id 272.99
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.081 / 0.472

Q.3: How does risk perception predict benefit, over and above burger contrasts?

#How does risk perception predict benefit, over and above burger contrasts?
modA.113 <- lmer(Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.113)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 28062
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5844 -0.5162  0.0703  0.5377  3.2324 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 270      16.43   
##  Residual             336      18.33   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##               Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)   53.93335    1.20635 3086.66586  44.708  < 2e-16 ***
## Risk.c        -0.32691    0.01752 3019.27710 -18.662  < 2e-16 ***
## C1             4.47443    1.55032 2462.79760   2.886 0.003934 ** 
## C2            -5.03787    1.67241 2435.16333  -3.012 0.002619 ** 
## C3            12.19283    1.69767 2469.43822   7.182 9.05e-13 ***
## C4             3.04083    1.56478 2460.53646   1.943 0.052095 .  
## C5             0.65497    1.56572 2477.88385   0.418 0.675749    
## C6             4.09879    1.58040 2461.73406   2.594 0.009557 ** 
## C7             5.88082    1.73648 2514.00898   3.387 0.000718 ***
## C8             9.06979    1.58697 2511.21104   5.715 1.23e-08 ***
## C9             6.61597    1.69950 2524.09029   3.893 0.000102 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##        (Intr) Risk.c C1     C2     C3     C4     C5     C6     C7     C8    
## Risk.c -0.030                                                               
## C1     -0.655 -0.088                                                        
## C2     -0.585  0.087  0.460                                                 
## C3     -0.578 -0.187  0.484  0.363                                          
## C4     -0.650 -0.032  0.510  0.462  0.467                                   
## C5     -0.655 -0.037  0.517  0.463  0.476  0.509                            
## C6     -0.641 -0.122  0.511  0.441  0.492  0.498  0.503                     
## C7     -0.578  0.243  0.434  0.393  0.327  0.447  0.448  0.415              
## C8     -0.647  0.212  0.479  0.474  0.408  0.485  0.489  0.465  0.505       
## C9     -0.593  0.188  0.459  0.399  0.348  0.460  0.460  0.439  0.421  0.501
tab_model(modA.113,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.93 1.21 51.57 – 56.30 44.71 <0.001
Risk c -0.33 0.02 -0.36 – -0.29 -18.66 <0.001
C1 4.47 1.55 1.43 – 7.51 2.89 0.004
C2 -5.04 1.67 -8.32 – -1.76 -3.01 0.003
C3 12.19 1.70 8.86 – 15.52 7.18 <0.001
C4 3.04 1.56 -0.03 – 6.11 1.94 0.052
C5 0.65 1.57 -2.41 – 3.72 0.42 0.676
C6 4.10 1.58 1.00 – 7.20 2.59 0.010
C7 5.88 1.74 2.48 – 9.29 3.39 0.001
C8 9.07 1.59 5.96 – 12.18 5.72 <0.001
C9 6.62 1.70 3.28 – 9.95 3.89 <0.001
Random Effects
σ2 335.97
τ00 id 270.03
ICC 0.45
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.139 / 0.523

Q.4: How does risk perception predict benefit, over and above naturalness and burger contrasts?

#How does risk perception predict benefit, over and above naturalness and burger contrasts?
modA.114 <- lmer(Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.114)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28049.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5963 -0.5130  0.0709  0.5396  3.3272 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 264.1    16.25   
##  Residual             335.9    18.33   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     54.01209    1.20332 3085.20501  44.886  < 2e-16 ***
## Naturalness.c    0.10218    0.02410 2930.45877   4.241 2.30e-05 ***
## Risk.c          -0.29801    0.01876 3049.36000 -15.888  < 2e-16 ***
## C1               5.57325    1.57023 2476.91282   3.549 0.000393 ***
## C2              -4.87253    1.67139 2436.66483  -2.915 0.003586 ** 
## C3              13.00875    1.70681 2475.74578   7.622 3.54e-14 ***
## C4               3.31573    1.56469 2462.29336   2.119 0.034183 *  
## C5               0.86453    1.56505 2480.79702   0.552 0.580723    
## C6               4.46195    1.58118 2463.26181   2.822 0.004812 ** 
## C7               4.84568    1.75168 2522.40855   2.766 0.005711 ** 
## C8               7.24554    1.64299 2532.93865   4.410 1.08e-05 ***
## C9               5.55228    1.71632 2523.88645   3.235 0.001232 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c  0.016                                                        
## Risk.c      -0.022  0.363                                                 
## C1          -0.645  0.164 -0.022                                          
## C2          -0.586  0.022  0.089  0.457                                   
## C3          -0.573  0.112 -0.133  0.493  0.363                            
## C4          -0.650  0.041 -0.015  0.509  0.462  0.468                     
## C5          -0.655  0.031 -0.023  0.515  0.464  0.477  0.509              
## C6          -0.640  0.053 -0.094  0.512  0.441  0.494  0.499  0.504       
## C7          -0.576 -0.139  0.173  0.401  0.386  0.306  0.436  0.439  0.404
## C8          -0.630 -0.262  0.095  0.413  0.452  0.362  0.457  0.463  0.434
## C9          -0.590 -0.147  0.120  0.424  0.391  0.326  0.449  0.451  0.426
##             C7     C8    
## Naturlnss.c              
## Risk.c                   
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8           0.519       
## C9           0.433  0.516
tab_model(modA.114,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.01 1.20 51.65 – 56.37 44.89 <0.001
Naturalness c 0.10 0.02 0.05 – 0.15 4.24 <0.001
Risk c -0.30 0.02 -0.33 – -0.26 -15.89 <0.001
C1 5.57 1.57 2.49 – 8.65 3.55 <0.001
C2 -4.87 1.67 -8.15 – -1.60 -2.92 0.004
C3 13.01 1.71 9.66 – 16.36 7.62 <0.001
C4 3.32 1.56 0.25 – 6.38 2.12 0.034
C5 0.86 1.57 -2.20 – 3.93 0.55 0.581
C6 4.46 1.58 1.36 – 7.56 2.82 0.005
C7 4.85 1.75 1.41 – 8.28 2.77 0.006
C8 7.25 1.64 4.02 – 10.47 4.41 <0.001
C9 5.55 1.72 2.19 – 8.92 3.23 0.001
Random Effects
σ2 335.87
τ00 id 264.09
ICC 0.44
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.143 / 0.520

Q.5: How does risk perception predict benefit, over and above naturalness and burger contrasts?

#How does risk perception predict benefit, over and above naturalness and burger contrasts?
modA.114 <- lmer(Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.114)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28049.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5963 -0.5130  0.0709  0.5396  3.3272 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 264.1    16.25   
##  Residual             335.9    18.33   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     54.01209    1.20332 3085.20501  44.886  < 2e-16 ***
## Naturalness.c    0.10218    0.02410 2930.45877   4.241 2.30e-05 ***
## Risk.c          -0.29801    0.01876 3049.36000 -15.888  < 2e-16 ***
## C1               5.57325    1.57023 2476.91282   3.549 0.000393 ***
## C2              -4.87253    1.67139 2436.66483  -2.915 0.003586 ** 
## C3              13.00875    1.70681 2475.74578   7.622 3.54e-14 ***
## C4               3.31573    1.56469 2462.29336   2.119 0.034183 *  
## C5               0.86453    1.56505 2480.79702   0.552 0.580723    
## C6               4.46195    1.58118 2463.26181   2.822 0.004812 ** 
## C7               4.84568    1.75168 2522.40855   2.766 0.005711 ** 
## C8               7.24554    1.64299 2532.93865   4.410 1.08e-05 ***
## C9               5.55228    1.71632 2523.88645   3.235 0.001232 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. Risk.c C1     C2     C3     C4     C5     C6    
## Naturlnss.c  0.016                                                        
## Risk.c      -0.022  0.363                                                 
## C1          -0.645  0.164 -0.022                                          
## C2          -0.586  0.022  0.089  0.457                                   
## C3          -0.573  0.112 -0.133  0.493  0.363                            
## C4          -0.650  0.041 -0.015  0.509  0.462  0.468                     
## C5          -0.655  0.031 -0.023  0.515  0.464  0.477  0.509              
## C6          -0.640  0.053 -0.094  0.512  0.441  0.494  0.499  0.504       
## C7          -0.576 -0.139  0.173  0.401  0.386  0.306  0.436  0.439  0.404
## C8          -0.630 -0.262  0.095  0.413  0.452  0.362  0.457  0.463  0.434
## C9          -0.590 -0.147  0.120  0.424  0.391  0.326  0.449  0.451  0.426
##             C7     C8    
## Naturlnss.c              
## Risk.c                   
## C1                       
## C2                       
## C3                       
## C4                       
## C5                       
## C6                       
## C7                       
## C8           0.519       
## C9           0.433  0.516
tab_model(modA.114,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 54.01 1.20 51.65 – 56.37 44.89 <0.001
Naturalness c 0.10 0.02 0.05 – 0.15 4.24 <0.001
Risk c -0.30 0.02 -0.33 – -0.26 -15.89 <0.001
C1 5.57 1.57 2.49 – 8.65 3.55 <0.001
C2 -4.87 1.67 -8.15 – -1.60 -2.92 0.004
C3 13.01 1.71 9.66 – 16.36 7.62 <0.001
C4 3.32 1.56 0.25 – 6.38 2.12 0.034
C5 0.86 1.57 -2.20 – 3.93 0.55 0.581
C6 4.46 1.58 1.36 – 7.56 2.82 0.005
C7 4.85 1.75 1.41 – 8.28 2.77 0.006
C8 7.25 1.64 4.02 – 10.47 4.41 <0.001
C9 5.55 1.72 2.19 – 8.92 3.23 0.001
Random Effects
σ2 335.87
τ00 id 264.09
ICC 0.44
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.143 / 0.520

Q.6: How does understanding/familiarity predict benefit, over and above risk perception, naturalness, and burger contrasts?

#How does risk perception predict benefit, over and above naturalness and burger contrasts?
modA.117 <- lmer(Ben ~ FR.c + Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.117)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ FR.c + Naturalness.c + Risk.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28024.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6238 -0.4969  0.0684  0.5460  3.3548 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 262.3    16.20   
##  Residual             332.3    18.23   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     55.55666    1.22914 3084.03789  45.200  < 2e-16 ***
## FR.c             0.10808    0.01940 3084.05680   5.571 2.75e-08 ***
## Naturalness.c    0.07481    0.02447 2959.79018   3.057 0.002253 ** 
## Risk.c          -0.28213    0.01888 3050.69201 -14.941  < 2e-16 ***
## C1               5.22992    1.56334 2477.37051   3.345 0.000834 ***
## C2              -7.13880    1.71168 2483.36115  -4.171 3.14e-05 ***
## C3               9.12031    1.83570 2620.99576   4.968 7.19e-07 ***
## C4               3.13705    1.55695 2460.71958   2.015 0.044027 *  
## C5               1.27136    1.55869 2481.79753   0.816 0.414775    
## C6               4.02070    1.57499 2463.61964   2.553 0.010745 *  
## C7               0.45922    1.91243 2648.25084   0.240 0.810251    
## C8               4.95338    1.68559 2569.99972   2.939 0.003326 ** 
## C9               1.41057    1.86236 2637.38011   0.757 0.448873    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 13 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.117,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 55.56 1.23 53.15 – 57.97 45.20 <0.001
FR c 0.11 0.02 0.07 – 0.15 5.57 <0.001
Naturalness c 0.07 0.02 0.03 – 0.12 3.06 0.002
Risk c -0.28 0.02 -0.32 – -0.25 -14.94 <0.001
C1 5.23 1.56 2.16 – 8.30 3.35 0.001
C2 -7.14 1.71 -10.49 – -3.78 -4.17 <0.001
C3 9.12 1.84 5.52 – 12.72 4.97 <0.001
C4 3.14 1.56 0.08 – 6.19 2.01 0.044
C5 1.27 1.56 -1.78 – 4.33 0.82 0.415
C6 4.02 1.57 0.93 – 7.11 2.55 0.011
C7 0.46 1.91 -3.29 – 4.21 0.24 0.810
C8 4.95 1.69 1.65 – 8.26 2.94 0.003
C9 1.41 1.86 -2.24 – 5.06 0.76 0.449
Random Effects
σ2 332.32
τ00 id 262.34
ICC 0.44
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.149 / 0.525

Difference Benefit - Risk

Q.1: (SIMPLE MODEL) How do burger contrasts predict the difference between perceived benefit and risk?

#How do burger contrasts predict the difference between perceived benefit and risk?
modA.118 <- lmer(BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.118)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31282.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9132 -0.5398  0.0435  0.5736  3.1191 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  589.9   24.29   
##  Residual             1029.7   32.09   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   18.318      2.037 3078.449   8.992  < 2e-16 ***
## C1            -6.048      2.671 2553.236  -2.264   0.0236 *  
## C2             6.112      2.885 2506.924   2.119   0.0342 *  
## C3           -12.037      2.885 2541.897  -4.172 3.12e-05 ***
## C4            -1.060      2.705 2553.147  -0.392   0.6953    
## C5            -4.087      2.705 2573.268  -1.511   0.1309    
## C6           -10.680      2.713 2553.934  -3.936 8.49e-05 ***
## C7            37.559      2.914 2547.501  12.890  < 2e-16 ***
## C8            34.209      2.683 2547.793  12.750  < 2e-16 ***
## C9            30.287      2.887 2557.379  10.493  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.676                                                        
## C2 -0.601  0.472                                                 
## C3 -0.610  0.478  0.393                                          
## C4 -0.667  0.509  0.467  0.469                                   
## C5 -0.672  0.515  0.469  0.477  0.508                            
## C6 -0.665  0.506  0.458  0.479  0.499  0.503                     
## C7 -0.605  0.472  0.390  0.396  0.468  0.471  0.462              
## C8 -0.672  0.512  0.468  0.467  0.503  0.509  0.505  0.477       
## C9 -0.614  0.485  0.396  0.402  0.475  0.476  0.473  0.398  0.480
tab_model(modA.118,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.32 2.04 14.32 – 22.31 8.99 <0.001
C1 -6.05 2.67 -11.28 – -0.81 -2.26 0.024
C2 6.11 2.88 0.46 – 11.77 2.12 0.034
C3 -12.04 2.88 -17.69 – -6.38 -4.17 <0.001
C4 -1.06 2.71 -6.36 – 4.24 -0.39 0.695
C5 -4.09 2.70 -9.39 – 1.22 -1.51 0.131
C6 -10.68 2.71 -16.00 – -5.36 -3.94 <0.001
C7 37.56 2.91 31.85 – 43.27 12.89 <0.001
C8 34.21 2.68 28.95 – 39.47 12.75 <0.001
C9 30.29 2.89 24.63 – 35.95 10.49 <0.001
Random Effects
σ2 1029.74
τ00 id 589.87
ICC 0.36
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.163 / 0.468

Q.2: How does naturalness predict the difference between perceived benefit and risk, over and above burger contrasts?

#How does naturalness predict the difference between benefit and risk?
modA.11 <- lmer(BRDiff ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.11)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30923.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3839 -0.5378  0.0273  0.5733  2.9244 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 537.7    23.19   
##  Residual             909.5    30.16   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     19.25369    1.92102 3078.44031  10.023  < 2e-16 ***
## Naturalness.c    0.71052    0.03616 2976.55787  19.650  < 2e-16 ***
## C1               3.15701    2.55627 2557.96972   1.235   0.2169    
## C2               5.52176    2.71422 2498.65290   2.034   0.0420 *  
## C3              -2.76117    2.75503 2549.29480  -1.002   0.3163    
## C4               1.49296    2.54846 2541.98321   0.586   0.5580    
## C5              -1.91667    2.54743 2563.68677  -0.752   0.4519    
## C6              -5.95497    2.56394 2544.81839  -2.323   0.0203 *  
## C7              25.66827    2.80783 2576.43380   9.142  < 2e-16 ***
## C8              17.72567    2.66063 2603.35082   6.662 3.28e-11 ***
## C9              19.29346    2.77353 2574.27060   6.956 4.41e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c  0.025                                                        
## C1          -0.659  0.183                                                 
## C2          -0.600 -0.011  0.462                                          
## C3          -0.595  0.171  0.494  0.385                                   
## C4          -0.663  0.050  0.509  0.466  0.470                            
## C5          -0.669  0.043  0.514  0.468  0.477  0.509                     
## C6          -0.658  0.093  0.512  0.455  0.486  0.501  0.504              
## C7          -0.594 -0.216  0.413  0.383  0.343  0.446  0.451  0.429       
## C8          -0.644 -0.316  0.419  0.448  0.383  0.461  0.469  0.448  0.510
## C9          -0.605 -0.203  0.430  0.389  0.353  0.454  0.457  0.442  0.424
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.510
tab_model(modA.11,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 19.25 1.92 15.49 – 23.02 10.02 <0.001
Naturalness c 0.71 0.04 0.64 – 0.78 19.65 <0.001
C1 3.16 2.56 -1.86 – 8.17 1.24 0.217
C2 5.52 2.71 0.20 – 10.84 2.03 0.042
C3 -2.76 2.76 -8.16 – 2.64 -1.00 0.316
C4 1.49 2.55 -3.50 – 6.49 0.59 0.558
C5 -1.92 2.55 -6.91 – 3.08 -0.75 0.452
C6 -5.95 2.56 -10.98 – -0.93 -2.32 0.020
C7 25.67 2.81 20.16 – 31.17 9.14 <0.001
C8 17.73 2.66 12.51 – 22.94 6.66 <0.001
C9 19.29 2.77 13.86 – 24.73 6.96 <0.001
Random Effects
σ2 909.51
τ00 id 537.72
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.247 / 0.527

Familiarity/Understanding (Mean score)

Q.1: (SIMPLE MODEL) How do burger contrasts predict understanding and familiarity (mean score)?

#How do burger contrasts predict understanding and familiarity (mean score)?
modA.12 <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.12)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27833.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0364 -0.5885 -0.0151  0.5956  3.1054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 206.2    14.36   
##  Residual             331.1    18.20   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   37.4355     1.1648 3080.8192  32.140  < 2e-16 ***
## C1            -1.2691     1.5193 2532.2689  -0.835  0.40361    
## C2            22.4050     1.6405 2488.8121  13.657  < 2e-16 ***
## C3            29.9624     1.6409 2522.6960  18.259  < 2e-16 ***
## C4             0.2945     1.5387 2532.1634   0.191  0.84823    
## C5            -4.9841     1.5388 2551.5791  -3.239  0.00121 ** 
## C6             0.7724     1.5433 2532.9878   0.501  0.61676    
## C7            48.3596     1.6574 2528.0376  29.178  < 2e-16 ***
## C8            29.8444     1.5261 2527.0387  19.556  < 2e-16 ***
## C9            44.9082     1.6420 2537.6100  27.350  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.673                                                        
## C2 -0.598  0.472                                                 
## C3 -0.606  0.478  0.392                                          
## C4 -0.664  0.509  0.467  0.469                                   
## C5 -0.669  0.515  0.469  0.478  0.508                            
## C6 -0.661  0.506  0.457  0.480  0.499  0.503                     
## C7 -0.601  0.471  0.389  0.394  0.469  0.471  0.462              
## C8 -0.668  0.512  0.468  0.467  0.503  0.509  0.505  0.477       
## C9 -0.610  0.485  0.395  0.401  0.475  0.476  0.473  0.397  0.480
tab_model(modA.12,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.44 1.16 35.15 – 39.72 32.14 <0.001
C1 -1.27 1.52 -4.25 – 1.71 -0.84 0.404
C2 22.40 1.64 19.19 – 25.62 13.66 <0.001
C3 29.96 1.64 26.74 – 33.18 18.26 <0.001
C4 0.29 1.54 -2.72 – 3.31 0.19 0.848
C5 -4.98 1.54 -8.00 – -1.97 -3.24 0.001
C6 0.77 1.54 -2.25 – 3.80 0.50 0.617
C7 48.36 1.66 45.11 – 51.61 29.18 <0.001
C8 29.84 1.53 26.85 – 32.84 19.56 <0.001
C9 44.91 1.64 41.69 – 48.13 27.35 <0.001
Random Effects
σ2 331.14
τ00 id 206.19
ICC 0.38
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.401 / 0.631

Q.2: How does naturalness predict understanding and familiarity (mean score), over and above burger contrasts?

#How does naturalness predict understanding and familiarity (mean score), over and above burger contrasts?
modA.130 <- lmer(FR ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.130)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27620.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9332 -0.5708  0.0035  0.5958  3.1829 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 215.1    14.67   
##  Residual             298.8    17.29   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     37.86146    1.12370 3083.93555  33.694  < 2e-16 ***
## Naturalness.c    0.31895    0.02104 2915.99710  15.159  < 2e-16 ***
## C1               2.86101    1.47604 2503.54599   1.938  0.05270 .  
## C2              22.12320    1.56588 2451.28025  14.128  < 2e-16 ***
## C3              34.14049    1.59064 2498.50822  21.463  < 2e-16 ***
## C4               1.44047    1.47118 2488.38909   0.979  0.32761    
## C5              -4.04661    1.47106 2508.33734  -2.751  0.00599 ** 
## C6               2.87890    1.48018 2491.18639   1.945  0.05189 .  
## C7              43.01292    1.62180 2523.96397  26.522  < 2e-16 ***
## C8              22.46214    1.53738 2546.85026  14.611  < 2e-16 ***
## C9              39.96053    1.60193 2521.63681  24.945  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Ntrln. C1     C2     C3     C4     C5     C6     C7    
## Naturlnss.c  0.026                                                        
## C1          -0.650  0.184                                                 
## C2          -0.591 -0.011  0.461                                          
## C3          -0.586  0.172  0.494  0.381                                   
## C4          -0.655  0.050  0.509  0.466  0.470                            
## C5          -0.660  0.043  0.514  0.468  0.478  0.509                     
## C6          -0.649  0.094  0.512  0.454  0.487  0.500  0.504              
## C7          -0.586 -0.219  0.412  0.379  0.339  0.446  0.451  0.429       
## C8          -0.635 -0.319  0.418  0.447  0.381  0.460  0.468  0.447  0.512
## C9          -0.596 -0.205  0.429  0.386  0.349  0.454  0.457  0.442  0.422
##             C8    
## Naturlnss.c       
## C1                
## C2                
## C3                
## C4                
## C5                
## C6                
## C7                
## C8                
## C9           0.511
tab_model(modA.130,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.86 1.12 35.66 – 40.06 33.69 <0.001
Naturalness c 0.32 0.02 0.28 – 0.36 15.16 <0.001
C1 2.86 1.48 -0.03 – 5.76 1.94 0.053
C2 22.12 1.57 19.05 – 25.19 14.13 <0.001
C3 34.14 1.59 31.02 – 37.26 21.46 <0.001
C4 1.44 1.47 -1.44 – 4.33 0.98 0.328
C5 -4.05 1.47 -6.93 – -1.16 -2.75 0.006
C6 2.88 1.48 -0.02 – 5.78 1.94 0.052
C7 43.01 1.62 39.83 – 46.19 26.52 <0.001
C8 22.46 1.54 19.45 – 25.48 14.61 <0.001
C9 39.96 1.60 36.82 – 43.10 24.95 <0.001
Random Effects
σ2 298.82
τ00 id 215.08
ICC 0.42
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.433 / 0.670

Moderators

Support

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict support, over and above burger contrasts?

modA.8901 <- lmer(Support ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8+ C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 +  (1|id), data = L)

summary(modA.8901)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28535.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3853 -0.5260  0.0613  0.5519  3.3065 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 281.7    16.78   
##  Residual             401.2    20.03   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       52.99434    1.29842 3074.08141  40.814  < 2e-16 ***
## ATNS_Score.c      -0.32679    0.06158 3070.04696  -5.307  1.2e-07 ***
## C1                -0.06312    1.67974 2489.22507  -0.038  0.97003    
## C2                 7.07550    1.81445 2449.77228   3.900  9.9e-05 ***
## C3                -1.71983    1.81443 2482.22669  -0.948  0.34329    
## C4                 1.29903    1.70250 2490.69563   0.763  0.44553    
## C5                -2.71709    1.70194 2509.43067  -1.596  0.11051    
## C6                -2.59911    1.70792 2490.69883  -1.522  0.12819    
## C7                27.07067    1.83284 2488.84837  14.770  < 2e-16 ***
## C8                23.12991    1.68736 2484.78774  13.708  < 2e-16 ***
## C9                22.48551    1.81626 2495.81469  12.380  < 2e-16 ***
## ATNS_Score.c:C1    0.07410    0.07919 2497.55754   0.936  0.34954    
## ATNS_Score.c:C2    0.22537    0.08472 2441.57218   2.660  0.00786 ** 
## ATNS_Score.c:C3   -0.14390    0.08484 2471.47535  -1.696  0.08998 .  
## ATNS_Score.c:C4   -0.04968    0.07848 2491.18034  -0.633  0.52675    
## ATNS_Score.c:C5    0.03260    0.07928 2515.99561   0.411  0.68099    
## ATNS_Score.c:C6   -0.02016    0.08215 2514.33556  -0.245  0.80616    
## ATNS_Score.c:C7    0.26055    0.08576 2497.49501   3.038  0.00241 ** 
## ATNS_Score.c:C8    0.15914    0.07936 2476.88798   2.005  0.04503 *  
## ATNS_Score.c:C9    0.25165    0.08659 2527.38638   2.906  0.00369 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8901,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.99 1.30 50.45 – 55.54 40.81 <0.001
ATNS Score c -0.33 0.06 -0.45 – -0.21 -5.31 <0.001
C1 -0.06 1.68 -3.36 – 3.23 -0.04 0.970
C2 7.08 1.81 3.52 – 10.63 3.90 <0.001
C3 -1.72 1.81 -5.28 – 1.84 -0.95 0.343
C4 1.30 1.70 -2.04 – 4.64 0.76 0.446
C5 -2.72 1.70 -6.05 – 0.62 -1.60 0.110
C6 -2.60 1.71 -5.95 – 0.75 -1.52 0.128
C7 27.07 1.83 23.48 – 30.66 14.77 <0.001
C8 23.13 1.69 19.82 – 26.44 13.71 <0.001
C9 22.49 1.82 18.92 – 26.05 12.38 <0.001
ATNS Score c * C1 0.07 0.08 -0.08 – 0.23 0.94 0.350
ATNS Score c * C2 0.23 0.08 0.06 – 0.39 2.66 0.008
ATNS Score c * C3 -0.14 0.08 -0.31 – 0.02 -1.70 0.090
ATNS Score c * C4 -0.05 0.08 -0.20 – 0.10 -0.63 0.527
ATNS Score c * C5 0.03 0.08 -0.12 – 0.19 0.41 0.681
ATNS Score c * C6 -0.02 0.08 -0.18 – 0.14 -0.25 0.806
ATNS Score c * C7 0.26 0.09 0.09 – 0.43 3.04 0.002
ATNS Score c * C8 0.16 0.08 0.00 – 0.31 2.01 0.045
ATNS Score c * C9 0.25 0.09 0.08 – 0.42 2.91 0.004
Random Effects
σ2 401.22
τ00 id 281.71
ICC 0.41
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.192 / 0.525

Q.2 (AVERSION TO TAMPERING WITH NATURE) Does aversion to tampering with nature depend on naturalness in predicting support, over and above burger contrasts?

modA.89012 <- lmer(Support ~ ATNS_Score.c + Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8+ C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.89012)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ ATNS_Score.c + Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c *  
##     C2 + ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c *  
##     C5 + ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c *  
##     C8 + ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28212.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4672 -0.5382  0.0299  0.5400  3.4201 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 271.1    16.46   
##  Residual             353.4    18.80   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      5.357e+01  1.231e+00  3.075e+03  43.523  < 2e-16 ***
## ATNS_Score.c    -3.117e-01  5.835e-02  3.072e+03  -5.342 9.84e-08 ***
## Naturalness.c    4.324e-01  2.315e-02  2.882e+03  18.682  < 2e-16 ***
## C1               5.529e+00  1.609e+00  2.478e+03   3.436  0.00060 ***
## C2               6.675e+00  1.708e+00  2.428e+03   3.909 9.53e-05 ***
## C3               3.936e+00  1.734e+00  2.474e+03   2.270  0.02332 *  
## C4               2.938e+00  1.605e+00  2.465e+03   1.831  0.06729 .  
## C5              -1.375e+00  1.604e+00  2.484e+03  -0.858  0.39122    
## C6               1.733e-01  1.615e+00  2.467e+03   0.107  0.91452    
## C7               1.977e+01  1.770e+00  2.502e+03  11.171  < 2e-16 ***
## C8               1.309e+01  1.677e+00  2.521e+03   7.804 8.69e-15 ***
## C9               1.583e+01  1.747e+00  2.495e+03   9.058  < 2e-16 ***
## ATNS_Score.c:C1  4.949e-02  7.457e-02  2.474e+03   0.664  0.50696    
## ATNS_Score.c:C2  2.131e-01  7.973e-02  2.420e+03   2.672  0.00758 ** 
## ATNS_Score.c:C3 -9.533e-02  7.990e-02  2.448e+03  -1.193  0.23294    
## ATNS_Score.c:C4  5.633e-03  7.395e-02  2.465e+03   0.076  0.93928    
## ATNS_Score.c:C5  7.359e-02  7.468e-02  2.488e+03   0.985  0.32454    
## ATNS_Score.c:C6  2.355e-02  7.739e-02  2.487e+03   0.304  0.76087    
## ATNS_Score.c:C7  2.072e-01  8.079e-02  2.476e+03   2.565  0.01038 *  
## ATNS_Score.c:C8  1.499e-01  7.470e-02  2.453e+03   2.007  0.04491 *  
## ATNS_Score.c:C9  2.357e-01  8.154e-02  2.503e+03   2.891  0.00387 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 21 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.89012,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.57 1.23 51.16 – 55.98 43.52 <0.001
ATNS Score c -0.31 0.06 -0.43 – -0.20 -5.34 <0.001
Naturalness c 0.43 0.02 0.39 – 0.48 18.68 <0.001
C1 5.53 1.61 2.37 – 8.68 3.44 0.001
C2 6.68 1.71 3.33 – 10.02 3.91 <0.001
C3 3.94 1.73 0.54 – 7.34 2.27 0.023
C4 2.94 1.60 -0.21 – 6.08 1.83 0.067
C5 -1.38 1.60 -4.52 – 1.77 -0.86 0.391
C6 0.17 1.61 -2.99 – 3.34 0.11 0.915
C7 19.77 1.77 16.30 – 23.24 11.17 <0.001
C8 13.09 1.68 9.80 – 16.38 7.80 <0.001
C9 15.83 1.75 12.40 – 19.25 9.06 <0.001
ATNS Score c * C1 0.05 0.07 -0.10 – 0.20 0.66 0.507
ATNS Score c * C2 0.21 0.08 0.06 – 0.37 2.67 0.008
ATNS Score c * C3 -0.10 0.08 -0.25 – 0.06 -1.19 0.233
ATNS Score c * C4 0.01 0.07 -0.14 – 0.15 0.08 0.939
ATNS Score c * C5 0.07 0.07 -0.07 – 0.22 0.99 0.325
ATNS Score c * C6 0.02 0.08 -0.13 – 0.18 0.30 0.761
ATNS Score c * C7 0.21 0.08 0.05 – 0.37 2.57 0.010
ATNS Score c * C8 0.15 0.07 0.00 – 0.30 2.01 0.045
ATNS Score c * C9 0.24 0.08 0.08 – 0.40 2.89 0.004
Random Effects
σ2 353.36
τ00 id 271.07
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.261 / 0.582

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict support, over and above burger contrasts?
modA.8971 <- lmer(Support ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.8971)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c *  
##     C3 + CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c *  
##     C6 + CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c *      C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28586.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3539 -0.5268  0.0600  0.5757  3.2149 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 304.7    17.46   
##  Residual             401.4    20.03   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      52.91841    1.30975 3076.09535  40.403  < 2e-16 ***
## CNS_Score.c       0.13498    0.07836 3076.96324   1.723   0.0851 .  
## C1                0.15224    1.68494 2469.24404   0.090   0.9280    
## C2                7.16794    1.82264 2431.49181   3.933 8.63e-05 ***
## C3               -1.67912    1.81998 2464.15114  -0.923   0.3563    
## C4                1.74744    1.70788 2469.72198   1.023   0.3063    
## C5               -2.79368    1.70732 2486.86040  -1.636   0.1019    
## C6               -2.91837    1.71225 2469.91604  -1.704   0.0884 .  
## C7               27.05592    1.83849 2469.20022  14.716  < 2e-16 ***
## C8               23.01295    1.69358 2463.02421  13.588  < 2e-16 ***
## C9               22.42331    1.82248 2475.74259  12.304  < 2e-16 ***
## CNS_Score.c:C1    0.03002    0.09910 2459.02241   0.303   0.7620    
## CNS_Score.c:C2    0.02890    0.10592 2418.85562   0.273   0.7850    
## CNS_Score.c:C3   -0.45326    0.11055 2431.51337  -4.100 4.26e-05 ***
## CNS_Score.c:C4   -0.07508    0.10053 2479.28504  -0.747   0.4552    
## CNS_Score.c:C5   -0.04777    0.10476 2503.99225  -0.456   0.6484    
## CNS_Score.c:C6   -0.11194    0.10188 2454.82905  -1.099   0.2720    
## CNS_Score.c:C7    0.23955    0.11155 2493.77712   2.147   0.0319 *  
## CNS_Score.c:C8    0.17188    0.10447 2484.54913   1.645   0.1001    
## CNS_Score.c:C9    0.22703    0.11025 2510.02866   2.059   0.0396 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8971,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.92 1.31 50.35 – 55.49 40.40 <0.001
CNS Score c 0.13 0.08 -0.02 – 0.29 1.72 0.085
C1 0.15 1.68 -3.15 – 3.46 0.09 0.928
C2 7.17 1.82 3.59 – 10.74 3.93 <0.001
C3 -1.68 1.82 -5.25 – 1.89 -0.92 0.356
C4 1.75 1.71 -1.60 – 5.10 1.02 0.306
C5 -2.79 1.71 -6.14 – 0.55 -1.64 0.102
C6 -2.92 1.71 -6.28 – 0.44 -1.70 0.088
C7 27.06 1.84 23.45 – 30.66 14.72 <0.001
C8 23.01 1.69 19.69 – 26.33 13.59 <0.001
C9 22.42 1.82 18.85 – 26.00 12.30 <0.001
CNS Score c * C1 0.03 0.10 -0.16 – 0.22 0.30 0.762
CNS Score c * C2 0.03 0.11 -0.18 – 0.24 0.27 0.785
CNS Score c * C3 -0.45 0.11 -0.67 – -0.24 -4.10 <0.001
CNS Score c * C4 -0.08 0.10 -0.27 – 0.12 -0.75 0.455
CNS Score c * C5 -0.05 0.10 -0.25 – 0.16 -0.46 0.648
CNS Score c * C6 -0.11 0.10 -0.31 – 0.09 -1.10 0.272
CNS Score c * C7 0.24 0.11 0.02 – 0.46 2.15 0.032
CNS Score c * C8 0.17 0.10 -0.03 – 0.38 1.65 0.100
CNS Score c * C9 0.23 0.11 0.01 – 0.44 2.06 0.040
Random Effects
σ2 401.36
τ00 id 304.69
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.165 / 0.525
Q.2 (CONNECTEDNESS TO NATURE) Does connectedness to nature depend on perceptions of naturalness in predicting support, over and above burger contrasts?
modA.897133 <- lmer(Support ~ CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7  + CNS_Score.c*C8  + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.897133)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 +  
##     CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c * C5 +  
##     CNS_Score.c * C6 + CNS_Score.c * C7 + CNS_Score.c * C8 +  
##     CNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28251.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6080 -0.5275  0.0386  0.5454  3.3443 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 292.7    17.11   
##  Residual             350.1    18.71   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                5.346e+01  1.237e+00  3.076e+03  43.212  < 2e-16 ***
## CNS_Score.c                1.417e-01  7.410e-02  3.077e+03   1.912 0.056002 .  
## Naturalness.c              4.352e-01  2.316e-02  2.854e+03  18.792  < 2e-16 ***
## C1                         5.835e+00  1.606e+00  2.452e+03   3.632 0.000287 ***
## C2                         6.711e+00  1.708e+00  2.406e+03   3.930 8.74e-05 ***
## C3                         4.319e+00  1.733e+00  2.451e+03   2.493 0.012750 *  
## C4                         3.398e+00  1.603e+00  2.439e+03   2.120 0.034094 *  
## C5                        -1.310e+00  1.602e+00  2.457e+03  -0.818 0.413485    
## C6                         1.148e-01  1.612e+00  2.441e+03   0.071 0.943232    
## C7                         1.961e+01  1.767e+00  2.476e+03  11.101  < 2e-16 ***
## C8                         1.294e+01  1.676e+00  2.493e+03   7.718 1.70e-14 ***
## C9                         1.561e+01  1.745e+00  2.470e+03   8.946  < 2e-16 ***
## CNS_Score.c:Naturalness.c  4.852e-03  1.297e-03  2.898e+03   3.740 0.000187 ***
## CNS_Score.c:C1             1.249e-01  9.473e-02  2.454e+03   1.319 0.187351    
## CNS_Score.c:C2             1.253e-02  9.924e-02  2.396e+03   0.126 0.899509    
## CNS_Score.c:C3            -3.027e-01  1.045e-01  2.412e+03  -2.897 0.003799 ** 
## CNS_Score.c:C4            -3.430e-02  9.441e-02  2.446e+03  -0.363 0.716441    
## CNS_Score.c:C5            -5.844e-03  9.827e-02  2.471e+03  -0.059 0.952587    
## CNS_Score.c:C6            -4.259e-02  9.571e-02  2.421e+03  -0.445 0.656384    
## CNS_Score.c:C7             1.064e-01  1.070e-01  2.494e+03   0.995 0.319926    
## CNS_Score.c:C8             3.594e-02  1.039e-01  2.548e+03   0.346 0.729479    
## CNS_Score.c:C9             7.816e-02  1.059e-01  2.515e+03   0.738 0.460402    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.897133,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.46 1.24 51.04 – 55.89 43.21 <0.001
CNS Score c 0.14 0.07 -0.00 – 0.29 1.91 0.056
Naturalness c 0.44 0.02 0.39 – 0.48 18.79 <0.001
C1 5.83 1.61 2.68 – 8.98 3.63 <0.001
C2 6.71 1.71 3.36 – 10.06 3.93 <0.001
C3 4.32 1.73 0.92 – 7.72 2.49 0.013
C4 3.40 1.60 0.26 – 6.54 2.12 0.034
C5 -1.31 1.60 -4.45 – 1.83 -0.82 0.413
C6 0.11 1.61 -3.05 – 3.28 0.07 0.943
C7 19.61 1.77 16.15 – 23.08 11.10 <0.001
C8 12.94 1.68 9.65 – 16.22 7.72 <0.001
C9 15.61 1.74 12.19 – 19.03 8.95 <0.001
CNS Score c * Naturalness
c
0.00 0.00 0.00 – 0.01 3.74 <0.001
CNS Score c * C1 0.12 0.09 -0.06 – 0.31 1.32 0.187
CNS Score c * C2 0.01 0.10 -0.18 – 0.21 0.13 0.900
CNS Score c * C3 -0.30 0.10 -0.51 – -0.10 -2.90 0.004
CNS Score c * C4 -0.03 0.09 -0.22 – 0.15 -0.36 0.716
CNS Score c * C5 -0.01 0.10 -0.20 – 0.19 -0.06 0.953
CNS Score c * C6 -0.04 0.10 -0.23 – 0.15 -0.44 0.656
CNS Score c * C7 0.11 0.11 -0.10 – 0.32 0.99 0.320
CNS Score c * C8 0.04 0.10 -0.17 – 0.24 0.35 0.729
CNS Score c * C9 0.08 0.11 -0.13 – 0.29 0.74 0.460
Random Effects
σ2 350.11
τ00 id 292.72
ICC 0.46
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.239 / 0.586

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict support, over and above burger contrasts?
modA.8961 <- lmer(Support ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.8961)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 +  
##     CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28239.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4995 -0.5198  0.0487  0.5808  3.3752 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 186.3    13.65   
##  Residual             396.4    19.91   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.298e+01  1.241e+00  3.064e+03  42.671  < 2e-16 ***
## CCBelief_Score.c     4.668e-01  5.287e-02  3.062e+03   8.828  < 2e-16 ***
## C1                   3.843e-02  1.645e+00  2.596e+03   0.023 0.981367    
## C2                   7.180e+00  1.779e+00  2.543e+03   4.037 5.57e-05 ***
## C3                  -2.185e+00  1.778e+00  2.581e+03  -1.229 0.219238    
## C4                   1.956e+00  1.669e+00  2.595e+03   1.172 0.241328    
## C5                  -3.271e+00  1.667e+00  2.617e+03  -1.963 0.049783 *  
## C6                  -2.603e+00  1.671e+00  2.596e+03  -1.558 0.119445    
## C7                   2.672e+01  1.795e+00  2.586e+03  14.884  < 2e-16 ***
## C8                   2.296e+01  1.654e+00  2.592e+03  13.882  < 2e-16 ***
## C9                   2.255e+01  1.778e+00  2.597e+03  12.684  < 2e-16 ***
## CCBelief_Score.c:C1 -9.954e-03  6.960e-02  2.614e+03  -0.143 0.886291    
## CCBelief_Score.c:C2 -1.969e-02  7.678e-02  2.549e+03  -0.256 0.797621    
## CCBelief_Score.c:C3 -4.242e-01  7.187e-02  2.555e+03  -5.903 4.04e-09 ***
## CCBelief_Score.c:C4 -2.929e-03  6.843e-02  2.602e+03  -0.043 0.965859    
## CCBelief_Score.c:C5 -4.028e-03  7.233e-02  2.609e+03  -0.056 0.955595    
## CCBelief_Score.c:C6 -1.100e-02  7.015e-02  2.568e+03  -0.157 0.875431    
## CCBelief_Score.c:C7  1.729e-01  7.740e-02  2.570e+03   2.234 0.025558 *  
## CCBelief_Score.c:C8  9.141e-02  7.221e-02  2.631e+03   1.266 0.205671    
## CCBelief_Score.c:C9  2.570e-01  7.716e-02  2.650e+03   3.330 0.000881 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8961,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.98 1.24 50.54 – 55.41 42.67 <0.001
CCBelief Score c 0.47 0.05 0.36 – 0.57 8.83 <0.001
C1 0.04 1.65 -3.19 – 3.26 0.02 0.981
C2 7.18 1.78 3.69 – 10.67 4.04 <0.001
C3 -2.19 1.78 -5.67 – 1.30 -1.23 0.219
C4 1.96 1.67 -1.32 – 5.23 1.17 0.241
C5 -3.27 1.67 -6.54 – -0.00 -1.96 0.050
C6 -2.60 1.67 -5.88 – 0.67 -1.56 0.119
C7 26.72 1.80 23.20 – 30.24 14.88 <0.001
C8 22.96 1.65 19.72 – 26.20 13.88 <0.001
C9 22.55 1.78 19.06 – 26.04 12.68 <0.001
CCBelief Score c * C1 -0.01 0.07 -0.15 – 0.13 -0.14 0.886
CCBelief Score c * C2 -0.02 0.08 -0.17 – 0.13 -0.26 0.798
CCBelief Score c * C3 -0.42 0.07 -0.57 – -0.28 -5.90 <0.001
CCBelief Score c * C4 -0.00 0.07 -0.14 – 0.13 -0.04 0.966
CCBelief Score c * C5 -0.00 0.07 -0.15 – 0.14 -0.06 0.956
CCBelief Score c * C6 -0.01 0.07 -0.15 – 0.13 -0.16 0.875
CCBelief Score c * C7 0.17 0.08 0.02 – 0.32 2.23 0.026
CCBelief Score c * C8 0.09 0.07 -0.05 – 0.23 1.27 0.206
CCBelief Score c * C9 0.26 0.08 0.11 – 0.41 3.33 0.001
Random Effects
σ2 396.45
τ00 id 186.30
ICC 0.32
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.310 / 0.531
Q.2 (CLIMATE CHANGE BELIEF) Does climate change belief depend on perception sof naturalness in predicting support, over and above burger contrasts?
modA.89614 <- lmer(Support ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.89614)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27913.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7959 -0.5379  0.0537  0.5435  3.1141 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 180.4    13.43   
##  Residual             347.9    18.65   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     5.357e+01  1.174e+00  3.064e+03  45.624
## CCBelief_Score.c                4.269e-01  5.028e-02  3.068e+03   8.491
## Naturalness.c                   4.214e-01  2.225e-02  2.997e+03  18.942
## C1                              5.438e+00  1.574e+00  2.585e+03   3.454
## C2                              6.829e+00  1.672e+00  2.518e+03   4.085
## C3                              3.259e+00  1.699e+00  2.578e+03   1.918
## C4                              3.460e+00  1.571e+00  2.566e+03   2.201
## C5                             -1.935e+00  1.569e+00  2.590e+03  -1.233
## C6                              1.389e-01  1.579e+00  2.570e+03   0.088
## C7                              1.974e+01  1.728e+00  2.598e+03  11.422
## C8                              1.317e+01  1.639e+00  2.633e+03   8.039
## C9                              1.606e+01  1.707e+00  2.596e+03   9.404
## CCBelief_Score.c:Naturalness.c -1.096e-03  8.424e-04  3.013e+03  -1.301
## CCBelief_Score.c:C1             8.459e-03  6.608e-02  2.575e+03   0.128
## CCBelief_Score.c:C2            -2.709e-02  7.217e-02  2.524e+03  -0.375
## CCBelief_Score.c:C3            -3.773e-01  6.807e-02  2.518e+03  -5.543
## CCBelief_Score.c:C4             2.410e-02  6.436e-02  2.572e+03   0.375
## CCBelief_Score.c:C5             6.236e-03  6.802e-02  2.578e+03   0.092
## CCBelief_Score.c:C6             7.768e-03  6.598e-02  2.536e+03   0.118
## CCBelief_Score.c:C7             1.802e-01  7.402e-02  2.620e+03   2.435
## CCBelief_Score.c:C8             1.385e-01  7.232e-02  2.745e+03   1.915
## CCBelief_Score.c:C9             2.622e-01  7.412e-02  2.685e+03   3.537
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c                < 2e-16 ***
## Naturalness.c                   < 2e-16 ***
## C1                             0.000561 ***
## C2                             4.55e-05 ***
## C3                             0.055253 .  
## C4                             0.027792 *  
## C5                             0.217547    
## C6                             0.929919    
## C7                              < 2e-16 ***
## C8                             1.35e-15 ***
## C9                              < 2e-16 ***
## CCBelief_Score.c:Naturalness.c 0.193201    
## CCBelief_Score.c:C1            0.898148    
## CCBelief_Score.c:C2            0.707399    
## CCBelief_Score.c:C3            3.28e-08 ***
## CCBelief_Score.c:C4            0.708053    
## CCBelief_Score.c:C5            0.926969    
## CCBelief_Score.c:C6            0.906289    
## CCBelief_Score.c:C7            0.014958 *  
## CCBelief_Score.c:C8            0.055578 .  
## CCBelief_Score.c:C9            0.000412 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.89614,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.57 1.17 51.27 – 55.88 45.62 <0.001
CCBelief Score c 0.43 0.05 0.33 – 0.53 8.49 <0.001
Naturalness c 0.42 0.02 0.38 – 0.47 18.94 <0.001
C1 5.44 1.57 2.35 – 8.53 3.45 0.001
C2 6.83 1.67 3.55 – 10.11 4.08 <0.001
C3 3.26 1.70 -0.07 – 6.59 1.92 0.055
C4 3.46 1.57 0.38 – 6.54 2.20 0.028
C5 -1.94 1.57 -5.01 – 1.14 -1.23 0.218
C6 0.14 1.58 -2.96 – 3.23 0.09 0.930
C7 19.74 1.73 16.35 – 23.13 11.42 <0.001
C8 13.17 1.64 9.96 – 16.39 8.04 <0.001
C9 16.06 1.71 12.71 – 19.40 9.40 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -1.30 0.193
CCBelief Score c * C1 0.01 0.07 -0.12 – 0.14 0.13 0.898
CCBelief Score c * C2 -0.03 0.07 -0.17 – 0.11 -0.38 0.707
CCBelief Score c * C3 -0.38 0.07 -0.51 – -0.24 -5.54 <0.001
CCBelief Score c * C4 0.02 0.06 -0.10 – 0.15 0.37 0.708
CCBelief Score c * C5 0.01 0.07 -0.13 – 0.14 0.09 0.927
CCBelief Score c * C6 0.01 0.07 -0.12 – 0.14 0.12 0.906
CCBelief Score c * C7 0.18 0.07 0.04 – 0.33 2.43 0.015
CCBelief Score c * C8 0.14 0.07 -0.00 – 0.28 1.92 0.056
CCBelief Score c * C9 0.26 0.07 0.12 – 0.41 3.54 <0.001
Random Effects
σ2 347.86
τ00 id 180.38
ICC 0.34
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.376 / 0.589

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict support, over and above burger contrasts?
modA.8951 <- lmer(Support ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 +Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.8951)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28632.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1105 -0.5127  0.0579  0.5730  3.2750 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 309.2    17.58   
##  Residual             406.0    20.15   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              5.294e+01  1.319e+00  3.076e+03  40.145  < 2e-16 ***
## Collectivism_Score.c    -6.134e-02  5.164e-02  3.076e+03  -1.188 0.234997    
## C1                      -6.214e-02  1.696e+00  2.469e+03  -0.037 0.970772    
## C2                       6.913e+00  1.831e+00  2.433e+03   3.776 0.000163 ***
## C3                      -1.691e+00  1.833e+00  2.462e+03  -0.923 0.356342    
## C4                       1.732e+00  1.719e+00  2.471e+03   1.007 0.313984    
## C5                      -2.653e+00  1.723e+00  2.488e+03  -1.540 0.123761    
## C6                      -2.869e+00  1.723e+00  2.469e+03  -1.665 0.095946 .  
## C7                       2.701e+01  1.850e+00  2.468e+03  14.602  < 2e-16 ***
## C8                       2.334e+01  1.704e+00  2.464e+03  13.698  < 2e-16 ***
## C9                       2.284e+01  1.835e+00  2.476e+03  12.451  < 2e-16 ***
## Collectivism_Score.c:C1 -7.867e-02  7.124e-02  2.456e+03  -1.104 0.269593    
## Collectivism_Score.c:C2  1.343e-01  7.438e-02  2.414e+03   1.806 0.071065 .  
## Collectivism_Score.c:C3  1.088e-01  7.206e-02  2.411e+03   1.509 0.131306    
## Collectivism_Score.c:C4 -3.798e-03  6.948e-02  2.453e+03  -0.055 0.956419    
## Collectivism_Score.c:C5  3.163e-02  6.825e-02  2.467e+03   0.463 0.643076    
## Collectivism_Score.c:C6 -9.485e-03  7.002e-02  2.462e+03  -0.135 0.892258    
## Collectivism_Score.c:C7 -5.896e-02  7.530e-02  2.482e+03  -0.783 0.433713    
## Collectivism_Score.c:C8 -8.561e-02  6.964e-02  2.481e+03  -1.229 0.219089    
## Collectivism_Score.c:C9 -9.947e-02  7.654e-02  2.506e+03  -1.300 0.193849    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8951,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.94 1.32 50.36 – 55.53 40.14 <0.001
Collectivism Score c -0.06 0.05 -0.16 – 0.04 -1.19 0.235
C1 -0.06 1.70 -3.39 – 3.26 -0.04 0.971
C2 6.91 1.83 3.32 – 10.50 3.78 <0.001
C3 -1.69 1.83 -5.29 – 1.90 -0.92 0.356
C4 1.73 1.72 -1.64 – 5.10 1.01 0.314
C5 -2.65 1.72 -6.03 – 0.73 -1.54 0.124
C6 -2.87 1.72 -6.25 – 0.51 -1.67 0.096
C7 27.01 1.85 23.39 – 30.64 14.60 <0.001
C8 23.34 1.70 20.00 – 26.68 13.70 <0.001
C9 22.84 1.83 19.24 – 26.44 12.45 <0.001
Collectivism Score c * C1 -0.08 0.07 -0.22 – 0.06 -1.10 0.270
Collectivism Score c * C2 0.13 0.07 -0.01 – 0.28 1.81 0.071
Collectivism Score c * C3 0.11 0.07 -0.03 – 0.25 1.51 0.131
Collectivism Score c * C4 -0.00 0.07 -0.14 – 0.13 -0.05 0.956
Collectivism Score c * C5 0.03 0.07 -0.10 – 0.17 0.46 0.643
Collectivism Score c * C6 -0.01 0.07 -0.15 – 0.13 -0.14 0.892
Collectivism Score c * C7 -0.06 0.08 -0.21 – 0.09 -0.78 0.434
Collectivism Score c * C8 -0.09 0.07 -0.22 – 0.05 -1.23 0.219
Collectivism Score c * C9 -0.10 0.08 -0.25 – 0.05 -1.30 0.194
Random Effects
σ2 406.05
τ00 id 309.23
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.154 / 0.520
Q.2 (COLLECTIVISM) Does collectivism depend on perceptions of naturalness in predicting support, over and above burger contrasts?
modA.89516 <- lmer(Support ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 +(1|id), data = L)

summary(modA.89516)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 +  
##     Collectivism_Score.c * C2 + Collectivism_Score.c * C3 + Collectivism_Score.c *  
##     C4 + Collectivism_Score.c * C5 + Collectivism_Score.c * C6 +  
##     Collectivism_Score.c * C7 + Collectivism_Score.c * C8 + Collectivism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28294.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4611 -0.5356  0.0275  0.5521  3.3558 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 294.9    17.17   
##  Residual             354.6    18.83   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         5.353e+01  1.245e+00  3.076e+03  42.985
## Collectivism_Score.c               -6.459e-02  4.888e-02  3.070e+03  -1.322
## Naturalness.c                       4.489e-01  2.325e-02  2.861e+03  19.308
## C1                                  5.736e+00  1.617e+00  2.457e+03   3.547
## C2                                  6.512e+00  1.716e+00  2.411e+03   3.796
## C3                                  4.131e+00  1.744e+00  2.453e+03   2.368
## C4                                  3.356e+00  1.614e+00  2.445e+03   2.080
## C5                                 -1.110e+00  1.618e+00  2.463e+03  -0.686
## C6                                  1.539e-01  1.622e+00  2.447e+03   0.095
## C7                                  1.945e+01  1.778e+00  2.478e+03  10.938
## C8                                  1.293e+01  1.690e+00  2.502e+03   7.655
## C9                                  1.592e+01  1.757e+00  2.475e+03   9.061
## Collectivism_Score.c:Naturalness.c  1.253e-03  9.132e-04  2.856e+03   1.372
## Collectivism_Score.c:C1            -6.603e-02  6.813e-02  2.444e+03  -0.969
## Collectivism_Score.c:C2             1.378e-01  6.970e-02  2.395e+03   1.976
## Collectivism_Score.c:C3             1.094e-01  6.848e-02  2.407e+03   1.598
## Collectivism_Score.c:C4             1.565e-02  6.515e-02  2.428e+03   0.240
## Collectivism_Score.c:C5             7.303e-02  6.411e-02  2.440e+03   1.139
## Collectivism_Score.c:C6             3.228e-02  6.587e-02  2.434e+03   0.490
## Collectivism_Score.c:C7            -9.111e-02  7.284e-02  2.500e+03  -1.251
## Collectivism_Score.c:C8            -6.400e-02  6.892e-02  2.523e+03  -0.929
## Collectivism_Score.c:C9            -1.254e-01  7.382e-02  2.524e+03  -1.699
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c               0.186407    
## Naturalness.c                       < 2e-16 ***
## C1                                 0.000397 ***
## C2                                 0.000151 ***
## C3                                 0.017956 *  
## C4                                 0.037657 *  
## C5                                 0.492621    
## C6                                 0.924405    
## C7                                  < 2e-16 ***
## C8                                 2.75e-14 ***
## C9                                  < 2e-16 ***
## Collectivism_Score.c:Naturalness.c 0.170097    
## Collectivism_Score.c:C1            0.332514    
## Collectivism_Score.c:C2            0.048227 *  
## Collectivism_Score.c:C3            0.110217    
## Collectivism_Score.c:C4            0.810122    
## Collectivism_Score.c:C5            0.254804    
## Collectivism_Score.c:C6            0.624162    
## Collectivism_Score.c:C7            0.211158    
## Collectivism_Score.c:C8            0.353130    
## Collectivism_Score.c:C9            0.089398 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.89516,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.53 1.25 51.09 – 55.97 42.98 <0.001
Collectivism Score c -0.06 0.05 -0.16 – 0.03 -1.32 0.186
Naturalness c 0.45 0.02 0.40 – 0.49 19.31 <0.001
C1 5.74 1.62 2.57 – 8.91 3.55 <0.001
C2 6.51 1.72 3.15 – 9.88 3.80 <0.001
C3 4.13 1.74 0.71 – 7.55 2.37 0.018
C4 3.36 1.61 0.19 – 6.52 2.08 0.038
C5 -1.11 1.62 -4.28 – 2.06 -0.69 0.493
C6 0.15 1.62 -3.03 – 3.33 0.09 0.924
C7 19.45 1.78 15.96 – 22.93 10.94 <0.001
C8 12.93 1.69 9.62 – 16.25 7.65 <0.001
C9 15.92 1.76 12.48 – 19.37 9.06 <0.001
Collectivism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.37 0.170
Collectivism Score c * C1 -0.07 0.07 -0.20 – 0.07 -0.97 0.332
Collectivism Score c * C2 0.14 0.07 0.00 – 0.27 1.98 0.048
Collectivism Score c * C3 0.11 0.07 -0.02 – 0.24 1.60 0.110
Collectivism Score c * C4 0.02 0.07 -0.11 – 0.14 0.24 0.810
Collectivism Score c * C5 0.07 0.06 -0.05 – 0.20 1.14 0.255
Collectivism Score c * C6 0.03 0.07 -0.10 – 0.16 0.49 0.624
Collectivism Score c * C7 -0.09 0.07 -0.23 – 0.05 -1.25 0.211
Collectivism Score c * C8 -0.06 0.07 -0.20 – 0.07 -0.93 0.353
Collectivism Score c * C9 -0.13 0.07 -0.27 – 0.02 -1.70 0.089
Random Effects
σ2 354.59
τ00 id 294.94
ICC 0.45
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.230 / 0.580

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict support, over and above burger contrasts?
modA.8941 <- lmer(Support ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9+ (1|id), data = L)

summary(modA.8941)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28638
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2069 -0.5225  0.0663  0.5541  3.1744 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 309.4    17.59   
##  Residual             408.2    20.20   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               5.288e+01  1.322e+00  3.076e+03  39.984  < 2e-16 ***
## Individualism_Score.c     9.909e-02  7.604e-02  3.079e+03   1.303 0.192625    
## C1                       -4.420e-04  1.701e+00  2.472e+03   0.000 0.999793    
## C2                        7.144e+00  1.837e+00  2.433e+03   3.889 0.000104 ***
## C3                       -1.595e+00  1.841e+00  2.466e+03  -0.867 0.386262    
## C4                        1.740e+00  1.723e+00  2.470e+03   1.010 0.312628    
## C5                       -2.557e+00  1.723e+00  2.490e+03  -1.484 0.138026    
## C6                       -2.804e+00  1.728e+00  2.471e+03  -1.623 0.104658    
## C7                        2.721e+01  1.856e+00  2.469e+03  14.661  < 2e-16 ***
## C8                        2.328e+01  1.708e+00  2.466e+03  13.627  < 2e-16 ***
## C9                        2.272e+01  1.837e+00  2.476e+03  12.367  < 2e-16 ***
## Individualism_Score.c:C1 -8.756e-02  9.848e-02  2.448e+03  -0.889 0.374005    
## Individualism_Score.c:C2 -9.637e-03  1.114e-01  2.475e+03  -0.086 0.931088    
## Individualism_Score.c:C3 -1.715e-01  1.030e-01  2.416e+03  -1.665 0.095971 .  
## Individualism_Score.c:C4 -9.414e-02  1.006e-01  2.461e+03  -0.936 0.349376    
## Individualism_Score.c:C5  7.772e-02  1.012e-01  2.494e+03   0.768 0.442408    
## Individualism_Score.c:C6 -8.086e-02  1.031e-01  2.481e+03  -0.785 0.432748    
## Individualism_Score.c:C7  1.875e-02  1.052e-01  2.453e+03   0.178 0.858558    
## Individualism_Score.c:C8 -4.303e-02  9.892e-02  2.469e+03  -0.435 0.663597    
## Individualism_Score.c:C9  2.830e-02  1.124e-01  2.496e+03   0.252 0.801238    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8941,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.88 1.32 50.28 – 55.47 39.98 <0.001
Individualism Score c 0.10 0.08 -0.05 – 0.25 1.30 0.193
C1 -0.00 1.70 -3.33 – 3.33 -0.00 1.000
C2 7.14 1.84 3.54 – 10.75 3.89 <0.001
C3 -1.60 1.84 -5.21 – 2.01 -0.87 0.386
C4 1.74 1.72 -1.64 – 5.12 1.01 0.313
C5 -2.56 1.72 -5.94 – 0.82 -1.48 0.138
C6 -2.80 1.73 -6.19 – 0.58 -1.62 0.105
C7 27.21 1.86 23.57 – 30.84 14.66 <0.001
C8 23.28 1.71 19.93 – 26.63 13.63 <0.001
C9 22.72 1.84 19.12 – 26.32 12.37 <0.001
Individualism Score c *
C1
-0.09 0.10 -0.28 – 0.11 -0.89 0.374
Individualism Score c *
C2
-0.01 0.11 -0.23 – 0.21 -0.09 0.931
Individualism Score c *
C3
-0.17 0.10 -0.37 – 0.03 -1.67 0.096
Individualism Score c *
C4
-0.09 0.10 -0.29 – 0.10 -0.94 0.349
Individualism Score c *
C5
0.08 0.10 -0.12 – 0.28 0.77 0.442
Individualism Score c *
C6
-0.08 0.10 -0.28 – 0.12 -0.78 0.433
Individualism Score c *
C7
0.02 0.11 -0.19 – 0.23 0.18 0.859
Individualism Score c *
C8
-0.04 0.10 -0.24 – 0.15 -0.44 0.664
Individualism Score c *
C9
0.03 0.11 -0.19 – 0.25 0.25 0.801
Random Effects
σ2 408.17
τ00 id 309.41
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.151 / 0.517
Q.2 (INDIVIDUALISM) Does individualism depend on perceptions of naturalness in predicting support, over and above burger contrasts?
modA.89417 <- lmer(Support ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.89417)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 +  
##     Individualism_Score.c * C2 + Individualism_Score.c * C3 +  
##     Individualism_Score.c * C4 + Individualism_Score.c * C5 +  
##     Individualism_Score.c * C6 + Individualism_Score.c * C7 +  
##     Individualism_Score.c * C8 + Individualism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28295.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4915 -0.5314  0.0361  0.5467  3.2588 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 293.9    17.14   
##  Residual             356.2    18.87   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          5.348e+01  1.248e+00  3.076e+03  42.854
## Individualism_Score.c                8.933e-02  7.181e-02  3.077e+03   1.244
## Naturalness.c                        4.478e-01  2.340e-02  2.859e+03  19.137
## C1                                   5.763e+00  1.621e+00  2.460e+03   3.554
## C2                                   6.750e+00  1.721e+00  2.412e+03   3.921
## C3                                   4.294e+00  1.751e+00  2.456e+03   2.452
## C4                                   3.382e+00  1.616e+00  2.445e+03   2.093
## C5                                  -1.089e+00  1.617e+00  2.466e+03  -0.674
## C6                                   2.010e-01  1.626e+00  2.447e+03   0.124
## C7                                   1.967e+01  1.784e+00  2.480e+03  11.026
## C8                                   1.287e+01  1.692e+00  2.499e+03   7.608
## C9                                   1.578e+01  1.760e+00  2.475e+03   8.965
## Individualism_Score.c:Naturalness.c  2.367e-03  1.323e-03  2.906e+03   1.788
## Individualism_Score.c:C1            -5.490e-02  9.373e-02  2.431e+03  -0.586
## Individualism_Score.c:C2             1.523e-02  1.045e-01  2.454e+03   0.146
## Individualism_Score.c:C3            -1.161e-01  9.802e-02  2.404e+03  -1.184
## Individualism_Score.c:C4            -4.754e-02  9.439e-02  2.434e+03  -0.504
## Individualism_Score.c:C5             1.552e-01  9.499e-02  2.464e+03   1.634
## Individualism_Score.c:C6            -1.197e-02  9.700e-02  2.452e+03  -0.123
## Individualism_Score.c:C7            -8.479e-03  1.022e-01  2.485e+03  -0.083
## Individualism_Score.c:C8            -8.753e-02  9.832e-02  2.522e+03  -0.890
## Individualism_Score.c:C9            -2.153e-02  1.074e-01  2.500e+03  -0.200
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c               0.213583    
## Naturalness.c                        < 2e-16 ***
## C1                                  0.000386 ***
## C2                                  9.05e-05 ***
## C3                                  0.014270 *  
## C4                                  0.036485 *  
## C5                                  0.500614    
## C6                                  0.901628    
## C7                                   < 2e-16 ***
## C8                                  3.92e-14 ***
## C9                                   < 2e-16 ***
## Individualism_Score.c:Naturalness.c 0.073825 .  
## Individualism_Score.c:C1            0.558134    
## Individualism_Score.c:C2            0.884077    
## Individualism_Score.c:C3            0.236341    
## Individualism_Score.c:C4            0.614544    
## Individualism_Score.c:C5            0.102349    
## Individualism_Score.c:C6            0.901770    
## Individualism_Score.c:C7            0.933877    
## Individualism_Score.c:C8            0.373392    
## Individualism_Score.c:C9            0.841151    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.89417,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.48 1.25 51.03 – 55.93 42.85 <0.001
Individualism Score c 0.09 0.07 -0.05 – 0.23 1.24 0.214
Naturalness c 0.45 0.02 0.40 – 0.49 19.14 <0.001
C1 5.76 1.62 2.58 – 8.94 3.55 <0.001
C2 6.75 1.72 3.37 – 10.13 3.92 <0.001
C3 4.29 1.75 0.86 – 7.73 2.45 0.014
C4 3.38 1.62 0.21 – 6.55 2.09 0.036
C5 -1.09 1.62 -4.26 – 2.08 -0.67 0.501
C6 0.20 1.63 -2.99 – 3.39 0.12 0.902
C7 19.67 1.78 16.17 – 23.17 11.03 <0.001
C8 12.87 1.69 9.55 – 16.19 7.61 <0.001
C9 15.78 1.76 12.33 – 19.23 8.97 <0.001
Individualism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.79 0.074
Individualism Score c *
C1
-0.05 0.09 -0.24 – 0.13 -0.59 0.558
Individualism Score c *
C2
0.02 0.10 -0.19 – 0.22 0.15 0.884
Individualism Score c *
C3
-0.12 0.10 -0.31 – 0.08 -1.18 0.236
Individualism Score c *
C4
-0.05 0.09 -0.23 – 0.14 -0.50 0.615
Individualism Score c *
C5
0.16 0.09 -0.03 – 0.34 1.63 0.102
Individualism Score c *
C6
-0.01 0.10 -0.20 – 0.18 -0.12 0.902
Individualism Score c *
C7
-0.01 0.10 -0.21 – 0.19 -0.08 0.934
Individualism Score c *
C8
-0.09 0.10 -0.28 – 0.11 -0.89 0.373
Individualism Score c *
C9
-0.02 0.11 -0.23 – 0.19 -0.20 0.841
Random Effects
σ2 356.24
τ00 id 293.91
ICC 0.45
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.228 / 0.577

Political Ideology

Q.1 (Ideology) How does ideology predict support, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.8931 <- lmer(Support ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6  + Ideology.c*C7  + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.8931)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 +  
##     Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c *  
##     C7 + Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28572.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2025 -0.5236  0.0630  0.5577  3.1998 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 310.0    17.61   
##  Residual             408.3    20.21   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     52.92894    1.32113 3076.18636  40.063  < 2e-16 ***
## Ideology.c       1.21438    2.21726 3078.79529   0.548 0.583942    
## C1              -0.03011    1.69965 2470.76869  -0.018 0.985867    
## C2               7.07741    1.83382 2433.59670   3.859 0.000117 ***
## C3              -1.78097    1.83536 2465.54936  -0.970 0.331961    
## C4               1.76355    1.72121 2470.55329   1.025 0.305652    
## C5              -2.71849    1.72485 2488.99373  -1.576 0.115135    
## C6              -2.74828    1.72744 2473.29880  -1.591 0.111748    
## C7              27.03613    1.85370 2469.13103  14.585  < 2e-16 ***
## C8              23.34695    1.71144 2469.35634  13.642  < 2e-16 ***
## C9              22.64593    1.83677 2477.73739  12.329  < 2e-16 ***
## Ideology.c:C1    0.91804    2.88266 2439.56147   0.318 0.750157    
## Ideology.c:C2   -2.99822    3.04639 2383.79617  -0.984 0.325123    
## Ideology.c:C3   -3.15838    3.18877 2467.91908  -0.990 0.322041    
## Ideology.c:C4   -2.68595    2.99533 2494.59317  -0.897 0.369960    
## Ideology.c:C5    0.09953    2.96106 2541.01535   0.034 0.973187    
## Ideology.c:C6   -3.95289    2.99263 2479.72515  -1.321 0.186665    
## Ideology.c:C7    2.54151    3.12690 2520.20311   0.813 0.416415    
## Ideology.c:C8    1.28967    2.90882 2451.17218   0.443 0.657539    
## Ideology.c:C9   -1.73559    3.26000 2488.84424  -0.532 0.594504    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8931,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 52.93 1.32 50.34 – 55.52 40.06 <0.001
Ideology c 1.21 2.22 -3.13 – 5.56 0.55 0.584
C1 -0.03 1.70 -3.36 – 3.30 -0.02 0.986
C2 7.08 1.83 3.48 – 10.67 3.86 <0.001
C3 -1.78 1.84 -5.38 – 1.82 -0.97 0.332
C4 1.76 1.72 -1.61 – 5.14 1.02 0.306
C5 -2.72 1.72 -6.10 – 0.66 -1.58 0.115
C6 -2.75 1.73 -6.14 – 0.64 -1.59 0.112
C7 27.04 1.85 23.40 – 30.67 14.58 <0.001
C8 23.35 1.71 19.99 – 26.70 13.64 <0.001
C9 22.65 1.84 19.04 – 26.25 12.33 <0.001
Ideology c * C1 0.92 2.88 -4.73 – 6.57 0.32 0.750
Ideology c * C2 -3.00 3.05 -8.97 – 2.97 -0.98 0.325
Ideology c * C3 -3.16 3.19 -9.41 – 3.09 -0.99 0.322
Ideology c * C4 -2.69 3.00 -8.56 – 3.19 -0.90 0.370
Ideology c * C5 0.10 2.96 -5.71 – 5.91 0.03 0.973
Ideology c * C6 -3.95 2.99 -9.82 – 1.91 -1.32 0.187
Ideology c * C7 2.54 3.13 -3.59 – 8.67 0.81 0.416
Ideology c * C8 1.29 2.91 -4.41 – 6.99 0.44 0.658
Ideology c * C9 -1.74 3.26 -8.13 – 4.66 -0.53 0.594
Random Effects
σ2 408.30
τ00 id 310.02
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.149 / 0.517
Q.2 (Ideology) Does ideology depend on perceptions of naturalness in predicting support, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.89317 <- lmer(Support ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 +  Ideology.c*C6 +  Ideology.c*C7 +  Ideology.c*C8 +  Ideology.c*C9 + (1|id), data = L)

summary(modA.89317)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Support ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 +  
##     Ideology.c * C7 + Ideology.c * C8 + Ideology.c * C9 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 28230.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4993 -0.5404  0.0294  0.5461  3.2895 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 294.3    17.16   
##  Residual             357.5    18.91   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                53.53220    1.24833 3075.87309  42.883  < 2e-16 ***
## Ideology.c                  2.11624    2.09641 3075.63466   1.009 0.312835    
## Naturalness.c               0.45157    0.02341 2863.96353  19.292  < 2e-16 ***
## C1                          5.81083    1.62430 2462.43905   3.577 0.000354 ***
## C2                          6.65931    1.72076 2414.04895   3.870 0.000112 ***
## C3                          4.13156    1.74868 2457.96630   2.363 0.018221 *  
## C4                          3.36549    1.61704 2445.79651   2.081 0.037514 *  
## C5                         -1.26171    1.62101 2466.68082  -0.778 0.436437    
## C6                          0.20796    1.62847 2451.14910   0.128 0.898395    
## C7                         19.44652    1.78360 2481.40787  10.903  < 2e-16 ***
## C8                         12.78731    1.69654 2506.88540   7.537 6.66e-14 ***
## C9                         15.63982    1.76205 2478.61055   8.876  < 2e-16 ***
## Ideology.c:Naturalness.c   -0.01574    0.04085 2862.37665  -0.385 0.700044    
## Ideology.c:C1              -0.45095    2.73322 2414.96576  -0.165 0.868967    
## Ideology.c:C2              -4.06008    2.85758 2367.50977  -1.421 0.155505    
## Ideology.c:C3              -2.73538    3.06008 2500.12871  -0.894 0.371465    
## Ideology.c:C4              -2.67678    2.81327 2474.41346  -0.951 0.341452    
## Ideology.c:C5              -1.44754    2.78094 2516.64399  -0.521 0.602746    
## Ideology.c:C6              -4.66143    2.81441 2457.36972  -1.656 0.097794 .  
## Ideology.c:C7               2.56949    3.00041 2528.98427   0.856 0.391868    
## Ideology.c:C8              -0.15224    2.87464 2522.89220  -0.053 0.957767    
## Ideology.c:C9              -0.95514    3.15112 2519.02767  -0.303 0.761831    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.89317,
          show.stat = T, show.se = T)
  Support
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.53 1.25 51.08 – 55.98 42.88 <0.001
Ideology c 2.12 2.10 -1.99 – 6.23 1.01 0.313
Naturalness c 0.45 0.02 0.41 – 0.50 19.29 <0.001
C1 5.81 1.62 2.63 – 9.00 3.58 <0.001
C2 6.66 1.72 3.29 – 10.03 3.87 <0.001
C3 4.13 1.75 0.70 – 7.56 2.36 0.018
C4 3.37 1.62 0.19 – 6.54 2.08 0.037
C5 -1.26 1.62 -4.44 – 1.92 -0.78 0.436
C6 0.21 1.63 -2.99 – 3.40 0.13 0.898
C7 19.45 1.78 15.95 – 22.94 10.90 <0.001
C8 12.79 1.70 9.46 – 16.11 7.54 <0.001
C9 15.64 1.76 12.18 – 19.09 8.88 <0.001
Ideology c * Naturalness
c
-0.02 0.04 -0.10 – 0.06 -0.39 0.700
Ideology c * C1 -0.45 2.73 -5.81 – 4.91 -0.16 0.869
Ideology c * C2 -4.06 2.86 -9.66 – 1.54 -1.42 0.155
Ideology c * C3 -2.74 3.06 -8.74 – 3.26 -0.89 0.371
Ideology c * C4 -2.68 2.81 -8.19 – 2.84 -0.95 0.341
Ideology c * C5 -1.45 2.78 -6.90 – 4.01 -0.52 0.603
Ideology c * C6 -4.66 2.81 -10.18 – 0.86 -1.66 0.098
Ideology c * C7 2.57 3.00 -3.31 – 8.45 0.86 0.392
Ideology c * C8 -0.15 2.87 -5.79 – 5.48 -0.05 0.958
Ideology c * C9 -0.96 3.15 -7.13 – 5.22 -0.30 0.762
Random Effects
σ2 357.49
τ00 id 294.35
ICC 0.45
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.225 / 0.575

Naturalness

Q.1 How do burger contrasts predict naturalness perception?
modA.89 <- lmer(Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.89)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 |  
##     id)
##    Data: L
## 
## REML criterion at convergence: 26542.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5590 -0.6146 -0.0188  0.6110  3.4214 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  66.07    8.128  
##  Residual             255.98   15.999  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   38.7758     0.9529 3071.0207  40.694  < 2e-16 ***
## C1           -13.0130     1.2917 2757.1250 -10.074  < 2e-16 ***
## C2             0.6991     1.3996 2685.1901   0.499  0.61748    
## C3           -13.0158     1.3968 2725.9700  -9.318  < 2e-16 ***
## C4            -3.8060     1.3082 2757.2346  -2.909  0.00365 ** 
## C5            -3.0749     1.3065 2781.1438  -2.354  0.01866 *  
## C6            -6.8214     1.3121 2757.4352  -5.199 2.15e-07 ***
## C7            16.4597     1.4103 2733.5148  11.671  < 2e-16 ***
## C8            23.0426     1.2980 2750.3673  17.752  < 2e-16 ***
## C9            15.4236     1.3962 2744.8882  11.047  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.699                                                        
## C2 -0.628  0.472                                                 
## C3 -0.635  0.477  0.407                                          
## C4 -0.690  0.509  0.467  0.469                                   
## C5 -0.694  0.514  0.469  0.475  0.506                            
## C6 -0.687  0.506  0.461  0.475  0.499  0.503                     
## C7 -0.629  0.471  0.404  0.408  0.467  0.470  0.463              
## C8 -0.694  0.512  0.469  0.469  0.504  0.508  0.505  0.474       
## C9 -0.638  0.482  0.409  0.414  0.473  0.474  0.472  0.410  0.477
tab_model(modA.89,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.78 0.95 36.91 – 40.64 40.69 <0.001
C1 -13.01 1.29 -15.55 – -10.48 -10.07 <0.001
C2 0.70 1.40 -2.05 – 3.44 0.50 0.617
C3 -13.02 1.40 -15.75 – -10.28 -9.32 <0.001
C4 -3.81 1.31 -6.37 – -1.24 -2.91 0.004
C5 -3.07 1.31 -5.64 – -0.51 -2.35 0.019
C6 -6.82 1.31 -9.39 – -4.25 -5.20 <0.001
C7 16.46 1.41 13.69 – 19.22 11.67 <0.001
C8 23.04 1.30 20.50 – 25.59 17.75 <0.001
C9 15.42 1.40 12.69 – 18.16 11.05 <0.001
Random Effects
σ2 255.98
τ00 id 66.07
ICC 0.21
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.307 / 0.449

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict naturalness perception, over and above burger contrasts?
modA.890 <- lmer(Naturalness ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.890)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26541.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3063 -0.6148 -0.0208  0.6025  3.4403 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  64.34    8.021  
##  Residual             253.80   15.931  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      3.877e+01  9.478e-01  3.061e+03  40.910  < 2e-16 ***
## ATNS_Score.c    -1.562e-02  4.501e-02  3.058e+03  -0.347  0.72860    
## C1              -1.301e+01  1.285e+00  2.751e+03 -10.121  < 2e-16 ***
## C2               7.323e-01  1.394e+00  2.678e+03   0.525  0.59941    
## C3              -1.295e+01  1.390e+00  2.719e+03  -9.314  < 2e-16 ***
## C4              -3.979e+00  1.303e+00  2.751e+03  -3.055  0.00228 ** 
## C5              -3.071e+00  1.300e+00  2.776e+03  -2.362  0.01823 *  
## C6              -6.660e+00  1.307e+00  2.752e+03  -5.096  3.7e-07 ***
## C7               1.653e+01  1.404e+00  2.728e+03  11.779  < 2e-16 ***
## C8               2.303e+01  1.292e+00  2.744e+03  17.830  < 2e-16 ***
## C9               1.539e+01  1.390e+00  2.737e+03  11.074  < 2e-16 ***
## ATNS_Score.c:C1  3.113e-02  6.057e-02  2.758e+03   0.514  0.60727    
## ATNS_Score.c:C2  2.748e-02  6.513e-02  2.667e+03   0.422  0.67314    
## ATNS_Score.c:C3 -1.323e-01  6.506e-02  2.705e+03  -2.033  0.04216 *  
## ATNS_Score.c:C4 -1.465e-01  6.005e-02  2.751e+03  -2.439  0.01479 *  
## ATNS_Score.c:C5 -1.202e-01  6.053e-02  2.784e+03  -1.986  0.04712 *  
## ATNS_Score.c:C6 -1.320e-01  6.274e-02  2.780e+03  -2.104  0.03548 *  
## ATNS_Score.c:C7  1.050e-01  6.563e-02  2.738e+03   1.599  0.10989    
## ATNS_Score.c:C8  7.223e-03  6.079e-02  2.734e+03   0.119  0.90543    
## ATNS_Score.c:C9 -2.059e-03  6.610e-02  2.776e+03  -0.031  0.97515    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.890,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.77 0.95 36.92 – 40.63 40.91 <0.001
ATNS Score c -0.02 0.05 -0.10 – 0.07 -0.35 0.729
C1 -13.01 1.29 -15.53 – -10.49 -10.12 <0.001
C2 0.73 1.39 -2.00 – 3.47 0.53 0.599
C3 -12.95 1.39 -15.67 – -10.22 -9.31 <0.001
C4 -3.98 1.30 -6.53 – -1.43 -3.05 0.002
C5 -3.07 1.30 -5.62 – -0.52 -2.36 0.018
C6 -6.66 1.31 -9.22 – -4.10 -5.10 <0.001
C7 16.53 1.40 13.78 – 19.29 11.78 <0.001
C8 23.03 1.29 20.50 – 25.57 17.83 <0.001
C9 15.39 1.39 12.67 – 18.12 11.07 <0.001
ATNS Score c * C1 0.03 0.06 -0.09 – 0.15 0.51 0.607
ATNS Score c * C2 0.03 0.07 -0.10 – 0.16 0.42 0.673
ATNS Score c * C3 -0.13 0.07 -0.26 – -0.00 -2.03 0.042
ATNS Score c * C4 -0.15 0.06 -0.26 – -0.03 -2.44 0.015
ATNS Score c * C5 -0.12 0.06 -0.24 – -0.00 -1.99 0.047
ATNS Score c * C6 -0.13 0.06 -0.25 – -0.01 -2.10 0.035
ATNS Score c * C7 0.10 0.07 -0.02 – 0.23 1.60 0.110
ATNS Score c * C8 0.01 0.06 -0.11 – 0.13 0.12 0.905
ATNS Score c * C9 -0.00 0.07 -0.13 – 0.13 -0.03 0.975
Random Effects
σ2 253.80
τ00 id 64.34
ICC 0.20
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.316 / 0.454

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict naturalness perception, over and above burger contrasts?
modA.897 <- lmer(Naturalness ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.897)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c *  
##     C3 + CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c *  
##     C6 + CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c *      C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26555.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5906 -0.6116 -0.0123  0.6007  3.4726 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.97    8.122  
##  Residual             254.51   15.953  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     3.877e+01  9.505e-01  3.061e+03  40.787  < 2e-16 ***
## CNS_Score.c     2.931e-02  5.683e-02  3.062e+03   0.516  0.60612    
## C1             -1.295e+01  1.288e+00  2.747e+03 -10.053  < 2e-16 ***
## C2              7.607e-01  1.399e+00  2.676e+03   0.544  0.58680    
## C3             -1.294e+01  1.393e+00  2.717e+03  -9.288  < 2e-16 ***
## C4             -3.817e+00  1.306e+00  2.748e+03  -2.923  0.00349 ** 
## C5             -3.097e+00  1.303e+00  2.771e+03  -2.376  0.01755 *  
## C6             -6.897e+00  1.309e+00  2.748e+03  -5.268 1.48e-07 ***
## C7              1.644e+01  1.407e+00  2.725e+03  11.687  < 2e-16 ***
## C8              2.301e+01  1.296e+00  2.739e+03  17.760  < 2e-16 ***
## C9              1.529e+01  1.394e+00  2.734e+03  10.967  < 2e-16 ***
## CNS_Score.c:C1 -5.713e-02  7.586e-02  2.730e+03  -0.753  0.45141    
## CNS_Score.c:C2  1.037e-03  8.143e-02  2.652e+03   0.013  0.98984    
## CNS_Score.c:C3 -2.423e-01  8.489e-02  2.674e+03  -2.855  0.00434 ** 
## CNS_Score.c:C4 -6.524e-02  7.681e-02  2.758e+03  -0.849  0.39573    
## CNS_Score.c:C5 -8.041e-02  7.985e-02  2.792e+03  -1.007  0.31403    
## CNS_Score.c:C6 -1.273e-01  7.802e-02  2.726e+03  -1.632  0.10276    
## CNS_Score.c:C7  1.164e-01  8.517e-02  2.756e+03   1.367  0.17172    
## CNS_Score.c:C8 -1.863e-03  7.978e-02  2.764e+03  -0.023  0.98138    
## CNS_Score.c:C9  1.150e-01  8.406e-02  2.776e+03   1.368  0.17151    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.897,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.77 0.95 36.91 – 40.63 40.79 <0.001
CNS Score c 0.03 0.06 -0.08 – 0.14 0.52 0.606
C1 -12.95 1.29 -15.48 – -10.43 -10.05 <0.001
C2 0.76 1.40 -1.98 – 3.50 0.54 0.587
C3 -12.94 1.39 -15.67 – -10.21 -9.29 <0.001
C4 -3.82 1.31 -6.38 – -1.26 -2.92 0.003
C5 -3.10 1.30 -5.65 – -0.54 -2.38 0.018
C6 -6.90 1.31 -9.46 – -4.33 -5.27 <0.001
C7 16.44 1.41 13.68 – 19.20 11.69 <0.001
C8 23.01 1.30 20.47 – 25.55 17.76 <0.001
C9 15.29 1.39 12.55 – 18.02 10.97 <0.001
CNS Score c * C1 -0.06 0.08 -0.21 – 0.09 -0.75 0.451
CNS Score c * C2 0.00 0.08 -0.16 – 0.16 0.01 0.990
CNS Score c * C3 -0.24 0.08 -0.41 – -0.08 -2.85 0.004
CNS Score c * C4 -0.07 0.08 -0.22 – 0.09 -0.85 0.396
CNS Score c * C5 -0.08 0.08 -0.24 – 0.08 -1.01 0.314
CNS Score c * C6 -0.13 0.08 -0.28 – 0.03 -1.63 0.103
CNS Score c * C7 0.12 0.09 -0.05 – 0.28 1.37 0.172
CNS Score c * C8 -0.00 0.08 -0.16 – 0.15 -0.02 0.981
CNS Score c * C9 0.11 0.08 -0.05 – 0.28 1.37 0.171
Random Effects
σ2 254.51
τ00 id 65.97
ICC 0.21
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.311 / 0.453

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict naturalness perception, over and above burger contrasts?
modA.896 <- lmer(Naturalness ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 +(1|id), data = L)

summary(modA.896)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26568.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3234 -0.6178 -0.0149  0.5976  3.6270 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.38    8.086  
##  Residual             255.54   15.986  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.875e+01  9.518e-01  3.061e+03  40.710  < 2e-16 ***
## CCBelief_Score.c     7.258e-02  4.054e-02  3.060e+03   1.790  0.07349 .  
## C1                  -1.299e+01  1.290e+00  2.749e+03 -10.063  < 2e-16 ***
## C2                   6.936e-01  1.398e+00  2.676e+03   0.496  0.61998    
## C3                  -1.305e+01  1.396e+00  2.718e+03  -9.349  < 2e-16 ***
## C4                  -3.778e+00  1.309e+00  2.747e+03  -2.887  0.00393 ** 
## C5                  -3.121e+00  1.306e+00  2.772e+03  -2.389  0.01695 *  
## C6                  -6.790e+00  1.311e+00  2.749e+03  -5.180 2.38e-07 ***
## C7                   1.642e+01  1.409e+00  2.724e+03  11.657  < 2e-16 ***
## C8                   2.307e+01  1.297e+00  2.744e+03  17.781  < 2e-16 ***
## C9                   1.547e+01  1.395e+00  2.736e+03  11.089  < 2e-16 ***
## CCBelief_Score.c:C1 -6.528e-02  5.455e-02  2.767e+03  -1.197  0.23153    
## CCBelief_Score.c:C2  7.071e-03  6.036e-02  2.683e+03   0.117  0.90675    
## CCBelief_Score.c:C3 -1.237e-01  5.648e-02  2.687e+03  -2.191  0.02855 *  
## CCBelief_Score.c:C4 -6.015e-02  5.366e-02  2.755e+03  -1.121  0.26236    
## CCBelief_Score.c:C5 -1.557e-02  5.670e-02  2.760e+03  -0.275  0.78366    
## CCBelief_Score.c:C6 -4.860e-02  5.509e-02  2.716e+03  -0.882  0.37775    
## CCBelief_Score.c:C7  2.645e-02  6.079e-02  2.707e+03   0.435  0.66351    
## CCBelief_Score.c:C8 -2.759e-02  5.656e-02  2.785e+03  -0.488  0.62569    
## CCBelief_Score.c:C9  4.902e-02  6.040e-02  2.792e+03   0.812  0.41706    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.896,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.75 0.95 36.88 – 40.61 40.71 <0.001
CCBelief Score c 0.07 0.04 -0.01 – 0.15 1.79 0.073
C1 -12.99 1.29 -15.52 – -10.46 -10.06 <0.001
C2 0.69 1.40 -2.05 – 3.44 0.50 0.620
C3 -13.05 1.40 -15.79 – -10.32 -9.35 <0.001
C4 -3.78 1.31 -6.34 – -1.21 -2.89 0.004
C5 -3.12 1.31 -5.68 – -0.56 -2.39 0.017
C6 -6.79 1.31 -9.36 – -4.22 -5.18 <0.001
C7 16.42 1.41 13.66 – 19.19 11.66 <0.001
C8 23.07 1.30 20.53 – 25.61 17.78 <0.001
C9 15.47 1.39 12.73 – 18.20 11.09 <0.001
CCBelief Score c * C1 -0.07 0.05 -0.17 – 0.04 -1.20 0.232
CCBelief Score c * C2 0.01 0.06 -0.11 – 0.13 0.12 0.907
CCBelief Score c * C3 -0.12 0.06 -0.23 – -0.01 -2.19 0.029
CCBelief Score c * C4 -0.06 0.05 -0.17 – 0.05 -1.12 0.262
CCBelief Score c * C5 -0.02 0.06 -0.13 – 0.10 -0.27 0.784
CCBelief Score c * C6 -0.05 0.06 -0.16 – 0.06 -0.88 0.378
CCBelief Score c * C7 0.03 0.06 -0.09 – 0.15 0.44 0.664
CCBelief Score c * C8 -0.03 0.06 -0.14 – 0.08 -0.49 0.626
CCBelief Score c * C9 0.05 0.06 -0.07 – 0.17 0.81 0.417
Random Effects
σ2 255.54
τ00 id 65.38
ICC 0.20
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.311 / 0.451

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict naturalness perception, over and above burger contrasts?
modA.895 <- lmer(Naturalness ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.895)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26574.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5409 -0.6176 -0.0206  0.6037  3.3935 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  66.74    8.169  
##  Residual             255.18   15.974  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              3.876e+01  9.531e-01  3.061e+03  40.665  < 2e-16 ***
## Collectivism_Score.c     1.635e-02  3.707e-02  3.072e+03   0.441  0.65919    
## C1                      -1.299e+01  1.291e+00  2.745e+03 -10.059  < 2e-16 ***
## C2                       6.988e-01  1.400e+00  2.675e+03   0.499  0.61757    
## C3                      -1.290e+01  1.398e+00  2.713e+03  -9.229  < 2e-16 ***
## C4                      -3.741e+00  1.309e+00  2.748e+03  -2.858  0.00429 ** 
## C5                      -3.215e+00  1.309e+00  2.771e+03  -2.455  0.01414 *  
## C6                      -6.844e+00  1.312e+00  2.745e+03  -5.218 1.94e-07 ***
## C7                       1.650e+01  1.410e+00  2.722e+03  11.703  < 2e-16 ***
## C8                       2.317e+01  1.298e+00  2.738e+03  17.851  < 2e-16 ***
## C9                       1.541e+01  1.397e+00  2.733e+03  11.033  < 2e-16 ***
## Collectivism_Score.c:C1  2.066e-03  5.432e-02  2.724e+03   0.038  0.96966    
## Collectivism_Score.c:C2  1.110e-03  5.696e-02  2.647e+03   0.019  0.98445    
## Collectivism_Score.c:C3  3.149e-02  5.520e-02  2.641e+03   0.570  0.56844    
## Collectivism_Score.c:C4 -4.882e-02  5.298e-02  2.723e+03  -0.922  0.35685    
## Collectivism_Score.c:C5 -7.903e-02  5.198e-02  2.739e+03  -1.520  0.12853    
## Collectivism_Score.c:C6 -5.744e-02  5.335e-02  2.735e+03  -1.077  0.28175    
## Collectivism_Score.c:C7  1.450e-02  5.731e-02  2.735e+03   0.253  0.80029    
## Collectivism_Score.c:C8 -1.157e-01  5.298e-02  2.756e+03  -2.183  0.02911 *  
## Collectivism_Score.c:C9 -5.044e-03  5.812e-02  2.770e+03  -0.087  0.93085    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.895,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.76 0.95 36.89 – 40.63 40.67 <0.001
Collectivism Score c 0.02 0.04 -0.06 – 0.09 0.44 0.659
C1 -12.99 1.29 -15.52 – -10.46 -10.06 <0.001
C2 0.70 1.40 -2.05 – 3.44 0.50 0.618
C3 -12.90 1.40 -15.64 – -10.16 -9.23 <0.001
C4 -3.74 1.31 -6.31 – -1.17 -2.86 0.004
C5 -3.21 1.31 -5.78 – -0.65 -2.46 0.014
C6 -6.84 1.31 -9.42 – -4.27 -5.22 <0.001
C7 16.50 1.41 13.73 – 19.26 11.70 <0.001
C8 23.17 1.30 20.63 – 25.72 17.85 <0.001
C9 15.41 1.40 12.67 – 18.15 11.03 <0.001
Collectivism Score c * C1 0.00 0.05 -0.10 – 0.11 0.04 0.970
Collectivism Score c * C2 0.00 0.06 -0.11 – 0.11 0.02 0.984
Collectivism Score c * C3 0.03 0.06 -0.08 – 0.14 0.57 0.568
Collectivism Score c * C4 -0.05 0.05 -0.15 – 0.06 -0.92 0.357
Collectivism Score c * C5 -0.08 0.05 -0.18 – 0.02 -1.52 0.129
Collectivism Score c * C6 -0.06 0.05 -0.16 – 0.05 -1.08 0.282
Collectivism Score c * C7 0.01 0.06 -0.10 – 0.13 0.25 0.800
Collectivism Score c * C8 -0.12 0.05 -0.22 – -0.01 -2.18 0.029
Collectivism Score c * C9 -0.01 0.06 -0.12 – 0.11 -0.09 0.931
Random Effects
σ2 255.18
τ00 id 66.74
ICC 0.21
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.308 / 0.452

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict naturalness perception, over and above burger contrasts?
modA.894 <- lmer(Naturalness ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.894)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C5 + Individualism_Score.c * C6 + Individualism_Score.c *  
##     C7 + Individualism_Score.c * C8 + Individualism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 26571.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5454 -0.6265 -0.0179  0.6034  3.3751 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  65.62    8.101  
##  Residual             256.29   16.009  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               3.872e+01  9.545e-01  3.061e+03  40.562  < 2e-16 ***
## Individualism_Score.c     4.695e-02  5.472e-02  3.066e+03   0.858  0.39095    
## C1                       -1.294e+01  1.293e+00  2.750e+03 -10.004  < 2e-16 ***
## C2                        7.352e-01  1.403e+00  2.677e+03   0.524  0.60035    
## C3                       -1.298e+01  1.402e+00  2.720e+03  -9.257  < 2e-16 ***
## C4                       -3.768e+00  1.310e+00  2.749e+03  -2.876  0.00406 ** 
## C5                       -3.022e+00  1.308e+00  2.775e+03  -2.310  0.02097 *  
## C6                       -6.825e+00  1.314e+00  2.749e+03  -5.194 2.21e-07 ***
## C7                        1.651e+01  1.413e+00  2.725e+03  11.691  < 2e-16 ***
## C8                        2.310e+01  1.300e+00  2.742e+03  17.771  < 2e-16 ***
## C9                        1.545e+01  1.398e+00  2.735e+03  11.057  < 2e-16 ***
## Individualism_Score.c:C1 -1.069e-02  7.506e-02  2.717e+03  -0.142  0.88673    
## Individualism_Score.c:C2 -8.477e-02  8.478e-02  2.732e+03  -1.000  0.31744    
## Individualism_Score.c:C3 -4.237e-02  7.881e-02  2.647e+03  -0.538  0.59084    
## Individualism_Score.c:C4 -1.007e-01  7.657e-02  2.735e+03  -1.315  0.18848    
## Individualism_Score.c:C5 -1.628e-01  7.678e-02  2.779e+03  -2.120  0.03413 *  
## Individualism_Score.c:C6 -1.440e-01  7.831e-02  2.762e+03  -1.838  0.06610 .  
## Individualism_Score.c:C7 -6.910e-02  8.023e-02  2.700e+03  -0.861  0.38920    
## Individualism_Score.c:C8 -6.171e-02  7.526e-02  2.743e+03  -0.820  0.41230    
## Individualism_Score.c:C9 -9.616e-03  8.535e-02  2.761e+03  -0.113  0.91030    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.894,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.72 0.95 36.84 – 40.59 40.56 <0.001
Individualism Score c 0.05 0.05 -0.06 – 0.15 0.86 0.391
C1 -12.94 1.29 -15.47 – -10.40 -10.00 <0.001
C2 0.74 1.40 -2.02 – 3.49 0.52 0.600
C3 -12.98 1.40 -15.73 – -10.23 -9.26 <0.001
C4 -3.77 1.31 -6.34 – -1.20 -2.88 0.004
C5 -3.02 1.31 -5.59 – -0.46 -2.31 0.021
C6 -6.82 1.31 -9.40 – -4.25 -5.19 <0.001
C7 16.51 1.41 13.75 – 19.28 11.69 <0.001
C8 23.10 1.30 20.55 – 25.65 17.77 <0.001
C9 15.45 1.40 12.71 – 18.19 11.06 <0.001
Individualism Score c *
C1
-0.01 0.08 -0.16 – 0.14 -0.14 0.887
Individualism Score c *
C2
-0.08 0.08 -0.25 – 0.08 -1.00 0.317
Individualism Score c *
C3
-0.04 0.08 -0.20 – 0.11 -0.54 0.591
Individualism Score c *
C4
-0.10 0.08 -0.25 – 0.05 -1.32 0.188
Individualism Score c *
C5
-0.16 0.08 -0.31 – -0.01 -2.12 0.034
Individualism Score c *
C6
-0.14 0.08 -0.30 – 0.01 -1.84 0.066
Individualism Score c *
C7
-0.07 0.08 -0.23 – 0.09 -0.86 0.389
Individualism Score c *
C8
-0.06 0.08 -0.21 – 0.09 -0.82 0.412
Individualism Score c *
C9
-0.01 0.09 -0.18 – 0.16 -0.11 0.910
Random Effects
σ2 256.29
τ00 id 65.62
ICC 0.20
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.308 / 0.449

Political Ideology

Q.1 (POLITICAL IDEOLOGY) How does individualism predict naturalness perception, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.893 <- lmer(Naturalness ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.893)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Naturalness ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 +  
##     Ideology.c * C7 + Ideology.c * C8 + Ideology.c * C9 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 26502.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5567 -0.6135 -0.0214  0.6081  3.4284 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  66.7     8.167  
##  Residual             255.5    15.984  
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     38.7576     0.9528 3061.0689  40.677  < 2e-16 ***
## Ideology.c      -1.9985     1.5923 3069.4145  -1.255  0.20952    
## C1             -12.9916     1.2914 2745.4549 -10.060  < 2e-16 ***
## C2               0.7309     1.3990 2674.3033   0.522  0.60141    
## C3             -12.9976     1.3962 2715.3581  -9.309  < 2e-16 ***
## C4              -3.7752     1.3077 2745.8373  -2.887  0.00392 ** 
## C5              -3.1326     1.3083 2770.6013  -2.394  0.01671 *  
## C6              -6.8001     1.3122 2747.6846  -5.182 2.35e-07 ***
## C7              16.4688     1.4096 2722.0428  11.683  < 2e-16 ***
## C8              23.1879     1.3005 2743.6560  17.830  < 2e-16 ***
## C9              15.4442     1.3956 2733.3881  11.066  < 2e-16 ***
## Ideology.c:C1    2.4187     2.1969 2697.0800   1.101  0.27101    
## Ideology.c:C2    2.0755     2.3348 2599.2181   0.889  0.37413    
## Ideology.c:C3   -0.9274     2.4260 2709.4717  -0.382  0.70228    
## Ideology.c:C4    0.3840     2.2719 2763.0783   0.169  0.86580    
## Ideology.c:C5    3.1428     2.2356 2830.0089   1.406  0.15989    
## Ideology.c:C6    1.3414     2.2726 2748.1375   0.590  0.55507    
## Ideology.c:C7    0.4123     2.3674 2779.8006   0.174  0.86176    
## Ideology.c:C8    3.8165     2.2144 2714.8400   1.724  0.08490 .  
## Ideology.c:C9   -1.4934     2.4747 2746.0827  -0.603  0.54624    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.893,
          show.stat = T, show.se = T)
  Naturalness
Predictors Estimates std. Error CI Statistic p
(Intercept) 38.76 0.95 36.89 – 40.63 40.68 <0.001
Ideology c -2.00 1.59 -5.12 – 1.12 -1.26 0.210
C1 -12.99 1.29 -15.52 – -10.46 -10.06 <0.001
C2 0.73 1.40 -2.01 – 3.47 0.52 0.601
C3 -13.00 1.40 -15.74 – -10.26 -9.31 <0.001
C4 -3.78 1.31 -6.34 – -1.21 -2.89 0.004
C5 -3.13 1.31 -5.70 – -0.57 -2.39 0.017
C6 -6.80 1.31 -9.37 – -4.23 -5.18 <0.001
C7 16.47 1.41 13.70 – 19.23 11.68 <0.001
C8 23.19 1.30 20.64 – 25.74 17.83 <0.001
C9 15.44 1.40 12.71 – 18.18 11.07 <0.001
Ideology c * C1 2.42 2.20 -1.89 – 6.73 1.10 0.271
Ideology c * C2 2.08 2.33 -2.50 – 6.65 0.89 0.374
Ideology c * C3 -0.93 2.43 -5.68 – 3.83 -0.38 0.702
Ideology c * C4 0.38 2.27 -4.07 – 4.84 0.17 0.866
Ideology c * C5 3.14 2.24 -1.24 – 7.53 1.41 0.160
Ideology c * C6 1.34 2.27 -3.11 – 5.80 0.59 0.555
Ideology c * C7 0.41 2.37 -4.23 – 5.05 0.17 0.862
Ideology c * C8 3.82 2.21 -0.53 – 8.16 1.72 0.085
Ideology c * C9 -1.49 2.47 -6.35 – 3.36 -0.60 0.546
Random Effects
σ2 255.49
τ00 id 66.70
ICC 0.21
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.308 / 0.452

Risk

Q.1 How do burger contrasts predict risk perception?
modA.860 <- lmer(Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.860)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28183.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.5937 -0.6121 -0.0692  0.5627  3.6688 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 186.0    13.64   
##  Residual             392.4    19.81   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   34.824      1.236 3073.917  28.180  < 2e-16 ***
## C1             8.104      1.637 2603.391   4.950 7.88e-07 ***
## C2            -8.219      1.769 2550.596  -4.645 3.57e-06 ***
## C3            18.477      1.769 2587.689  10.447  < 2e-16 ***
## C4             3.297      1.658 2603.343   1.988   0.0469 *  
## C5             3.725      1.657 2624.855   2.247   0.0247 *  
## C6            11.433      1.663 2604.021   6.876 7.70e-12 ***
## C7           -23.874      1.786 2593.853 -13.366  < 2e-16 ***
## C8           -18.746      1.645 2597.511 -11.398  < 2e-16 ***
## C9           -17.561      1.769 2604.314  -9.926  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.683                                                        
## C2 -0.609  0.472                                                 
## C3 -0.617  0.477  0.396                                          
## C4 -0.674  0.509  0.467  0.469                                   
## C5 -0.679  0.515  0.469  0.477  0.507                            
## C6 -0.672  0.506  0.458  0.478  0.499  0.503                     
## C7 -0.612  0.472  0.393  0.399  0.468  0.471  0.463              
## C8 -0.679  0.512  0.468  0.468  0.504  0.508  0.505  0.476       
## C9 -0.621  0.484  0.399  0.405  0.474  0.475  0.473  0.401  0.479
tab_model(modA.860,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.82 1.24 32.40 – 37.25 28.18 <0.001
C1 8.10 1.64 4.89 – 11.31 4.95 <0.001
C2 -8.22 1.77 -11.69 – -4.75 -4.65 <0.001
C3 18.48 1.77 15.01 – 21.94 10.45 <0.001
C4 3.30 1.66 0.05 – 6.55 1.99 0.047
C5 3.72 1.66 0.48 – 6.97 2.25 0.025
C6 11.43 1.66 8.17 – 14.69 6.88 <0.001
C7 -23.87 1.79 -27.38 – -20.37 -13.37 <0.001
C8 -18.75 1.64 -21.97 – -15.52 -11.40 <0.001
C9 -17.56 1.77 -21.03 – -14.09 -9.93 <0.001
Random Effects
σ2 392.45
τ00 id 186.03
ICC 0.32
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.225 / 0.474

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict risk perception, over and above burger contrasts?
modA.861 <- lmer(Risk ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.861)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28035.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.0817 -0.5962 -0.0880  0.5990  3.6467 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 149.3    12.22   
##  Residual             384.9    19.62   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       34.66063    1.20349 3060.91068  28.800  < 2e-16 ***
## ATNS_Score.c       0.30499    0.05714 3056.52744   5.338 1.01e-07 ***
## C1                 8.24676    1.60878 2646.42703   5.126 3.17e-07 ***
## C2                -8.05956    1.74156 2587.10498  -4.628 3.88e-06 ***
## C3                18.50040    1.73879 2626.01259  10.640  < 2e-16 ***
## C4                 3.94656    1.63048 2647.70979   2.420  0.01557 *  
## C5                 3.88599    1.62840 2670.88110   2.386  0.01708 *  
## C6                11.44672    1.63567 2647.74251   6.998 3.27e-12 ***
## C7               -23.83729    1.75586 2634.21857 -13.576  < 2e-16 ***
## C8               -18.50720    1.61645 2640.65645 -11.449  < 2e-16 ***
## C9               -17.16386    1.73937 2642.95054  -9.868  < 2e-16 ***
## ATNS_Score.c:C1    0.04772    0.07582 2654.62169   0.629  0.52912    
## ATNS_Score.c:C2   -0.09832    0.08135 2576.64767  -1.209  0.22692    
## ATNS_Score.c:C3    0.09307    0.08134 2612.54887   1.144  0.25264    
## ATNS_Score.c:C4    0.17255    0.07516 2647.80078   2.296  0.02177 *  
## ATNS_Score.c:C5    0.08889    0.07583 2678.35521   1.172  0.24123    
## ATNS_Score.c:C6   -0.03127    0.07858 2675.58841  -0.398  0.69068    
## ATNS_Score.c:C7   -0.24261    0.08212 2644.27231  -2.954  0.00316 ** 
## ATNS_Score.c:C8   -0.10444    0.07605 2630.90897  -1.373  0.16978    
## ATNS_Score.c:C9   -0.22353    0.08279 2680.18831  -2.700  0.00698 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.861,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.66 1.20 32.30 – 37.02 28.80 <0.001
ATNS Score c 0.30 0.06 0.19 – 0.42 5.34 <0.001
C1 8.25 1.61 5.09 – 11.40 5.13 <0.001
C2 -8.06 1.74 -11.47 – -4.64 -4.63 <0.001
C3 18.50 1.74 15.09 – 21.91 10.64 <0.001
C4 3.95 1.63 0.75 – 7.14 2.42 0.016
C5 3.89 1.63 0.69 – 7.08 2.39 0.017
C6 11.45 1.64 8.24 – 14.65 7.00 <0.001
C7 -23.84 1.76 -27.28 – -20.39 -13.58 <0.001
C8 -18.51 1.62 -21.68 – -15.34 -11.45 <0.001
C9 -17.16 1.74 -20.57 – -13.75 -9.87 <0.001
ATNS Score c * C1 0.05 0.08 -0.10 – 0.20 0.63 0.529
ATNS Score c * C2 -0.10 0.08 -0.26 – 0.06 -1.21 0.227
ATNS Score c * C3 0.09 0.08 -0.07 – 0.25 1.14 0.253
ATNS Score c * C4 0.17 0.08 0.03 – 0.32 2.30 0.022
ATNS Score c * C5 0.09 0.08 -0.06 – 0.24 1.17 0.241
ATNS Score c * C6 -0.03 0.08 -0.19 – 0.12 -0.40 0.691
ATNS Score c * C7 -0.24 0.08 -0.40 – -0.08 -2.95 0.003
ATNS Score c * C8 -0.10 0.08 -0.25 – 0.04 -1.37 0.170
ATNS Score c * C9 -0.22 0.08 -0.39 – -0.06 -2.70 0.007
Random Effects
σ2 384.85
τ00 id 149.30
ICC 0.28
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.287 / 0.486
Q.2 (AVERSION TO TAMPERING WITH NATURE) Does aversion to tampering with nature depend on perceptions of naturalness in predicting risk perception, over and above burger contrasts?
modA.8617 <- lmer(Risk ~ ATNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.8617)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 +  
##     ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 +  
##     ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 +  
##     ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27625.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0861 -0.6013 -0.0388  0.5636  3.6593 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 145.2    12.05   
##  Residual             326.8    18.08   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 3.413e+01  1.122e+00  3.061e+03  30.426  < 2e-16
## ATNS_Score.c                2.830e-01  5.328e-02  3.057e+03   5.313 1.16e-07
## Naturalness.c              -4.296e-01  2.142e-02  3.027e+03 -20.055  < 2e-16
## C1                          2.703e+00  1.516e+00  2.624e+03   1.783   0.0748
## C2                         -7.692e+00  1.612e+00  2.553e+03  -4.770 1.94e-06
## C3                          1.256e+01  1.634e+00  2.608e+03   7.685 2.15e-14
## C4                          1.821e+00  1.513e+00  2.606e+03   1.203   0.2290
## C5                          2.212e+00  1.511e+00  2.630e+03   1.464   0.1432
## C6                          8.270e+00  1.522e+00  2.608e+03   5.434 6.02e-08
## C7                         -1.643e+01  1.665e+00  2.641e+03  -9.864  < 2e-16
## C8                         -8.637e+00  1.577e+00  2.670e+03  -5.476 4.75e-08
## C9                         -1.067e+01  1.645e+00  2.632e+03  -6.489 1.03e-10
## ATNS_Score.c:Naturalness.c -5.040e-03  8.460e-04  3.025e+03  -5.957 2.86e-09
## ATNS_Score.c:C1            -6.218e-03  7.123e-02  2.618e+03  -0.087   0.9304
## ATNS_Score.c:C2            -8.730e-02  7.531e-02  2.543e+03  -1.159   0.2464
## ATNS_Score.c:C3            -2.862e-02  7.622e-02  2.591e+03  -0.375   0.7074
## ATNS_Score.c:C4             8.532e-02  6.981e-02  2.603e+03   1.222   0.2217
## ATNS_Score.c:C5             1.670e-02  7.041e-02  2.634e+03   0.237   0.8126
## ATNS_Score.c:C6            -1.089e-01  7.298e-02  2.629e+03  -1.492   0.1357
## ATNS_Score.c:C7            -1.081e-01  7.750e-02  2.650e+03  -1.395   0.1630
## ATNS_Score.c:C8             1.826e-02  7.316e-02  2.644e+03   0.250   0.8029
## ATNS_Score.c:C9            -1.314e-01  7.804e-02  2.680e+03  -1.684   0.0923
##                               
## (Intercept)                ***
## ATNS_Score.c               ***
## Naturalness.c              ***
## C1                         .  
## C2                         ***
## C3                         ***
## C4                            
## C5                            
## C6                         ***
## C7                         ***
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c ***
## ATNS_Score.c:C1               
## ATNS_Score.c:C2               
## ATNS_Score.c:C3               
## ATNS_Score.c:C4               
## ATNS_Score.c:C5               
## ATNS_Score.c:C6               
## ATNS_Score.c:C7               
## ATNS_Score.c:C8               
## ATNS_Score.c:C9            .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8617,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.13 1.12 31.93 – 36.33 30.43 <0.001
ATNS Score c 0.28 0.05 0.18 – 0.39 5.31 <0.001
Naturalness c -0.43 0.02 -0.47 – -0.39 -20.05 <0.001
C1 2.70 1.52 -0.27 – 5.68 1.78 0.075
C2 -7.69 1.61 -10.85 – -4.53 -4.77 <0.001
C3 12.56 1.63 9.35 – 15.76 7.69 <0.001
C4 1.82 1.51 -1.15 – 4.79 1.20 0.229
C5 2.21 1.51 -0.75 – 5.17 1.46 0.143
C6 8.27 1.52 5.29 – 11.25 5.43 <0.001
C7 -16.43 1.67 -19.69 – -13.16 -9.86 <0.001
C8 -8.64 1.58 -11.73 – -5.54 -5.48 <0.001
C9 -10.67 1.64 -13.90 – -7.45 -6.49 <0.001
ATNS Score c *
Naturalness c
-0.01 0.00 -0.01 – -0.00 -5.96 <0.001
ATNS Score c * C1 -0.01 0.07 -0.15 – 0.13 -0.09 0.930
ATNS Score c * C2 -0.09 0.08 -0.23 – 0.06 -1.16 0.246
ATNS Score c * C3 -0.03 0.08 -0.18 – 0.12 -0.38 0.707
ATNS Score c * C4 0.09 0.07 -0.05 – 0.22 1.22 0.222
ATNS Score c * C5 0.02 0.07 -0.12 – 0.15 0.24 0.813
ATNS Score c * C6 -0.11 0.07 -0.25 – 0.03 -1.49 0.136
ATNS Score c * C7 -0.11 0.08 -0.26 – 0.04 -1.40 0.163
ATNS Score c * C8 0.02 0.07 -0.13 – 0.16 0.25 0.803
ATNS Score c * C9 -0.13 0.08 -0.28 – 0.02 -1.68 0.092
Random Effects
σ2 326.77
τ00 id 145.16
ICC 0.31
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.372 / 0.565

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict risk perception, over and above burger contrasts?
modA.863 <- lmer(Risk ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.863)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c *  
##     C3 + CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c *  
##     C6 + CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c *      C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28176.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.9898 -0.6068 -0.0694  0.5815  4.0009 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.9    13.56   
##  Residual             388.8    19.72   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)     3.483e+01  1.230e+00  3.064e+03  28.315  < 2e-16 ***
## CNS_Score.c     1.685e-02  7.357e-02  3.066e+03   0.229  0.81882    
## C1              7.998e+00  1.630e+00  2.595e+03   4.908 9.78e-07 ***
## C2             -8.189e+00  1.766e+00  2.542e+03  -4.638 3.70e-06 ***
## C3              1.838e+01  1.761e+00  2.580e+03  10.440  < 2e-16 ***
## C4              3.421e+00  1.652e+00  2.596e+03   2.071  0.03843 *  
## C5              3.785e+00  1.650e+00  2.616e+03   2.294  0.02189 *  
## C6              1.152e+01  1.656e+00  2.596e+03   6.955 4.45e-12 ***
## C7             -2.388e+01  1.778e+00  2.587e+03 -13.427  < 2e-16 ***
## C8             -1.859e+01  1.638e+00  2.588e+03 -11.348  < 2e-16 ***
## C9             -1.727e+01  1.762e+00  2.595e+03  -9.800  < 2e-16 ***
## CNS_Score.c:C1 -4.606e-02  9.589e-02  2.581e+03  -0.480  0.63104    
## CNS_Score.c:C2  2.259e-03  1.027e-01  2.524e+03   0.022  0.98244    
## CNS_Score.c:C3  2.762e-01  1.071e-01  2.541e+03   2.579  0.00996 ** 
## CNS_Score.c:C4  1.501e-01  9.719e-02  2.606e+03   1.545  0.12251    
## CNS_Score.c:C5  3.710e-02  1.012e-01  2.636e+03   0.367  0.71387    
## CNS_Score.c:C6  7.050e-02  9.860e-02  2.577e+03   0.715  0.47462    
## CNS_Score.c:C7 -1.992e-01  1.078e-01  2.616e+03  -1.848  0.06476 .  
## CNS_Score.c:C8 -1.575e-01  1.010e-01  2.612e+03  -1.559  0.11904    
## CNS_Score.c:C9 -2.942e-01  1.065e-01  2.634e+03  -2.763  0.00576 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.863,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.83 1.23 32.42 – 37.24 28.32 <0.001
CNS Score c 0.02 0.07 -0.13 – 0.16 0.23 0.819
C1 8.00 1.63 4.80 – 11.19 4.91 <0.001
C2 -8.19 1.77 -11.65 – -4.73 -4.64 <0.001
C3 18.38 1.76 14.93 – 21.84 10.44 <0.001
C4 3.42 1.65 0.18 – 6.66 2.07 0.038
C5 3.78 1.65 0.55 – 7.02 2.29 0.022
C6 11.52 1.66 8.27 – 14.76 6.95 <0.001
C7 -23.88 1.78 -27.36 – -20.39 -13.43 <0.001
C8 -18.59 1.64 -21.80 – -15.38 -11.35 <0.001
C9 -17.27 1.76 -20.73 – -13.82 -9.80 <0.001
CNS Score c * C1 -0.05 0.10 -0.23 – 0.14 -0.48 0.631
CNS Score c * C2 0.00 0.10 -0.20 – 0.20 0.02 0.982
CNS Score c * C3 0.28 0.11 0.07 – 0.49 2.58 0.010
CNS Score c * C4 0.15 0.10 -0.04 – 0.34 1.54 0.122
CNS Score c * C5 0.04 0.10 -0.16 – 0.24 0.37 0.714
CNS Score c * C6 0.07 0.10 -0.12 – 0.26 0.72 0.475
CNS Score c * C7 -0.20 0.11 -0.41 – 0.01 -1.85 0.065
CNS Score c * C8 -0.16 0.10 -0.36 – 0.04 -1.56 0.119
CNS Score c * C9 -0.29 0.11 -0.50 – -0.09 -2.76 0.006
Random Effects
σ2 388.78
τ00 id 183.95
ICC 0.32
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.234 / 0.480
Q.2 (CONNECTEDNESS TO NATURE) Does connectedness to nature depend on perceptions of naturalness in predicting risk perception, over and above burger contrasts?
modA.8638 <- lmer(Risk ~ CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.8638)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ CNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 +  
##     CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c * C5 +  
##     CNS_Score.c * C6 + CNS_Score.c * C7 + CNS_Score.c * C8 +  
##     CNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27783.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8170 -0.6029 -0.0225  0.5633  3.9329 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 179.0    13.38   
##  Residual             331.6    18.21   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                3.433e+01  1.150e+00  3.065e+03  29.847  < 2e-16 ***
## CNS_Score.c                2.103e-02  6.885e-02  3.067e+03   0.305   0.7600    
## Naturalness.c             -4.527e-01  2.180e-02  2.991e+03 -20.767  < 2e-16 ***
## C1                         2.052e+00  1.538e+00  2.571e+03   1.334   0.1823    
## C2                        -7.818e+00  1.638e+00  2.509e+03  -4.772 1.92e-06 ***
## C3                         1.227e+01  1.660e+00  2.562e+03   7.394 1.93e-13 ***
## C4                         1.636e+00  1.535e+00  2.556e+03   1.066   0.2866    
## C5                         2.250e+00  1.534e+00  2.578e+03   1.467   0.1424    
## C6                         8.277e+00  1.544e+00  2.558e+03   5.359 9.11e-08 ***
## C7                        -1.629e+01  1.690e+00  2.590e+03  -9.636  < 2e-16 ***
## C8                        -8.218e+00  1.602e+00  2.616e+03  -5.129 3.13e-07 ***
## C9                        -1.041e+01  1.670e+00  2.585e+03  -6.232 5.35e-10 ***
## CNS_Score.c:Naturalness.c -2.533e-03  1.218e-03  3.022e+03  -2.079   0.0377 *  
## CNS_Score.c:C1            -1.097e-01  9.071e-02  2.570e+03  -1.209   0.2267    
## CNS_Score.c:C2             7.499e-03  9.524e-02  2.495e+03   0.079   0.9373    
## CNS_Score.c:C3             1.422e-01  1.002e-01  2.515e+03   1.419   0.1559    
## CNS_Score.c:C4             1.118e-01  9.043e-02  2.563e+03   1.237   0.2164    
## CNS_Score.c:C5            -6.248e-03  9.403e-02  2.594e+03  -0.066   0.9470    
## CNS_Score.c:C6             5.746e-03  9.176e-02  2.533e+03   0.063   0.9501    
## CNS_Score.c:C7            -1.058e-01  1.023e-01  2.612e+03  -1.034   0.3011    
## CNS_Score.c:C8            -8.657e-02  9.915e-02  2.677e+03  -0.873   0.3827    
## CNS_Score.c:C9            -1.876e-01  1.011e-01  2.636e+03  -1.855   0.0637 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8638,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.33 1.15 32.07 – 36.58 29.85 <0.001
CNS Score c 0.02 0.07 -0.11 – 0.16 0.31 0.760
Naturalness c -0.45 0.02 -0.50 – -0.41 -20.77 <0.001
C1 2.05 1.54 -0.96 – 5.07 1.33 0.182
C2 -7.82 1.64 -11.03 – -4.61 -4.77 <0.001
C3 12.27 1.66 9.02 – 15.52 7.39 <0.001
C4 1.64 1.54 -1.37 – 4.65 1.07 0.287
C5 2.25 1.53 -0.76 – 5.26 1.47 0.142
C6 8.28 1.54 5.25 – 11.30 5.36 <0.001
C7 -16.29 1.69 -19.60 – -12.97 -9.64 <0.001
C8 -8.22 1.60 -11.36 – -5.08 -5.13 <0.001
C9 -10.41 1.67 -13.68 – -7.13 -6.23 <0.001
CNS Score c * Naturalness
c
-0.00 0.00 -0.00 – -0.00 -2.08 0.038
CNS Score c * C1 -0.11 0.09 -0.29 – 0.07 -1.21 0.227
CNS Score c * C2 0.01 0.10 -0.18 – 0.19 0.08 0.937
CNS Score c * C3 0.14 0.10 -0.05 – 0.34 1.42 0.156
CNS Score c * C4 0.11 0.09 -0.07 – 0.29 1.24 0.216
CNS Score c * C5 -0.01 0.09 -0.19 – 0.18 -0.07 0.947
CNS Score c * C6 0.01 0.09 -0.17 – 0.19 0.06 0.950
CNS Score c * C7 -0.11 0.10 -0.31 – 0.09 -1.03 0.301
CNS Score c * C8 -0.09 0.10 -0.28 – 0.11 -0.87 0.383
CNS Score c * C9 -0.19 0.10 -0.39 – 0.01 -1.86 0.064
Random Effects
σ2 331.61
τ00 id 178.95
ICC 0.35
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.320 / 0.558

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict risk perception, over and above burger contrasts?
modA.864 <- lmer(Risk ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.864)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 +  
##     CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28128.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7588 -0.6103 -0.0588  0.5796  3.6839 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 171      13.08   
##  Residual             387      19.67   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.481e+01  1.220e+00  3.062e+03  28.529  < 2e-16 ***
## CCBelief_Score.c    -1.775e-01  5.196e-02  3.061e+03  -3.415 0.000646 ***
## C1                   8.114e+00  1.622e+00  2.612e+03   5.003 6.02e-07 ***
## C2                  -8.208e+00  1.753e+00  2.557e+03  -4.681 3.01e-06 ***
## C3                   1.874e+01  1.753e+00  2.595e+03  10.688  < 2e-16 ***
## C4                   3.157e+00  1.645e+00  2.611e+03   1.919 0.055054 .  
## C5                   3.935e+00  1.643e+00  2.634e+03   2.395 0.016680 *  
## C6                   1.141e+01  1.647e+00  2.612e+03   6.926 5.43e-12 ***
## C7                  -2.386e+01  1.770e+00  2.600e+03 -13.482  < 2e-16 ***
## C8                  -1.863e+01  1.630e+00  2.608e+03 -11.425  < 2e-16 ***
## C9                  -1.753e+01  1.752e+00  2.611e+03 -10.002  < 2e-16 ***
## CCBelief_Score.c:C1 -1.506e-03  6.860e-02  2.630e+03  -0.022 0.982486    
## CCBelief_Score.c:C2  4.436e-02  7.569e-02  2.563e+03   0.586 0.557939    
## CCBelief_Score.c:C3  3.036e-01  7.085e-02  2.569e+03   4.285 1.89e-05 ***
## CCBelief_Score.c:C4  3.012e-02  6.745e-02  2.618e+03   0.447 0.655203    
## CCBelief_Score.c:C5  7.575e-03  7.129e-02  2.625e+03   0.106 0.915389    
## CCBelief_Score.c:C6 -3.371e-03  6.915e-02  2.583e+03  -0.049 0.961126    
## CCBelief_Score.c:C7  4.910e-02  7.630e-02  2.585e+03   0.643 0.520008    
## CCBelief_Score.c:C8 -3.558e-02  7.117e-02  2.647e+03  -0.500 0.617144    
## CCBelief_Score.c:C9 -2.216e-01  7.604e-02  2.665e+03  -2.914 0.003596 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.864,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.81 1.22 32.42 – 37.20 28.53 <0.001
CCBelief Score c -0.18 0.05 -0.28 – -0.08 -3.42 0.001
C1 8.11 1.62 4.93 – 11.29 5.00 <0.001
C2 -8.21 1.75 -11.65 – -4.77 -4.68 <0.001
C3 18.74 1.75 15.30 – 22.17 10.69 <0.001
C4 3.16 1.64 -0.07 – 6.38 1.92 0.055
C5 3.93 1.64 0.71 – 7.16 2.40 0.017
C6 11.41 1.65 8.18 – 14.64 6.93 <0.001
C7 -23.86 1.77 -27.33 – -20.39 -13.48 <0.001
C8 -18.63 1.63 -21.82 – -15.43 -11.43 <0.001
C9 -17.53 1.75 -20.96 – -14.09 -10.00 <0.001
CCBelief Score c * C1 -0.00 0.07 -0.14 – 0.13 -0.02 0.982
CCBelief Score c * C2 0.04 0.08 -0.10 – 0.19 0.59 0.558
CCBelief Score c * C3 0.30 0.07 0.16 – 0.44 4.29 <0.001
CCBelief Score c * C4 0.03 0.07 -0.10 – 0.16 0.45 0.655
CCBelief Score c * C5 0.01 0.07 -0.13 – 0.15 0.11 0.915
CCBelief Score c * C6 -0.00 0.07 -0.14 – 0.13 -0.05 0.961
CCBelief Score c * C7 0.05 0.08 -0.10 – 0.20 0.64 0.520
CCBelief Score c * C8 -0.04 0.07 -0.18 – 0.10 -0.50 0.617
CCBelief Score c * C9 -0.22 0.08 -0.37 – -0.07 -2.91 0.004
Random Effects
σ2 387.00
τ00 id 171.03
ICC 0.31
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.255 / 0.483
Q.2 (CLIMATE CHANGE BELIEF) Does climate change belief depend on perceptions of naturalness in predicting risk perception, over and above burger contrasts?
modA.8649 <- lmer(Risk ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.8649)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27738.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3605 -0.6101 -0.0086  0.5647  3.7196 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 168.6    12.98   
##  Residual             329.5    18.15   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     3.423e+01  1.141e+00  3.064e+03  29.991
## CCBelief_Score.c               -1.350e-01  4.887e-02  3.067e+03  -2.763
## Naturalness.c                  -4.496e-01  2.163e-02  3.001e+03 -20.786
## C1                              2.283e+00  1.531e+00  2.588e+03   1.491
## C2                             -7.889e+00  1.626e+00  2.521e+03  -4.851
## C3                              1.288e+01  1.653e+00  2.581e+03   7.791
## C4                              1.491e+00  1.529e+00  2.570e+03   0.976
## C5                              2.473e+00  1.526e+00  2.594e+03   1.620
## C6                              8.350e+00  1.536e+00  2.573e+03   5.437
## C7                             -1.642e+01  1.681e+00  2.601e+03  -9.767
## C8                             -8.262e+00  1.594e+00  2.637e+03  -5.183
## C9                             -1.073e+01  1.661e+00  2.599e+03  -6.462
## CCBelief_Score.c:Naturalness.c  1.184e-03  8.190e-04  3.015e+03   1.446
## CCBelief_Score.c:C1            -2.205e-02  6.427e-02  2.579e+03  -0.343
## CCBelief_Score.c:C2             4.964e-02  7.021e-02  2.527e+03   0.707
## CCBelief_Score.c:C3             2.554e-01  6.622e-02  2.522e+03   3.857
## CCBelief_Score.c:C4             2.612e-03  6.261e-02  2.576e+03   0.042
## CCBelief_Score.c:C5            -2.905e-03  6.617e-02  2.582e+03  -0.044
## CCBelief_Score.c:C6            -2.198e-02  6.418e-02  2.540e+03  -0.342
## CCBelief_Score.c:C7             3.741e-02  7.200e-02  2.623e+03   0.520
## CCBelief_Score.c:C8            -8.780e-02  7.033e-02  2.749e+03  -1.248
## CCBelief_Score.c:C9            -2.230e-01  7.209e-02  2.689e+03  -3.093
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c               0.005764 ** 
## Naturalness.c                   < 2e-16 ***
## C1                             0.136177    
## C2                             1.30e-06 ***
## C3                             9.55e-15 ***
## C4                             0.329382    
## C5                             0.105319    
## C6                             5.91e-08 ***
## C7                              < 2e-16 ***
## C8                             2.34e-07 ***
## C9                             1.23e-10 ***
## CCBelief_Score.c:Naturalness.c 0.148232    
## CCBelief_Score.c:C1            0.731609    
## CCBelief_Score.c:C2            0.479572    
## CCBelief_Score.c:C3            0.000117 ***
## CCBelief_Score.c:C4            0.966724    
## CCBelief_Score.c:C5            0.964989    
## CCBelief_Score.c:C6            0.732027    
## CCBelief_Score.c:C7            0.603418    
## CCBelief_Score.c:C8            0.211980    
## CCBelief_Score.c:C9            0.002002 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8649,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.23 1.14 31.99 – 36.47 29.99 <0.001
CCBelief Score c -0.14 0.05 -0.23 – -0.04 -2.76 0.006
Naturalness c -0.45 0.02 -0.49 – -0.41 -20.79 <0.001
C1 2.28 1.53 -0.72 – 5.29 1.49 0.136
C2 -7.89 1.63 -11.08 – -4.70 -4.85 <0.001
C3 12.88 1.65 9.64 – 16.12 7.79 <0.001
C4 1.49 1.53 -1.51 – 4.49 0.98 0.329
C5 2.47 1.53 -0.52 – 5.47 1.62 0.105
C6 8.35 1.54 5.34 – 11.36 5.44 <0.001
C7 -16.42 1.68 -19.72 – -13.12 -9.77 <0.001
C8 -8.26 1.59 -11.39 – -5.14 -5.18 <0.001
C9 -10.73 1.66 -13.99 – -7.48 -6.46 <0.001
CCBelief Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.45 0.148
CCBelief Score c * C1 -0.02 0.06 -0.15 – 0.10 -0.34 0.732
CCBelief Score c * C2 0.05 0.07 -0.09 – 0.19 0.71 0.480
CCBelief Score c * C3 0.26 0.07 0.13 – 0.39 3.86 <0.001
CCBelief Score c * C4 0.00 0.06 -0.12 – 0.13 0.04 0.967
CCBelief Score c * C5 -0.00 0.07 -0.13 – 0.13 -0.04 0.965
CCBelief Score c * C6 -0.02 0.06 -0.15 – 0.10 -0.34 0.732
CCBelief Score c * C7 0.04 0.07 -0.10 – 0.18 0.52 0.603
CCBelief Score c * C8 -0.09 0.07 -0.23 – 0.05 -1.25 0.212
CCBelief Score c * C9 -0.22 0.07 -0.36 – -0.08 -3.09 0.002
Random Effects
σ2 329.49
τ00 id 168.56
ICC 0.34
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.339 / 0.562

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict risk perception, over and above burger contrasts?
modA.866 <- lmer(Risk ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.866)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28196.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6533 -0.6158 -0.0667  0.5643  3.6878 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 181.0    13.45   
##  Residual             392.3    19.81   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              3.479e+01  1.234e+00  3.063e+03  28.194  < 2e-16 ***
## Collectivism_Score.c     6.601e-02  4.811e-02  3.077e+03   1.372   0.1702    
## C1                       8.155e+00  1.636e+00  2.602e+03   4.984 6.63e-07 ***
## C2                      -8.229e+00  1.769e+00  2.549e+03  -4.650 3.48e-06 ***
## C3                       1.836e+01  1.770e+00  2.584e+03  10.375  < 2e-16 ***
## C4                       3.324e+00  1.659e+00  2.605e+03   2.004   0.0452 *  
## C5                       3.752e+00  1.661e+00  2.625e+03   2.259   0.0240 *  
## C6                       1.155e+01  1.662e+00  2.602e+03   6.947 4.71e-12 ***
## C7                      -2.384e+01  1.785e+00  2.592e+03 -13.354  < 2e-16 ***
## C8                      -1.878e+01  1.645e+00  2.596e+03 -11.418  < 2e-16 ***
## C9                      -1.766e+01  1.770e+00  2.602e+03  -9.981  < 2e-16 ***
## Collectivism_Score.c:C1  1.082e-01  6.878e-02  2.584e+03   1.573   0.1159    
## Collectivism_Score.c:C2  2.883e-02  7.195e-02  2.526e+03   0.401   0.6887    
## Collectivism_Score.c:C3 -1.189e-01  6.971e-02  2.521e+03  -1.705   0.0883 .  
## Collectivism_Score.c:C4 -9.289e-04  6.709e-02  2.583e+03  -0.014   0.9890    
## Collectivism_Score.c:C5 -3.047e-02  6.586e-02  2.598e+03  -0.463   0.6437    
## Collectivism_Score.c:C6  7.374e-02  6.758e-02  2.593e+03   1.091   0.2753    
## Collectivism_Score.c:C7  3.681e-03  7.262e-02  2.607e+03   0.051   0.9596    
## Collectivism_Score.c:C8  4.559e-02  6.716e-02  2.614e+03   0.679   0.4973    
## Collectivism_Score.c:C9  9.351e-02  7.374e-02  2.637e+03   1.268   0.2049    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.866,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.79 1.23 32.37 – 37.21 28.19 <0.001
Collectivism Score c 0.07 0.05 -0.03 – 0.16 1.37 0.170
C1 8.16 1.64 4.95 – 11.36 4.98 <0.001
C2 -8.23 1.77 -11.70 – -4.76 -4.65 <0.001
C3 18.36 1.77 14.89 – 21.83 10.37 <0.001
C4 3.32 1.66 0.07 – 6.58 2.00 0.045
C5 3.75 1.66 0.49 – 7.01 2.26 0.024
C6 11.55 1.66 8.29 – 14.80 6.95 <0.001
C7 -23.84 1.79 -27.34 – -20.34 -13.35 <0.001
C8 -18.78 1.64 -22.00 – -15.55 -11.42 <0.001
C9 -17.66 1.77 -21.13 – -14.19 -9.98 <0.001
Collectivism Score c * C1 0.11 0.07 -0.03 – 0.24 1.57 0.116
Collectivism Score c * C2 0.03 0.07 -0.11 – 0.17 0.40 0.689
Collectivism Score c * C3 -0.12 0.07 -0.26 – 0.02 -1.71 0.088
Collectivism Score c * C4 -0.00 0.07 -0.13 – 0.13 -0.01 0.989
Collectivism Score c * C5 -0.03 0.07 -0.16 – 0.10 -0.46 0.644
Collectivism Score c * C6 0.07 0.07 -0.06 – 0.21 1.09 0.275
Collectivism Score c * C7 0.00 0.07 -0.14 – 0.15 0.05 0.960
Collectivism Score c * C8 0.05 0.07 -0.09 – 0.18 0.68 0.497
Collectivism Score c * C9 0.09 0.07 -0.05 – 0.24 1.27 0.205
Random Effects
σ2 392.32
τ00 id 181.00
ICC 0.32
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.233 / 0.475
Q.2 (COLLECTIVISM) Does collectivism depend on perceptions of naturalness in predicting risk perception, over and above burger contrasts?
modA.8665 <- lmer(Risk ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.8665)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 +  
##     Collectivism_Score.c * C2 + Collectivism_Score.c * C3 + Collectivism_Score.c *  
##     C4 + Collectivism_Score.c * C5 + Collectivism_Score.c * C6 +  
##     Collectivism_Score.c * C7 + Collectivism_Score.c * C8 + Collectivism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27793.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3527 -0.6028 -0.0219  0.5631  3.7108 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 176.0    13.27   
##  Residual             333.3    18.26   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         3.426e+01  1.152e+00  3.064e+03  29.756
## Collectivism_Score.c                7.122e-02  4.500e-02  3.076e+03   1.583
## Naturalness.c                      -4.623e-01  2.177e-02  2.999e+03 -21.234
## C1                                  2.101e+00  1.542e+00  2.578e+03   1.363
## C2                                 -7.888e+00  1.639e+00  2.515e+03  -4.814
## C3                                  1.231e+01  1.663e+00  2.565e+03   7.402
## C4                                  1.557e+00  1.539e+00  2.564e+03   1.012
## C5                                  2.139e+00  1.541e+00  2.587e+03   1.387
## C6                                  8.304e+00  1.547e+00  2.566e+03   5.368
## C7                                 -1.615e+01  1.694e+00  2.595e+03  -9.536
## C8                                 -8.146e+00  1.608e+00  2.628e+03  -5.067
## C9                                 -1.068e+01  1.674e+00  2.592e+03  -6.382
## Collectivism_Score.c:Naturalness.c -6.341e-04  8.553e-04  2.994e+03  -0.741
## Collectivism_Score.c:C1             1.022e-01  6.498e-02  2.561e+03   1.573
## Collectivism_Score.c:C2             2.731e-02  6.662e-02  2.494e+03   0.410
## Collectivism_Score.c:C3            -1.097e-01  6.541e-02  2.509e+03  -1.678
## Collectivism_Score.c:C4            -2.090e-02  6.217e-02  2.543e+03  -0.336
## Collectivism_Score.c:C5            -6.941e-02  6.116e-02  2.557e+03  -1.135
## Collectivism_Score.c:C6             3.756e-02  6.285e-02  2.550e+03   0.598
## Collectivism_Score.c:C7             2.178e-02  6.933e-02  2.619e+03   0.314
## Collectivism_Score.c:C8             8.520e-03  6.552e-02  2.651e+03   0.130
## Collectivism_Score.c:C9             1.061e-01  7.019e-02  2.648e+03   1.512
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c                 0.1136    
## Naturalness.c                       < 2e-16 ***
## C1                                   0.1730    
## C2                                 1.57e-06 ***
## C3                                 1.81e-13 ***
## C4                                   0.3119    
## C5                                   0.1654    
## C6                                 8.69e-08 ***
## C7                                  < 2e-16 ***
## C8                                 4.33e-07 ***
## C9                                 2.06e-10 ***
## Collectivism_Score.c:Naturalness.c   0.4585    
## Collectivism_Score.c:C1              0.1157    
## Collectivism_Score.c:C2              0.6818    
## Collectivism_Score.c:C3              0.0935 .  
## Collectivism_Score.c:C4              0.7368    
## Collectivism_Score.c:C5              0.2565    
## Collectivism_Score.c:C6              0.5501    
## Collectivism_Score.c:C7              0.7534    
## Collectivism_Score.c:C8              0.8966    
## Collectivism_Score.c:C9              0.1306    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8665,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.26 1.15 32.01 – 36.52 29.76 <0.001
Collectivism Score c 0.07 0.05 -0.02 – 0.16 1.58 0.114
Naturalness c -0.46 0.02 -0.50 – -0.42 -21.23 <0.001
C1 2.10 1.54 -0.92 – 5.12 1.36 0.173
C2 -7.89 1.64 -11.10 – -4.68 -4.81 <0.001
C3 12.31 1.66 9.05 – 15.57 7.40 <0.001
C4 1.56 1.54 -1.46 – 4.57 1.01 0.312
C5 2.14 1.54 -0.88 – 5.16 1.39 0.165
C6 8.30 1.55 5.27 – 11.34 5.37 <0.001
C7 -16.15 1.69 -19.47 – -12.83 -9.54 <0.001
C8 -8.15 1.61 -11.30 – -4.99 -5.07 <0.001
C9 -10.68 1.67 -13.97 – -7.40 -6.38 <0.001
Collectivism Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.74 0.459
Collectivism Score c * C1 0.10 0.06 -0.03 – 0.23 1.57 0.116
Collectivism Score c * C2 0.03 0.07 -0.10 – 0.16 0.41 0.682
Collectivism Score c * C3 -0.11 0.07 -0.24 – 0.02 -1.68 0.094
Collectivism Score c * C4 -0.02 0.06 -0.14 – 0.10 -0.34 0.737
Collectivism Score c * C5 -0.07 0.06 -0.19 – 0.05 -1.13 0.257
Collectivism Score c * C6 0.04 0.06 -0.09 – 0.16 0.60 0.550
Collectivism Score c * C7 0.02 0.07 -0.11 – 0.16 0.31 0.753
Collectivism Score c * C8 0.01 0.07 -0.12 – 0.14 0.13 0.897
Collectivism Score c * C9 0.11 0.07 -0.03 – 0.24 1.51 0.131
Random Effects
σ2 333.29
τ00 id 175.97
ICC 0.35
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.321 / 0.556

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict risk perception, over and above burger contrasts?
modA.867 <- lmer(Risk ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.867)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C5 + Individualism_Score.c * C6 + Individualism_Score.c *  
##     C7 + Individualism_Score.c * C8 + Individualism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28207.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.7700 -0.6067 -0.0709  0.5828  3.6594 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 186.1    13.64   
##  Residual             392.5    19.81   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                34.94212    1.23789 3063.60706  28.227  < 2e-16 ***
## Individualism_Score.c      -0.11101    0.07106 3071.07651  -1.562  0.11835    
## C1                          7.98539    1.63895 2596.44562   4.872 1.17e-06 ***
## C2                         -8.36427    1.77354 2542.71589  -4.716 2.53e-06 ***
## C3                         18.08629    1.77495 2581.25156  10.190  < 2e-16 ***
## C4                          3.18505    1.66018 2595.41936   1.919  0.05516 .  
## C5                          3.58419    1.65946 2619.17891   2.160  0.03087 *  
## C6                         11.33848    1.66500 2595.70747   6.810 1.21e-11 ***
## C7                        -24.05104    1.78875 2585.48781 -13.446  < 2e-16 ***
## C8                        -18.88382    1.64659 2589.41217 -11.468  < 2e-16 ***
## C9                        -17.65197    1.77045 2594.37567  -9.970  < 2e-16 ***
## Individualism_Score.c:C1    0.12769    0.09500 2567.76302   1.344  0.17901    
## Individualism_Score.c:C2    0.09300    0.10738 2592.40292   0.866  0.38656    
## Individualism_Score.c:C3    0.27879    0.09950 2519.43890   2.802  0.00512 ** 
## Individualism_Score.c:C4    0.13386    0.09698 2583.50123   1.380  0.16760    
## Individualism_Score.c:C5    0.12391    0.09741 2622.93036   1.272  0.20350    
## Individualism_Score.c:C6    0.12111    0.09928 2607.17961   1.220  0.22259    
## Individualism_Score.c:C7    0.05749    0.10150 2565.00599   0.566  0.57119    
## Individualism_Score.c:C8    0.17414    0.09535 2591.78656   1.826  0.06792 .  
## Individualism_Score.c:C9    0.07592    0.10822 2618.14926   0.702  0.48302    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.867,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.94 1.24 32.51 – 37.37 28.23 <0.001
Individualism Score c -0.11 0.07 -0.25 – 0.03 -1.56 0.118
C1 7.99 1.64 4.77 – 11.20 4.87 <0.001
C2 -8.36 1.77 -11.84 – -4.89 -4.72 <0.001
C3 18.09 1.77 14.61 – 21.57 10.19 <0.001
C4 3.19 1.66 -0.07 – 6.44 1.92 0.055
C5 3.58 1.66 0.33 – 6.84 2.16 0.031
C6 11.34 1.67 8.07 – 14.60 6.81 <0.001
C7 -24.05 1.79 -27.56 – -20.54 -13.45 <0.001
C8 -18.88 1.65 -22.11 – -15.66 -11.47 <0.001
C9 -17.65 1.77 -21.12 – -14.18 -9.97 <0.001
Individualism Score c *
C1
0.13 0.09 -0.06 – 0.31 1.34 0.179
Individualism Score c *
C2
0.09 0.11 -0.12 – 0.30 0.87 0.387
Individualism Score c *
C3
0.28 0.10 0.08 – 0.47 2.80 0.005
Individualism Score c *
C4
0.13 0.10 -0.06 – 0.32 1.38 0.168
Individualism Score c *
C5
0.12 0.10 -0.07 – 0.31 1.27 0.203
Individualism Score c *
C6
0.12 0.10 -0.07 – 0.32 1.22 0.223
Individualism Score c *
C7
0.06 0.10 -0.14 – 0.26 0.57 0.571
Individualism Score c *
C8
0.17 0.10 -0.01 – 0.36 1.83 0.068
Individualism Score c *
C9
0.08 0.11 -0.14 – 0.29 0.70 0.483
Random Effects
σ2 392.51
τ00 id 186.09
ICC 0.32
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.227 / 0.475
Q.2 (INDIVIDUALISM) Does individualism depend on perceptions of naturalness in predicting risk perception, over and above burger contrasts?
modA.8672 <- lmer(Risk ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.8672)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 +  
##     Individualism_Score.c * C2 + Individualism_Score.c * C3 +  
##     Individualism_Score.c * C4 + Individualism_Score.c * C5 +  
##     Individualism_Score.c * C6 + Individualism_Score.c * C7 +  
##     Individualism_Score.c * C8 + Individualism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27798.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3734 -0.6091 -0.0185  0.5621  3.6866 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 179.9    13.41   
##  Residual             333.1    18.25   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          3.442e+01  1.155e+00  3.065e+03  29.814
## Individualism_Score.c               -9.830e-02  6.632e-02  3.072e+03  -1.482
## Naturalness.c                       -4.577e-01  2.191e-02  2.990e+03 -20.889
## C1                                   2.014e+00  1.543e+00  2.573e+03   1.305
## C2                                  -8.057e+00  1.642e+00  2.510e+03  -4.908
## C3                                   1.202e+01  1.667e+00  2.562e+03   7.212
## C4                                   1.378e+00  1.539e+00  2.556e+03   0.896
## C5                                   2.000e+00  1.539e+00  2.581e+03   1.300
## C6                                   8.084e+00  1.549e+00  2.558e+03   5.220
## C7                                  -1.645e+01  1.697e+00  2.589e+03  -9.695
## C8                                  -8.383e+00  1.608e+00  2.616e+03  -5.213
## C9                                  -1.071e+01  1.674e+00  2.584e+03  -6.396
## Individualism_Score.c:Naturalness.c -2.872e-03  1.236e-03  3.024e+03  -2.323
## Individualism_Score.c:C1             8.589e-02  8.932e-02  2.538e+03   0.962
## Individualism_Score.c:C2             6.361e-02  9.946e-02  2.559e+03   0.639
## Individualism_Score.c:C3             2.164e-01  9.351e-02  2.498e+03   2.314
## Individualism_Score.c:C4             8.035e-02  8.993e-02  2.543e+03   0.894
## Individualism_Score.c:C5             3.882e-02  9.040e-02  2.579e+03   0.429
## Individualism_Score.c:C6             4.100e-02  9.236e-02  2.564e+03   0.444
## Individualism_Score.c:C7             8.991e-02  9.720e-02  2.592e+03   0.925
## Individualism_Score.c:C8             2.255e-01  9.338e-02  2.640e+03   2.415
## Individualism_Score.c:C9             1.276e-01  1.021e-01  2.613e+03   1.249
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c                 0.1384    
## Naturalness.c                        < 2e-16 ***
## C1                                    0.1921    
## C2                                  9.79e-07 ***
## C3                                  7.25e-13 ***
## C4                                    0.3706    
## C5                                    0.1937    
## C6                                  1.93e-07 ***
## C7                                   < 2e-16 ***
## C8                                  2.00e-07 ***
## C9                                  1.89e-10 ***
## Individualism_Score.c:Naturalness.c   0.0202 *  
## Individualism_Score.c:C1              0.3364    
## Individualism_Score.c:C2              0.5226    
## Individualism_Score.c:C3              0.0207 *  
## Individualism_Score.c:C4              0.3717    
## Individualism_Score.c:C5              0.6677    
## Individualism_Score.c:C6              0.6572    
## Individualism_Score.c:C7              0.3551    
## Individualism_Score.c:C8              0.0158 *  
## Individualism_Score.c:C9              0.2118    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8672,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.42 1.15 32.16 – 36.69 29.81 <0.001
Individualism Score c -0.10 0.07 -0.23 – 0.03 -1.48 0.138
Naturalness c -0.46 0.02 -0.50 – -0.41 -20.89 <0.001
C1 2.01 1.54 -1.01 – 5.04 1.30 0.192
C2 -8.06 1.64 -11.28 – -4.84 -4.91 <0.001
C3 12.02 1.67 8.75 – 15.29 7.21 <0.001
C4 1.38 1.54 -1.64 – 4.40 0.90 0.371
C5 2.00 1.54 -1.02 – 5.02 1.30 0.194
C6 8.08 1.55 5.05 – 11.12 5.22 <0.001
C7 -16.45 1.70 -19.78 – -13.12 -9.69 <0.001
C8 -8.38 1.61 -11.54 – -5.23 -5.21 <0.001
C9 -10.71 1.67 -13.99 – -7.43 -6.40 <0.001
Individualism Score c *
Naturalness c
-0.00 0.00 -0.01 – -0.00 -2.32 0.020
Individualism Score c *
C1
0.09 0.09 -0.09 – 0.26 0.96 0.336
Individualism Score c *
C2
0.06 0.10 -0.13 – 0.26 0.64 0.523
Individualism Score c *
C3
0.22 0.09 0.03 – 0.40 2.31 0.021
Individualism Score c *
C4
0.08 0.09 -0.10 – 0.26 0.89 0.372
Individualism Score c *
C5
0.04 0.09 -0.14 – 0.22 0.43 0.668
Individualism Score c *
C6
0.04 0.09 -0.14 – 0.22 0.44 0.657
Individualism Score c *
C7
0.09 0.10 -0.10 – 0.28 0.92 0.355
Individualism Score c *
C8
0.23 0.09 0.04 – 0.41 2.42 0.016
Individualism Score c *
C9
0.13 0.10 -0.07 – 0.33 1.25 0.212
Random Effects
σ2 333.12
τ00 id 179.94
ICC 0.35
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.316 / 0.556

Political Ideology

Q.1 (POLITICAL IDEOLOGY) How does ideology predict risk perception, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.868 <- lmer(Risk ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.868)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *  
##     C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c * C7 +  
##     Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28137.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6001 -0.6111 -0.0695  0.5652  3.6344 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 183.7    13.56   
##  Residual             393.4    19.83   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     34.7923     1.2359 3063.6533  28.152  < 2e-16 ***
## Ideology.c      -3.3398     2.0690 3073.8641  -1.614   0.1066    
## C1               8.0833     1.6386 2598.6780   4.933 8.60e-07 ***
## C2              -8.2099     1.7709 2545.5662  -4.636 3.73e-06 ***
## C3              18.5136     1.7701 2583.3796  10.459  < 2e-16 ***
## C4               3.3412     1.6594 2598.6995   2.014   0.0442 *  
## C5               3.8757     1.6616 2621.1413   2.333   0.0197 *  
## C6              11.4818     1.6652 2601.2557   6.895 6.73e-12 ***
## C7             -23.8334     1.7875 2588.4834 -13.334  < 2e-16 ***
## C8             -18.7521     1.6500 2597.0099 -11.365  < 2e-16 ***
## C9             -17.5216     1.7705 2598.8239  -9.896  < 2e-16 ***
## Ideology.c:C1   -0.1485     2.7828 2558.2343  -0.053   0.9574    
## Ideology.c:C2   -1.4045     2.9480 2482.4186  -0.476   0.6338    
## Ideology.c:C3    5.6565     3.0752 2582.4842   1.839   0.0660 .  
## Ideology.c:C4    3.1744     2.8851 2621.6357   1.100   0.2713    
## Ideology.c:C5    0.3445     2.8463 2680.2277   0.121   0.9037    
## Ideology.c:C6    0.7916     2.8842 2605.6474   0.274   0.7838    
## Ideology.c:C7    1.6466     3.0089 2645.8546   0.547   0.5843    
## Ideology.c:C8    1.4292     2.8067 2573.1500   0.509   0.6107    
## Ideology.c:C9    2.8474     3.1410 2611.3341   0.907   0.3647    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.868,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.79 1.24 32.37 – 37.22 28.15 <0.001
Ideology c -3.34 2.07 -7.40 – 0.72 -1.61 0.107
C1 8.08 1.64 4.87 – 11.30 4.93 <0.001
C2 -8.21 1.77 -11.68 – -4.74 -4.64 <0.001
C3 18.51 1.77 15.04 – 21.98 10.46 <0.001
C4 3.34 1.66 0.09 – 6.59 2.01 0.044
C5 3.88 1.66 0.62 – 7.13 2.33 0.020
C6 11.48 1.67 8.22 – 14.75 6.90 <0.001
C7 -23.83 1.79 -27.34 – -20.33 -13.33 <0.001
C8 -18.75 1.65 -21.99 – -15.52 -11.36 <0.001
C9 -17.52 1.77 -20.99 – -14.05 -9.90 <0.001
Ideology c * C1 -0.15 2.78 -5.60 – 5.31 -0.05 0.957
Ideology c * C2 -1.40 2.95 -7.18 – 4.38 -0.48 0.634
Ideology c * C3 5.66 3.08 -0.37 – 11.69 1.84 0.066
Ideology c * C4 3.17 2.89 -2.48 – 8.83 1.10 0.271
Ideology c * C5 0.34 2.85 -5.24 – 5.93 0.12 0.904
Ideology c * C6 0.79 2.88 -4.86 – 6.45 0.27 0.784
Ideology c * C7 1.65 3.01 -4.25 – 7.55 0.55 0.584
Ideology c * C8 1.43 2.81 -4.07 – 6.93 0.51 0.611
Ideology c * C9 2.85 3.14 -3.31 – 9.01 0.91 0.365
Random Effects
σ2 393.37
τ00 id 183.75
ICC 0.32
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.228 / 0.474
Q.2 (POLITICAL IDEOLOGY) Does political ideology depend on perceptions of naturalness in predicting risk perception, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.8683 <- lmer(Risk ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + (1|id), data = L)

summary(modA.8683)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Risk ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27744.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2973 -0.6120 -0.0234  0.5683  3.6528 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 177.8    13.34   
##  Residual             334.4    18.29   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               3.428e+01  1.153e+00  3.068e+03  29.725  < 2e-16 ***
## Ideology.c               -2.554e+00  1.152e+00  1.929e+03  -2.217   0.0267 *  
## Naturalness.c            -4.624e-01  2.186e-02  3.000e+03 -21.149  < 2e-16 ***
## C1                        2.022e+00  1.545e+00  2.580e+03   1.309   0.1908    
## C2                       -7.878e+00  1.640e+00  2.515e+03  -4.804 1.65e-06 ***
## C3                        1.238e+01  1.664e+00  2.568e+03   7.443 1.33e-13 ***
## C4                        1.553e+00  1.539e+00  2.562e+03   1.009   0.3131    
## C5                        2.321e+00  1.542e+00  2.587e+03   1.506   0.1322    
## C6                        8.273e+00  1.549e+00  2.565e+03   5.342 9.99e-08 ***
## C7                       -1.617e+01  1.696e+00  2.597e+03  -9.532  < 2e-16 ***
## C8                       -8.159e+00  1.607e+00  2.626e+03  -5.078 4.08e-07 ***
## C9                       -1.053e+01  1.675e+00  2.593e+03  -6.285 3.83e-10 ***
## Ideology.c:Naturalness.c -3.946e-03  3.479e-02  2.894e+03  -0.113   0.9097    
## Ideology.c:C1            -6.835e-01  2.139e+00  2.537e+03  -0.320   0.7494    
## Ideology.c:C2            -1.936e+00  2.319e+00  2.588e+03  -0.835   0.4039    
## Ideology.c:C3             3.333e+00  2.522e+00  2.651e+03   1.322   0.1864    
## Ideology.c:C4             1.378e+00  2.191e+00  2.635e+03   0.629   0.5293    
## Ideology.c:C5             6.443e-02  2.101e+00  2.601e+03   0.031   0.9755    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8683,
          show.stat = T, show.se = T)
  Risk
Predictors Estimates std. Error CI Statistic p
(Intercept) 34.28 1.15 32.02 – 36.54 29.72 <0.001
Ideology c -2.55 1.15 -4.81 – -0.30 -2.22 0.027
Naturalness c -0.46 0.02 -0.51 – -0.42 -21.15 <0.001
C1 2.02 1.54 -1.01 – 5.05 1.31 0.191
C2 -7.88 1.64 -11.09 – -4.66 -4.80 <0.001
C3 12.38 1.66 9.12 – 15.65 7.44 <0.001
C4 1.55 1.54 -1.46 – 4.57 1.01 0.313
C5 2.32 1.54 -0.70 – 5.34 1.51 0.132
C6 8.27 1.55 5.24 – 11.31 5.34 <0.001
C7 -16.17 1.70 -19.49 – -12.84 -9.53 <0.001
C8 -8.16 1.61 -11.31 – -5.01 -5.08 <0.001
C9 -10.53 1.68 -13.81 – -7.24 -6.29 <0.001
Ideology c * Naturalness
c
-0.00 0.03 -0.07 – 0.06 -0.11 0.910
Ideology c * C1 -0.68 2.14 -4.88 – 3.51 -0.32 0.749
Ideology c * C2 -1.94 2.32 -6.48 – 2.61 -0.83 0.404
Ideology c * C3 3.33 2.52 -1.61 – 8.28 1.32 0.186
Ideology c * C4 1.38 2.19 -2.92 – 5.67 0.63 0.529
Ideology c * C5 0.06 2.10 -4.06 – 4.18 0.03 0.976
Random Effects
σ2 334.36
τ00 id 177.85
ICC 0.35
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.316 / 0.554

Benefit

Q.1 How do burger contrasts predict benefit perception?
modA.870 <- lmer(Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.870)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28385.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4352 -0.5146  0.0631  0.5681  3.1759 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 287.9    16.97   
##  Residual             378.5    19.46   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   53.2626     1.2720 3086.2930  41.874  < 2e-16 ***
## C1             1.9219     1.6360 2478.3405   1.175 0.240217    
## C2            -2.2926     1.7654 2441.2064  -1.299 0.194184    
## C3             6.2690     1.7668 2472.4609   3.548 0.000395 ***
## C4             2.1007     1.6569 2478.2035   1.268 0.204973    
## C5            -0.4471     1.6575 2495.9323  -0.270 0.787385    
## C6             0.5182     1.6618 2479.0967   0.312 0.755189    
## C7            13.7277     1.7846 2477.1998   7.692 2.07e-14 ***
## C8            15.3323     1.6432 2473.6132   9.330  < 2e-16 ***
## C9            12.5640     1.7683 2486.0313   7.105 1.56e-12 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.664                                                        
## C2 -0.588  0.471                                                 
## C3 -0.597  0.478  0.388                                          
## C4 -0.654  0.509  0.467  0.469                                   
## C5 -0.660  0.516  0.469  0.478  0.508                            
## C6 -0.652  0.506  0.457  0.481  0.499  0.503                     
## C7 -0.592  0.471  0.385  0.391  0.469  0.472  0.462              
## C8 -0.659  0.512  0.468  0.466  0.503  0.509  0.506  0.478       
## C9 -0.601  0.486  0.391  0.398  0.475  0.476  0.473  0.395  0.480
tab_model(modA.870,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.26 1.27 50.77 – 55.76 41.87 <0.001
C1 1.92 1.64 -1.29 – 5.13 1.17 0.240
C2 -2.29 1.77 -5.75 – 1.17 -1.30 0.194
C3 6.27 1.77 2.80 – 9.73 3.55 <0.001
C4 2.10 1.66 -1.15 – 5.35 1.27 0.205
C5 -0.45 1.66 -3.70 – 2.80 -0.27 0.787
C6 0.52 1.66 -2.74 – 3.78 0.31 0.755
C7 13.73 1.78 10.23 – 17.23 7.69 <0.001
C8 15.33 1.64 12.11 – 18.55 9.33 <0.001
C9 12.56 1.77 9.10 – 16.03 7.11 <0.001
Random Effects
σ2 378.52
τ00 id 287.94
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.054 / 0.463

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict benefit perception, over and above burger contrasts?
modA.871 <- lmer(Ben ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.871)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28380.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2517 -0.5192  0.0541  0.5725  3.1078 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 282.9    16.82   
##  Residual             375.3    19.37   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)       53.26347    1.26555 3075.95046  42.087  < 2e-16 ***
## ATNS_Score.c      -0.10266    0.06001 3072.44457  -1.711 0.087269 .  
## C1                 1.93764    1.62867 2470.46478   1.190 0.234278    
## C2                -2.24415    1.75889 2433.21751  -1.276 0.202117    
## C3                 6.40337    1.75920 2464.70324   3.640 0.000278 ***
## C4                 1.88813    1.65076 2471.93450   1.144 0.252821    
## C5                -0.42858    1.65039 2490.02902  -0.260 0.795130    
## C6                 0.67062    1.65601 2471.93501   0.405 0.685544    
## C7                13.80576    1.77712 2471.10220   7.769 1.15e-14 ***
## C8                15.30440    1.63602 2466.20404   9.355  < 2e-16 ***
## C9                12.54239    1.76112 2477.82184   7.122 1.39e-12 ***
## ATNS_Score.c:C1    0.03031    0.07679 2478.70795   0.395 0.693060    
## ATNS_Score.c:C2    0.09028    0.08212 2425.31790   1.099 0.271716    
## ATNS_Score.c:C3   -0.22777    0.08225 2454.32826  -2.769 0.005660 ** 
## ATNS_Score.c:C4   -0.12849    0.07610 2472.44934  -1.689 0.091436 .  
## ATNS_Score.c:C5   -0.03810    0.07688 2496.42855  -0.496 0.620232    
## ATNS_Score.c:C6   -0.07631    0.07966 2494.89206  -0.958 0.338201    
## ATNS_Score.c:C7    0.09025    0.08316 2479.51818   1.085 0.277895    
## ATNS_Score.c:C8    0.05005    0.07694 2458.56897   0.651 0.515415    
## ATNS_Score.c:C9    0.01064    0.08398 2508.49644   0.127 0.899148    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.871,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.26 1.27 50.78 – 55.74 42.09 <0.001
ATNS Score c -0.10 0.06 -0.22 – 0.02 -1.71 0.087
C1 1.94 1.63 -1.26 – 5.13 1.19 0.234
C2 -2.24 1.76 -5.69 – 1.20 -1.28 0.202
C3 6.40 1.76 2.95 – 9.85 3.64 <0.001
C4 1.89 1.65 -1.35 – 5.12 1.14 0.253
C5 -0.43 1.65 -3.66 – 2.81 -0.26 0.795
C6 0.67 1.66 -2.58 – 3.92 0.40 0.686
C7 13.81 1.78 10.32 – 17.29 7.77 <0.001
C8 15.30 1.64 12.10 – 18.51 9.35 <0.001
C9 12.54 1.76 9.09 – 16.00 7.12 <0.001
ATNS Score c * C1 0.03 0.08 -0.12 – 0.18 0.39 0.693
ATNS Score c * C2 0.09 0.08 -0.07 – 0.25 1.10 0.272
ATNS Score c * C3 -0.23 0.08 -0.39 – -0.07 -2.77 0.006
ATNS Score c * C4 -0.13 0.08 -0.28 – 0.02 -1.69 0.091
ATNS Score c * C5 -0.04 0.08 -0.19 – 0.11 -0.50 0.620
ATNS Score c * C6 -0.08 0.08 -0.23 – 0.08 -0.96 0.338
ATNS Score c * C7 0.09 0.08 -0.07 – 0.25 1.09 0.278
ATNS Score c * C8 0.05 0.08 -0.10 – 0.20 0.65 0.515
ATNS Score c * C9 0.01 0.08 -0.15 – 0.18 0.13 0.899
Random Effects
σ2 375.31
τ00 id 282.91
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.069 / 0.469
Q.2 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature depend on naturalness perception in predicting benefit perception, over and above burger contrasts?
modA.8715 <- lmer(Ben ~ ATNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 +C6 + C7 + C8 + C9 +  ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.8715)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 +  
##     ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 +  
##     ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 +  
##     ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28301.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4988 -0.5172  0.0558  0.5599  3.3991 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 267.8    16.36   
##  Residual             366.6    19.15   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 5.360e+01  1.247e+00  3.073e+03  42.987  < 2e-16
## ATNS_Score.c               -9.218e-02  5.917e-02  3.070e+03  -1.558  0.11936
## Naturalness.c               2.271e-01  2.357e-02  2.894e+03   9.632  < 2e-16
## C1                          4.836e+00  1.637e+00  2.487e+03   2.954  0.00316
## C2                         -2.447e+00  1.737e+00  2.434e+03  -1.409  0.15895
## C3                          9.435e+00  1.763e+00  2.481e+03   5.350 9.58e-08
## C4                          2.814e+00  1.633e+00  2.471e+03   1.723  0.08494
## C5                          3.088e-01  1.631e+00  2.491e+03   0.189  0.84985
## C6                          2.208e+00  1.642e+00  2.473e+03   1.345  0.17889
## C7                          9.854e+00  1.799e+00  2.510e+03   5.477 4.76e-08
## C8                          1.000e+01  1.706e+00  2.529e+03   5.863 5.13e-09
## C9                          8.997e+00  1.776e+00  2.501e+03   5.065 4.39e-07
## ATNS_Score.c:Naturalness.c  1.461e-03  9.309e-04  2.890e+03   1.570  0.11652
## ATNS_Score.c:C1             3.917e-02  7.688e-02  2.483e+03   0.510  0.61043
## ATNS_Score.c:C2             8.356e-02  8.108e-02  2.426e+03   1.031  0.30287
## ATNS_Score.c:C3            -1.801e-01  8.221e-02  2.467e+03  -2.190  0.02861
## ATNS_Score.c:C4            -9.052e-02  7.531e-02  2.469e+03  -1.202  0.22949
## ATNS_Score.c:C5            -8.036e-03  7.604e-02  2.494e+03  -0.106  0.91584
## ATNS_Score.c:C6            -4.443e-02  7.880e-02  2.491e+03  -0.564  0.57296
## ATNS_Score.c:C7             3.706e-02  8.377e-02  2.519e+03   0.442  0.65826
## ATNS_Score.c:C8             1.185e-02  7.904e-02  2.506e+03   0.150  0.88085
## ATNS_Score.c:C9            -2.063e-02  8.444e-02  2.545e+03  -0.244  0.80700
##                               
## (Intercept)                ***
## ATNS_Score.c                  
## Naturalness.c              ***
## C1                         ** 
## C2                            
## C3                         ***
## C4                         .  
## C5                            
## C6                            
## C7                         ***
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c    
## ATNS_Score.c:C1               
## ATNS_Score.c:C2               
## ATNS_Score.c:C3            *  
## ATNS_Score.c:C4               
## ATNS_Score.c:C5               
## ATNS_Score.c:C6               
## ATNS_Score.c:C7               
## ATNS_Score.c:C8               
## ATNS_Score.c:C9               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8715,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.60 1.25 51.15 – 56.04 42.99 <0.001
ATNS Score c -0.09 0.06 -0.21 – 0.02 -1.56 0.119
Naturalness c 0.23 0.02 0.18 – 0.27 9.63 <0.001
C1 4.84 1.64 1.63 – 8.05 2.95 0.003
C2 -2.45 1.74 -5.85 – 0.96 -1.41 0.159
C3 9.44 1.76 5.98 – 12.89 5.35 <0.001
C4 2.81 1.63 -0.39 – 6.02 1.72 0.085
C5 0.31 1.63 -2.89 – 3.51 0.19 0.850
C6 2.21 1.64 -1.01 – 5.43 1.34 0.179
C7 9.85 1.80 6.33 – 13.38 5.48 <0.001
C8 10.00 1.71 6.66 – 13.34 5.86 <0.001
C9 9.00 1.78 5.51 – 12.48 5.06 <0.001
ATNS Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.57 0.117
ATNS Score c * C1 0.04 0.08 -0.11 – 0.19 0.51 0.610
ATNS Score c * C2 0.08 0.08 -0.08 – 0.24 1.03 0.303
ATNS Score c * C3 -0.18 0.08 -0.34 – -0.02 -2.19 0.029
ATNS Score c * C4 -0.09 0.08 -0.24 – 0.06 -1.20 0.229
ATNS Score c * C5 -0.01 0.08 -0.16 – 0.14 -0.11 0.916
ATNS Score c * C6 -0.04 0.08 -0.20 – 0.11 -0.56 0.573
ATNS Score c * C7 0.04 0.08 -0.13 – 0.20 0.44 0.658
ATNS Score c * C8 0.01 0.08 -0.14 – 0.17 0.15 0.881
ATNS Score c * C9 -0.02 0.08 -0.19 – 0.14 -0.24 0.807
Random Effects
σ2 366.58
τ00 id 267.75
ICC 0.42
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.094 / 0.476

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict benefit perception, over and above burger contrasts?
modA.873 <- lmer(Ben ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.873)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c * C3 +  
##     CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c * C6 +  
##     CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28383
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3185 -0.5144  0.0599  0.5659  3.1878 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 284.4    16.86   
##  Residual             375.9    19.39   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      53.28941    1.26711 3076.01365  42.056  < 2e-16 ***
## CNS_Score.c       0.07548    0.07581 3076.89360   0.996 0.319532    
## C1                2.00138    1.63052 2470.77505   1.227 0.219770    
## C2               -2.20240    1.76379 2432.94439  -1.249 0.211903    
## C3                6.24767    1.76120 2465.62738   3.547 0.000396 ***
## C4                2.06903    1.65272 2471.25304   1.252 0.210727    
## C5               -0.51240    1.65217 2488.40892  -0.310 0.756484    
## C6                0.46797    1.65695 2471.44577   0.282 0.777636    
## C7               13.69206    1.77910 2470.68447   7.696 2.01e-14 ***
## C8               15.19604    1.63888 2464.54999   9.272  < 2e-16 ***
## C9               12.44228    1.76361 2477.23342   7.055 2.23e-12 ***
## CNS_Score.c:C1    0.17072    0.09590 2460.53535   1.780 0.075156 .  
## CNS_Score.c:C2    0.06593    0.10250 2420.28217   0.643 0.520162    
## CNS_Score.c:C3   -0.23306    0.10698 2432.96049  -2.179 0.029460 *  
## CNS_Score.c:C4   -0.02636    0.09728 2480.81756  -0.271 0.786428    
## CNS_Score.c:C5   -0.09519    0.10137 2505.55186  -0.939 0.347815    
## CNS_Score.c:C6    0.04411    0.09859 2456.34057   0.447 0.654627    
## CNS_Score.c:C7    0.23075    0.10795 2495.27939   2.138 0.032641 *  
## CNS_Score.c:C8    0.10357    0.10110 2486.08465   1.024 0.305702    
## CNS_Score.c:C9    0.11948    0.10669 2511.54125   1.120 0.262893    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.873,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.29 1.27 50.80 – 55.77 42.06 <0.001
CNS Score c 0.08 0.08 -0.07 – 0.22 1.00 0.320
C1 2.00 1.63 -1.20 – 5.20 1.23 0.220
C2 -2.20 1.76 -5.66 – 1.26 -1.25 0.212
C3 6.25 1.76 2.79 – 9.70 3.55 <0.001
C4 2.07 1.65 -1.17 – 5.31 1.25 0.211
C5 -0.51 1.65 -3.75 – 2.73 -0.31 0.756
C6 0.47 1.66 -2.78 – 3.72 0.28 0.778
C7 13.69 1.78 10.20 – 17.18 7.70 <0.001
C8 15.20 1.64 11.98 – 18.41 9.27 <0.001
C9 12.44 1.76 8.98 – 15.90 7.06 <0.001
CNS Score c * C1 0.17 0.10 -0.02 – 0.36 1.78 0.075
CNS Score c * C2 0.07 0.10 -0.14 – 0.27 0.64 0.520
CNS Score c * C3 -0.23 0.11 -0.44 – -0.02 -2.18 0.029
CNS Score c * C4 -0.03 0.10 -0.22 – 0.16 -0.27 0.786
CNS Score c * C5 -0.10 0.10 -0.29 – 0.10 -0.94 0.348
CNS Score c * C6 0.04 0.10 -0.15 – 0.24 0.45 0.655
CNS Score c * C7 0.23 0.11 0.02 – 0.44 2.14 0.033
CNS Score c * C8 0.10 0.10 -0.09 – 0.30 1.02 0.306
CNS Score c * C9 0.12 0.11 -0.09 – 0.33 1.12 0.263
Random Effects
σ2 375.95
τ00 id 284.40
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.065 / 0.468
Q.2 (CONNECTEDNESS TO NATURE) How does connectedness to nature depend on naturalness perception in predicting benefit perception, over and above burger contrasts?
modA.8736 <- lmer(Ben ~ CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 + CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.8736)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ CNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 +  
##     CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c * C5 +  
##     CNS_Score.c * C6 + CNS_Score.c * C7 + CNS_Score.c * C8 +  
##     CNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28298.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.6524 -0.5134  0.0564  0.5630  3.2770 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 270.5    16.45   
##  Residual             365.9    19.13   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                5.360e+01  1.247e+00  3.073e+03  42.972  < 2e-16 ***
## CNS_Score.c                7.406e-02  7.469e-02  3.075e+03   0.992  0.32152    
## Naturalness.c              2.353e-01  2.346e-02  2.898e+03  10.031  < 2e-16 ***
## C1                         5.050e+00  1.635e+00  2.485e+03   3.088  0.00204 ** 
## C2                        -2.409e+00  1.739e+00  2.434e+03  -1.385  0.16603    
## C3                         9.403e+00  1.764e+00  2.482e+03   5.331 1.07e-07 ***
## C4                         2.916e+00  1.631e+00  2.471e+03   1.787  0.07404 .  
## C5                         2.338e-01  1.630e+00  2.491e+03   0.143  0.88600    
## C6                         2.091e+00  1.641e+00  2.473e+03   1.274  0.20278    
## C7                         9.675e+00  1.798e+00  2.508e+03   5.382 8.06e-08 ***
## C8                         9.728e+00  1.705e+00  2.527e+03   5.705 1.30e-08 ***
## C9                         8.756e+00  1.776e+00  2.503e+03   4.931 8.72e-07 ***
## CNS_Score.c:Naturalness.c  1.519e-03  1.313e-03  2.939e+03   1.156  0.24762    
## CNS_Score.c:C1             2.069e-01  9.642e-02  2.486e+03   2.146  0.03196 *  
## CNS_Score.c:C2             6.085e-02  1.011e-01  2.423e+03   0.602  0.54716    
## CNS_Score.c:C3            -1.618e-01  1.064e-01  2.441e+03  -1.521  0.12840    
## CNS_Score.c:C4            -6.836e-03  9.611e-02  2.478e+03  -0.071  0.94330    
## CNS_Score.c:C5            -7.215e-02  1.000e-01  2.505e+03  -0.721  0.47070    
## CNS_Score.c:C6             7.845e-02  9.746e-02  2.452e+03   0.805  0.42091    
## CNS_Score.c:C7             1.783e-01  1.089e-01  2.527e+03   1.638  0.10152    
## CNS_Score.c:C8             6.175e-02  1.057e-01  2.584e+03   0.584  0.55906    
## CNS_Score.c:C9             6.313e-02  1.077e-01  2.549e+03   0.586  0.55780    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8736,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.60 1.25 51.16 – 56.05 42.97 <0.001
CNS Score c 0.07 0.07 -0.07 – 0.22 0.99 0.322
Naturalness c 0.24 0.02 0.19 – 0.28 10.03 <0.001
C1 5.05 1.64 1.84 – 8.26 3.09 0.002
C2 -2.41 1.74 -5.82 – 1.00 -1.39 0.166
C3 9.40 1.76 5.94 – 12.86 5.33 <0.001
C4 2.92 1.63 -0.28 – 6.11 1.79 0.074
C5 0.23 1.63 -2.96 – 3.43 0.14 0.886
C6 2.09 1.64 -1.13 – 5.31 1.27 0.203
C7 9.68 1.80 6.15 – 13.20 5.38 <0.001
C8 9.73 1.71 6.38 – 13.07 5.70 <0.001
C9 8.76 1.78 5.27 – 12.24 4.93 <0.001
CNS Score c * Naturalness
c
0.00 0.00 -0.00 – 0.00 1.16 0.248
CNS Score c * C1 0.21 0.10 0.02 – 0.40 2.15 0.032
CNS Score c * C2 0.06 0.10 -0.14 – 0.26 0.60 0.547
CNS Score c * C3 -0.16 0.11 -0.37 – 0.05 -1.52 0.128
CNS Score c * C4 -0.01 0.10 -0.20 – 0.18 -0.07 0.943
CNS Score c * C5 -0.07 0.10 -0.27 – 0.12 -0.72 0.471
CNS Score c * C6 0.08 0.10 -0.11 – 0.27 0.80 0.421
CNS Score c * C7 0.18 0.11 -0.04 – 0.39 1.64 0.101
CNS Score c * C8 0.06 0.11 -0.15 – 0.27 0.58 0.559
CNS Score c * C9 0.06 0.11 -0.15 – 0.27 0.59 0.558
Random Effects
σ2 365.93
τ00 id 270.47
ICC 0.42
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.091 / 0.477

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict benefit perception, over and above burger contrasts?
modA.874 <- lmer(Ben ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.874)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 + CCBelief_Score.c *  
##     C3 + CCBelief_Score.c * C4 + CCBelief_Score.c * C5 + CCBelief_Score.c *  
##     C6 + CCBelief_Score.c * C7 + CCBelief_Score.c * C8 + CCBelief_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28211.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5642 -0.5111  0.0627  0.5664  3.0778 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 223.8    14.96   
##  Residual             373.8    19.33   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          5.321e+01  1.233e+00  3.070e+03  43.150  < 2e-16 ***
## CCBelief_Score.c     2.679e-01  5.251e-02  3.068e+03   5.102 3.56e-07 ***
## C1                   2.018e+00  1.612e+00  2.534e+03   1.252 0.210857    
## C2                  -2.178e+00  1.741e+00  2.488e+03  -1.251 0.211181    
## C3                   6.353e+00  1.742e+00  2.524e+03   3.646 0.000272 ***
## C4                   2.325e+00  1.635e+00  2.532e+03   1.422 0.155103    
## C5                  -7.561e-01  1.634e+00  2.553e+03  -0.463 0.643588    
## C6                   7.551e-01  1.638e+00  2.534e+03   0.461 0.644817    
## C7                   1.345e+01  1.759e+00  2.528e+03   7.644 2.96e-14 ***
## C8                   1.528e+01  1.621e+00  2.530e+03   9.428  < 2e-16 ***
## C9                   1.257e+01  1.742e+00  2.538e+03   7.212 7.23e-13 ***
## CCBelief_Score.c:C1 -8.853e-03  6.823e-02  2.551e+03  -0.130 0.896768    
## CCBelief_Score.c:C2  6.324e-02  7.518e-02  2.494e+03   0.841 0.400292    
## CCBelief_Score.c:C3 -1.074e-01  7.038e-02  2.501e+03  -1.526 0.127216    
## CCBelief_Score.c:C4  2.753e-02  6.706e-02  2.538e+03   0.410 0.681506    
## CCBelief_Score.c:C5  1.232e-01  7.090e-02  2.546e+03   1.738 0.082346 .  
## CCBelief_Score.c:C6  1.017e-01  6.871e-02  2.508e+03   1.480 0.138945    
## CCBelief_Score.c:C7  2.759e-01  7.582e-02  2.514e+03   3.639 0.000279 ***
## CCBelief_Score.c:C8  1.102e-01  7.081e-02  2.566e+03   1.557 0.119616    
## CCBelief_Score.c:C9  2.336e-01  7.569e-02  2.587e+03   3.087 0.002047 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.874,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.21 1.23 50.79 – 55.62 43.15 <0.001
CCBelief Score c 0.27 0.05 0.16 – 0.37 5.10 <0.001
C1 2.02 1.61 -1.14 – 5.18 1.25 0.211
C2 -2.18 1.74 -5.59 – 1.24 -1.25 0.211
C3 6.35 1.74 2.94 – 9.77 3.65 <0.001
C4 2.33 1.64 -0.88 – 5.53 1.42 0.155
C5 -0.76 1.63 -3.96 – 2.45 -0.46 0.644
C6 0.76 1.64 -2.46 – 3.97 0.46 0.645
C7 13.45 1.76 10.00 – 16.90 7.64 <0.001
C8 15.28 1.62 12.10 – 18.46 9.43 <0.001
C9 12.57 1.74 9.15 – 15.98 7.21 <0.001
CCBelief Score c * C1 -0.01 0.07 -0.14 – 0.12 -0.13 0.897
CCBelief Score c * C2 0.06 0.08 -0.08 – 0.21 0.84 0.400
CCBelief Score c * C3 -0.11 0.07 -0.25 – 0.03 -1.53 0.127
CCBelief Score c * C4 0.03 0.07 -0.10 – 0.16 0.41 0.681
CCBelief Score c * C5 0.12 0.07 -0.02 – 0.26 1.74 0.082
CCBelief Score c * C6 0.10 0.07 -0.03 – 0.24 1.48 0.139
CCBelief Score c * C7 0.28 0.08 0.13 – 0.42 3.64 <0.001
CCBelief Score c * C8 0.11 0.07 -0.03 – 0.25 1.56 0.120
CCBelief Score c * C9 0.23 0.08 0.09 – 0.38 3.09 0.002
Random Effects
σ2 373.80
τ00 id 223.77
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.154 / 0.471
Q.2 (CLIMATE CHANGE BELIEF) How does climate change belief depend on naturalness perception in predicting benefit perception, over and above burger contrasts?
modA.8746 <- lmer(Ben ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.8746)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28123.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5879 -0.5213  0.0626  0.5664  3.4720 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 210.0    14.49   
##  Residual             364.3    19.09   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     5.363e+01  1.214e+00  3.067e+03  44.187
## CCBelief_Score.c                2.329e-01  5.198e-02  3.069e+03   4.480
## Naturalness.c                   2.243e-01  2.296e-02  2.971e+03   9.771
## C1                              4.808e+00  1.618e+00  2.555e+03   2.972
## C2                             -2.313e+00  1.717e+00  2.492e+03  -1.347
## C3                              9.076e+00  1.746e+00  2.550e+03   5.197
## C4                              3.015e+00  1.615e+00  2.537e+03   1.868
## C5                             -1.322e-01  1.612e+00  2.560e+03  -0.082
## C6                              2.167e+00  1.622e+00  2.540e+03   1.336
## C7                              9.691e+00  1.776e+00  2.570e+03   5.456
## C8                              9.974e+00  1.684e+00  2.602e+03   5.921
## C9                              9.090e+00  1.755e+00  2.568e+03   5.180
## CCBelief_Score.c:Naturalness.c -2.548e-03  8.695e-04  2.988e+03  -2.930
## CCBelief_Score.c:C1            -1.857e-02  6.789e-02  2.546e+03  -0.273
## CCBelief_Score.c:C2             5.757e-02  7.412e-02  2.498e+03   0.777
## CCBelief_Score.c:C3            -9.923e-02  6.992e-02  2.493e+03  -1.419
## CCBelief_Score.c:C4             4.154e-02  6.613e-02  2.543e+03   0.628
## CCBelief_Score.c:C5             1.281e-01  6.990e-02  2.550e+03   1.833
## CCBelief_Score.c:C6             1.096e-01  6.777e-02  2.508e+03   1.617
## CCBelief_Score.c:C7             3.152e-01  7.609e-02  2.592e+03   4.143
## CCBelief_Score.c:C8             1.956e-01  7.441e-02  2.713e+03   2.629
## CCBelief_Score.c:C9             2.719e-01  7.623e-02  2.656e+03   3.567
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c               7.73e-06 ***
## Naturalness.c                   < 2e-16 ***
## C1                             0.002986 ** 
## C2                             0.178034    
## C3                             2.18e-07 ***
## C4                             0.061937 .  
## C5                             0.934651    
## C6                             0.181621    
## C7                             5.34e-08 ***
## C8                             3.62e-09 ***
## C9                             2.39e-07 ***
## CCBelief_Score.c:Naturalness.c 0.003413 ** 
## CCBelief_Score.c:C1            0.784504    
## CCBelief_Score.c:C2            0.437464    
## CCBelief_Score.c:C3            0.155943    
## CCBelief_Score.c:C4            0.529950    
## CCBelief_Score.c:C5            0.066893 .  
## CCBelief_Score.c:C6            0.105996    
## CCBelief_Score.c:C7            3.54e-05 ***
## CCBelief_Score.c:C8            0.008609 ** 
## CCBelief_Score.c:C9            0.000367 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8746,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.63 1.21 51.25 – 56.01 44.19 <0.001
CCBelief Score c 0.23 0.05 0.13 – 0.33 4.48 <0.001
Naturalness c 0.22 0.02 0.18 – 0.27 9.77 <0.001
C1 4.81 1.62 1.64 – 7.98 2.97 0.003
C2 -2.31 1.72 -5.68 – 1.05 -1.35 0.178
C3 9.08 1.75 5.65 – 12.50 5.20 <0.001
C4 3.02 1.61 -0.15 – 6.18 1.87 0.062
C5 -0.13 1.61 -3.29 – 3.03 -0.08 0.935
C6 2.17 1.62 -1.01 – 5.35 1.34 0.182
C7 9.69 1.78 6.21 – 13.17 5.46 <0.001
C8 9.97 1.68 6.67 – 13.28 5.92 <0.001
C9 9.09 1.75 5.65 – 12.53 5.18 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.00 – -0.00 -2.93 0.003
CCBelief Score c * C1 -0.02 0.07 -0.15 – 0.11 -0.27 0.785
CCBelief Score c * C2 0.06 0.07 -0.09 – 0.20 0.78 0.437
CCBelief Score c * C3 -0.10 0.07 -0.24 – 0.04 -1.42 0.156
CCBelief Score c * C4 0.04 0.07 -0.09 – 0.17 0.63 0.530
CCBelief Score c * C5 0.13 0.07 -0.01 – 0.27 1.83 0.067
CCBelief Score c * C6 0.11 0.07 -0.02 – 0.24 1.62 0.106
CCBelief Score c * C7 0.32 0.08 0.17 – 0.46 4.14 <0.001
CCBelief Score c * C8 0.20 0.07 0.05 – 0.34 2.63 0.009
CCBelief Score c * C9 0.27 0.08 0.12 – 0.42 3.57 <0.001
Random Effects
σ2 364.29
τ00 id 209.98
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.180 / 0.480

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict benefit perception, over and above burger contrasts?
modA.876 <- lmer(Ben ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.876)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28402.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5304 -0.5137  0.0636  0.5579  3.2779 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 290.0    17.03   
##  Residual             375.7    19.38   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              5.316e+01  1.271e+00  3.076e+03  41.844  < 2e-16 ***
## Collectivism_Score.c     1.186e-01  4.976e-02  3.076e+03   2.383 0.017226 *  
## C1                       2.037e+00  1.632e+00  2.465e+03   1.248 0.212044    
## C2                      -2.245e+00  1.762e+00  2.429e+03  -1.275 0.202607    
## C3                       6.253e+00  1.764e+00  2.458e+03   3.544 0.000401 ***
## C4                       2.122e+00  1.655e+00  2.467e+03   1.282 0.199873    
## C5                      -1.164e-01  1.658e+00  2.484e+03  -0.070 0.944030    
## C6                       6.502e-01  1.658e+00  2.465e+03   0.392 0.694946    
## C7                       1.377e+01  1.780e+00  2.464e+03   7.736 1.48e-14 ***
## C8                       1.550e+01  1.640e+00  2.460e+03   9.449  < 2e-16 ***
## C9                       1.286e+01  1.766e+00  2.473e+03   7.286 4.26e-13 ***
## Collectivism_Score.c:C1 -1.786e-02  6.856e-02  2.452e+03  -0.261 0.794466    
## Collectivism_Score.c:C2 -2.529e-02  7.158e-02  2.411e+03  -0.353 0.723890    
## Collectivism_Score.c:C3 -1.372e-01  6.935e-02  2.408e+03  -1.979 0.047915 *  
## Collectivism_Score.c:C4 -3.625e-02  6.687e-02  2.450e+03  -0.542 0.587810    
## Collectivism_Score.c:C5  3.826e-03  6.569e-02  2.463e+03   0.058 0.953564    
## Collectivism_Score.c:C6 -3.741e-02  6.739e-02  2.458e+03  -0.555 0.578794    
## Collectivism_Score.c:C7 -1.325e-01  7.247e-02  2.479e+03  -1.829 0.067558 .  
## Collectivism_Score.c:C8 -1.418e-01  6.702e-02  2.477e+03  -2.116 0.034466 *  
## Collectivism_Score.c:C9 -2.024e-01  7.366e-02  2.503e+03  -2.747 0.006056 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.876,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.16 1.27 50.67 – 55.66 41.84 <0.001
Collectivism Score c 0.12 0.05 0.02 – 0.22 2.38 0.017
C1 2.04 1.63 -1.16 – 5.24 1.25 0.212
C2 -2.25 1.76 -5.70 – 1.21 -1.27 0.203
C3 6.25 1.76 2.79 – 9.71 3.54 <0.001
C4 2.12 1.65 -1.12 – 5.37 1.28 0.200
C5 -0.12 1.66 -3.37 – 3.13 -0.07 0.944
C6 0.65 1.66 -2.60 – 3.90 0.39 0.695
C7 13.77 1.78 10.28 – 17.26 7.74 <0.001
C8 15.50 1.64 12.28 – 18.71 9.45 <0.001
C9 12.86 1.77 9.40 – 16.33 7.29 <0.001
Collectivism Score c * C1 -0.02 0.07 -0.15 – 0.12 -0.26 0.794
Collectivism Score c * C2 -0.03 0.07 -0.17 – 0.12 -0.35 0.724
Collectivism Score c * C3 -0.14 0.07 -0.27 – -0.00 -1.98 0.048
Collectivism Score c * C4 -0.04 0.07 -0.17 – 0.09 -0.54 0.588
Collectivism Score c * C5 0.00 0.07 -0.12 – 0.13 0.06 0.954
Collectivism Score c * C6 -0.04 0.07 -0.17 – 0.09 -0.56 0.579
Collectivism Score c * C7 -0.13 0.07 -0.27 – 0.01 -1.83 0.068
Collectivism Score c * C8 -0.14 0.07 -0.27 – -0.01 -2.12 0.034
Collectivism Score c * C9 -0.20 0.07 -0.35 – -0.06 -2.75 0.006
Random Effects
σ2 375.73
τ00 id 290.01
ICC 0.44
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.059 / 0.469
Q.2 (COLLECTIVISM) How does collectivism depend on naturalness perception in predicting benefit perception, over and above burger contrasts?
modA.8766 <- lmer(Ben ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.8766)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28311.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5198 -0.5157  0.0629  0.5611  3.2931 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 274.2    16.56   
##  Residual             365.2    19.11   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         5.349e+01  1.249e+00  3.074e+03  42.816
## Collectivism_Score.c                1.169e-01  4.898e-02  3.074e+03   2.387
## Naturalness.c                       2.440e-01  2.342e-02  2.896e+03  10.418
## C1                                  5.187e+00  1.636e+00  2.482e+03   3.171
## C2                                 -2.430e+00  1.736e+00  2.431e+03  -1.400
## C3                                  9.394e+00  1.764e+00  2.476e+03   5.325
## C4                                  2.984e+00  1.632e+00  2.469e+03   1.828
## C5                                  7.047e-01  1.636e+00  2.488e+03   0.431
## C6                                  2.318e+00  1.641e+00  2.471e+03   1.413
## C7                                  9.634e+00  1.798e+00  2.502e+03   5.359
## C8                                  9.845e+00  1.708e+00  2.528e+03   5.764
## C9                                  9.071e+00  1.777e+00  2.499e+03   5.105
## Collectivism_Score.c:Naturalness.c  1.002e-03  9.199e-04  2.891e+03   1.090
## Collectivism_Score.c:C1            -5.043e-03  6.890e-02  2.468e+03  -0.073
## Collectivism_Score.c:C2            -2.470e-02  7.053e-02  2.414e+03  -0.350
## Collectivism_Score.c:C3            -1.314e-01  6.927e-02  2.428e+03  -1.897
## Collectivism_Score.c:C4            -2.398e-02  6.589e-02  2.451e+03  -0.364
## Collectivism_Score.c:C5             2.883e-02  6.484e-02  2.463e+03   0.445
## Collectivism_Score.c:C6            -1.258e-02  6.662e-02  2.457e+03  -0.189
## Collectivism_Score.c:C7            -1.558e-01  7.363e-02  2.525e+03  -2.116
## Collectivism_Score.c:C8            -1.358e-01  6.965e-02  2.550e+03  -1.950
## Collectivism_Score.c:C9            -2.201e-01  7.460e-02  2.550e+03  -2.951
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c                0.01706 *  
## Naturalness.c                       < 2e-16 ***
## C1                                  0.00154 ** 
## C2                                  0.16163    
## C3                                 1.10e-07 ***
## C4                                  0.06762 .  
## C5                                  0.66659    
## C6                                  0.15789    
## C7                                 9.11e-08 ***
## C8                                 9.19e-09 ***
## C9                                 3.55e-07 ***
## Collectivism_Score.c:Naturalness.c  0.27601    
## Collectivism_Score.c:C1             0.94165    
## Collectivism_Score.c:C2             0.72620    
## Collectivism_Score.c:C3             0.05798 .  
## Collectivism_Score.c:C4             0.71597    
## Collectivism_Score.c:C5             0.65660    
## Collectivism_Score.c:C6             0.85026    
## Collectivism_Score.c:C7             0.03446 *  
## Collectivism_Score.c:C8             0.05126 .  
## Collectivism_Score.c:C9             0.00320 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8766,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.49 1.25 51.04 – 55.94 42.82 <0.001
Collectivism Score c 0.12 0.05 0.02 – 0.21 2.39 0.017
Naturalness c 0.24 0.02 0.20 – 0.29 10.42 <0.001
C1 5.19 1.64 1.98 – 8.39 3.17 0.002
C2 -2.43 1.74 -5.83 – 0.97 -1.40 0.162
C3 9.39 1.76 5.94 – 12.85 5.33 <0.001
C4 2.98 1.63 -0.22 – 6.18 1.83 0.068
C5 0.70 1.64 -2.50 – 3.91 0.43 0.667
C6 2.32 1.64 -0.90 – 5.53 1.41 0.158
C7 9.63 1.80 6.11 – 13.16 5.36 <0.001
C8 9.85 1.71 6.50 – 13.19 5.76 <0.001
C9 9.07 1.78 5.59 – 12.55 5.11 <0.001
Collectivism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.09 0.276
Collectivism Score c * C1 -0.01 0.07 -0.14 – 0.13 -0.07 0.942
Collectivism Score c * C2 -0.02 0.07 -0.16 – 0.11 -0.35 0.726
Collectivism Score c * C3 -0.13 0.07 -0.27 – 0.00 -1.90 0.058
Collectivism Score c * C4 -0.02 0.07 -0.15 – 0.11 -0.36 0.716
Collectivism Score c * C5 0.03 0.06 -0.10 – 0.16 0.44 0.657
Collectivism Score c * C6 -0.01 0.07 -0.14 – 0.12 -0.19 0.850
Collectivism Score c * C7 -0.16 0.07 -0.30 – -0.01 -2.12 0.034
Collectivism Score c * C8 -0.14 0.07 -0.27 – 0.00 -1.95 0.051
Collectivism Score c * C9 -0.22 0.07 -0.37 – -0.07 -2.95 0.003
Random Effects
σ2 365.24
τ00 id 274.25
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.087 / 0.479

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict benefit perception, over and above burger contrasts?
modA.877 <- lmer(Ben ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.877)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28395.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.2935 -0.5153  0.0657  0.5694  3.2392 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 287.7    16.96   
##  Residual             376.6    19.41   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               5.317e+01  1.271e+00  3.076e+03  41.820  < 2e-16 ***
## Individualism_Score.c     1.885e-01  7.310e-02  3.079e+03   2.579 0.009960 ** 
## C1                        2.006e+00  1.634e+00  2.469e+03   1.228 0.219654    
## C2                       -2.155e+00  1.765e+00  2.431e+03  -1.221 0.222180    
## C3                        6.689e+00  1.769e+00  2.464e+03   3.782 0.000159 ***
## C4                        2.276e+00  1.655e+00  2.468e+03   1.375 0.169218    
## C5                       -3.223e-01  1.656e+00  2.488e+03  -0.195 0.845688    
## C6                        5.620e-01  1.660e+00  2.469e+03   0.339 0.734962    
## C7                        1.387e+01  1.783e+00  2.467e+03   7.779 1.07e-14 ***
## C8                        1.537e+01  1.641e+00  2.463e+03   9.365  < 2e-16 ***
## C9                        1.265e+01  1.765e+00  2.474e+03   7.164 1.03e-12 ***
## Individualism_Score.c:C1 -1.178e-01  9.461e-02  2.446e+03  -1.245 0.213117    
## Individualism_Score.c:C2 -7.596e-02  1.071e-01  2.473e+03  -0.710 0.478046    
## Individualism_Score.c:C3 -3.112e-01  9.896e-02  2.414e+03  -3.145 0.001682 ** 
## Individualism_Score.c:C4 -1.730e-03  9.664e-02  2.459e+03  -0.018 0.985721    
## Individualism_Score.c:C5 -4.278e-03  9.720e-02  2.491e+03  -0.044 0.964894    
## Individualism_Score.c:C6 -1.934e-01  9.901e-02  2.478e+03  -1.953 0.050945 .  
## Individualism_Score.c:C7 -7.689e-02  1.011e-01  2.451e+03  -0.761 0.446995    
## Individualism_Score.c:C8 -5.946e-02  9.504e-02  2.467e+03  -0.626 0.531651    
## Individualism_Score.c:C9 -9.913e-02  1.080e-01  2.494e+03  -0.918 0.358693    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.877,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.17 1.27 50.67 – 55.66 41.82 <0.001
Individualism Score c 0.19 0.07 0.05 – 0.33 2.58 0.010
C1 2.01 1.63 -1.20 – 5.21 1.23 0.220
C2 -2.16 1.77 -5.62 – 1.31 -1.22 0.222
C3 6.69 1.77 3.22 – 10.16 3.78 <0.001
C4 2.28 1.65 -0.97 – 5.52 1.38 0.169
C5 -0.32 1.66 -3.57 – 2.92 -0.19 0.846
C6 0.56 1.66 -2.69 – 3.82 0.34 0.735
C7 13.87 1.78 10.37 – 17.36 7.78 <0.001
C8 15.37 1.64 12.15 – 18.59 9.37 <0.001
C9 12.65 1.77 9.18 – 16.11 7.16 <0.001
Individualism Score c *
C1
-0.12 0.09 -0.30 – 0.07 -1.25 0.213
Individualism Score c *
C2
-0.08 0.11 -0.29 – 0.13 -0.71 0.478
Individualism Score c *
C3
-0.31 0.10 -0.51 – -0.12 -3.14 0.002
Individualism Score c *
C4
-0.00 0.10 -0.19 – 0.19 -0.02 0.986
Individualism Score c *
C5
-0.00 0.10 -0.19 – 0.19 -0.04 0.965
Individualism Score c *
C6
-0.19 0.10 -0.39 – 0.00 -1.95 0.051
Individualism Score c *
C7
-0.08 0.10 -0.28 – 0.12 -0.76 0.447
Individualism Score c *
C8
-0.06 0.10 -0.25 – 0.13 -0.63 0.532
Individualism Score c *
C9
-0.10 0.11 -0.31 – 0.11 -0.92 0.359
Random Effects
σ2 376.56
τ00 id 287.65
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.061 / 0.468
Q.2 (INDIVIDUALISM) How does individualism depend on naturalness perception in predicting benefit perception, over and above burger contrasts?
modA.8775 <- lmer(Ben ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.8775)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 +  
##     Individualism_Score.c * C2 + Individualism_Score.c * C3 +  
##     Individualism_Score.c * C4 + Individualism_Score.c * C5 +  
##     Individualism_Score.c * C6 + Individualism_Score.c * C7 +  
##     Individualism_Score.c * C8 + Individualism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28304.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4940 -0.5186  0.0466  0.5651  3.2979 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 272.2    16.50   
##  Residual             366.2    19.14   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          5.351e+01  1.251e+00  3.073e+03  42.787
## Individualism_Score.c                1.813e-01  7.192e-02  3.077e+03   2.521
## Naturalness.c                        2.422e-01  2.354e-02  2.895e+03  10.288
## C1                                   5.122e+00  1.638e+00  2.486e+03   3.128
## C2                                  -2.341e+00  1.739e+00  2.434e+03  -1.346
## C3                                   9.850e+00  1.769e+00  2.480e+03   5.568
## C4                                   3.130e+00  1.633e+00  2.470e+03   1.917
## C5                                   4.230e-01  1.633e+00  2.492e+03   0.259
## C6                                   2.191e+00  1.643e+00  2.472e+03   1.334
## C7                                   9.768e+00  1.802e+00  2.505e+03   5.422
## C8                                   9.726e+00  1.708e+00  2.526e+03   5.693
## C9                                   8.860e+00  1.777e+00  2.500e+03   4.985
## Individualism_Score.c:Naturalness.c  9.055e-04  1.331e-03  2.939e+03   0.680
## Individualism_Score.c:C1            -1.027e-01  9.470e-02  2.454e+03  -1.085
## Individualism_Score.c:C2            -5.962e-02  1.055e-01  2.478e+03  -0.565
## Individualism_Score.c:C3            -2.853e-01  9.906e-02  2.425e+03  -2.880
## Individualism_Score.c:C4             2.296e-02  9.536e-02  2.458e+03   0.241
## Individualism_Score.c:C5             3.716e-02  9.594e-02  2.490e+03   0.387
## Individualism_Score.c:C6            -1.571e-01  9.799e-02  2.477e+03  -1.603
## Individualism_Score.c:C7            -8.356e-02  1.032e-01  2.510e+03  -0.810
## Individualism_Score.c:C8            -7.275e-02  9.926e-02  2.549e+03  -0.733
## Individualism_Score.c:C9            -1.183e-01  1.085e-01  2.526e+03  -1.091
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c                0.01176 *  
## Naturalness.c                        < 2e-16 ***
## C1                                   0.00178 ** 
## C2                                   0.17847    
## C3                                  2.85e-08 ***
## C4                                   0.05536 .  
## C5                                   0.79565    
## C6                                   0.18238    
## C7                                  6.45e-08 ***
## C8                                  1.39e-08 ***
## C9                                  6.61e-07 ***
## Individualism_Score.c:Naturalness.c  0.49631    
## Individualism_Score.c:C1             0.27808    
## Individualism_Score.c:C2             0.57208    
## Individualism_Score.c:C3             0.00402 ** 
## Individualism_Score.c:C4             0.80975    
## Individualism_Score.c:C5             0.69858    
## Individualism_Score.c:C6             0.10903    
## Individualism_Score.c:C7             0.41820    
## Individualism_Score.c:C8             0.46368    
## Individualism_Score.c:C9             0.27542    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8775,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.51 1.25 51.05 – 55.96 42.79 <0.001
Individualism Score c 0.18 0.07 0.04 – 0.32 2.52 0.012
Naturalness c 0.24 0.02 0.20 – 0.29 10.29 <0.001
C1 5.12 1.64 1.91 – 8.33 3.13 0.002
C2 -2.34 1.74 -5.75 – 1.07 -1.35 0.178
C3 9.85 1.77 6.38 – 13.32 5.57 <0.001
C4 3.13 1.63 -0.07 – 6.33 1.92 0.055
C5 0.42 1.63 -2.78 – 3.63 0.26 0.796
C6 2.19 1.64 -1.03 – 5.41 1.33 0.182
C7 9.77 1.80 6.24 – 13.30 5.42 <0.001
C8 9.73 1.71 6.38 – 13.08 5.69 <0.001
C9 8.86 1.78 5.38 – 12.34 4.99 <0.001
Individualism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 0.68 0.496
Individualism Score c *
C1
-0.10 0.09 -0.29 – 0.08 -1.08 0.278
Individualism Score c *
C2
-0.06 0.11 -0.27 – 0.15 -0.57 0.572
Individualism Score c *
C3
-0.29 0.10 -0.48 – -0.09 -2.88 0.004
Individualism Score c *
C4
0.02 0.10 -0.16 – 0.21 0.24 0.810
Individualism Score c *
C5
0.04 0.10 -0.15 – 0.23 0.39 0.699
Individualism Score c *
C6
-0.16 0.10 -0.35 – 0.04 -1.60 0.109
Individualism Score c *
C7
-0.08 0.10 -0.29 – 0.12 -0.81 0.418
Individualism Score c *
C8
-0.07 0.10 -0.27 – 0.12 -0.73 0.464
Individualism Score c *
C9
-0.12 0.11 -0.33 – 0.09 -1.09 0.275
Random Effects
σ2 366.17
τ00 id 272.25
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.088 / 0.477

Political Ideology

Q.1 (POLITICAL ORIENTATION) How does political ideology predict benefit perception, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.878 <- lmer(Ben ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.878)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *  
##     C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c * C7 +  
##     Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28339.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4483 -0.5138  0.0590  0.5715  3.1841 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 289.0    17.00   
##  Residual             377.9    19.44   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     53.2345     1.2720 3076.3606  41.851  < 2e-16 ***
## Ideology.c      -3.9022     2.1349 3078.7384  -1.828 0.067675 .  
## C1               1.9326     1.6355 2469.3516   1.182 0.237459    
## C2              -2.2482     1.7646 2432.4210  -1.274 0.202764    
## C3               6.2866     1.7661 2464.2547   3.560 0.000379 ***
## C4               2.1629     1.6563 2469.1337   1.306 0.191707    
## C5              -0.3374     1.6598 2487.4967  -0.203 0.838924    
## C6               0.5391     1.6623 2471.8772   0.324 0.745750    
## C7              13.7295     1.7838 2467.8127   7.697  2.0e-14 ***
## C8              15.3943     1.6469 2467.9445   9.348  < 2e-16 ***
## C9              12.6051     1.7675 2476.3847   7.132  1.3e-12 ***
## Ideology.c:C1    3.8965     2.7739 2438.3025   1.405 0.160229    
## Ideology.c:C2    1.7752     2.9313 2382.8518   0.606 0.544828    
## Ideology.c:C3    8.3186     3.0685 2466.6597   2.711 0.006754 ** 
## Ideology.c:C4    2.0512     2.8824 2493.1478   0.712 0.476761    
## Ideology.c:C5    2.2857     2.8495 2539.3477   0.802 0.422536    
## Ideology.c:C6    3.1636     2.8797 2478.3174   1.099 0.272058    
## Ideology.c:C7    5.3134     3.0090 2518.7281   1.766 0.077549 .  
## Ideology.c:C8    4.3633     2.7990 2449.8562   1.559 0.119158    
## Ideology.c:C9    6.1618     3.1371 2487.4574   1.964 0.049620 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.878,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 53.23 1.27 50.74 – 55.73 41.85 <0.001
Ideology c -3.90 2.13 -8.09 – 0.28 -1.83 0.068
C1 1.93 1.64 -1.27 – 5.14 1.18 0.237
C2 -2.25 1.76 -5.71 – 1.21 -1.27 0.203
C3 6.29 1.77 2.82 – 9.75 3.56 <0.001
C4 2.16 1.66 -1.08 – 5.41 1.31 0.192
C5 -0.34 1.66 -3.59 – 2.92 -0.20 0.839
C6 0.54 1.66 -2.72 – 3.80 0.32 0.746
C7 13.73 1.78 10.23 – 17.23 7.70 <0.001
C8 15.39 1.65 12.17 – 18.62 9.35 <0.001
C9 12.61 1.77 9.14 – 16.07 7.13 <0.001
Ideology c * C1 3.90 2.77 -1.54 – 9.34 1.40 0.160
Ideology c * C2 1.78 2.93 -3.97 – 7.52 0.61 0.545
Ideology c * C3 8.32 3.07 2.30 – 14.34 2.71 0.007
Ideology c * C4 2.05 2.88 -3.60 – 7.70 0.71 0.477
Ideology c * C5 2.29 2.85 -3.30 – 7.87 0.80 0.423
Ideology c * C6 3.16 2.88 -2.48 – 8.81 1.10 0.272
Ideology c * C7 5.31 3.01 -0.59 – 11.21 1.77 0.078
Ideology c * C8 4.36 2.80 -1.12 – 9.85 1.56 0.119
Ideology c * C9 6.16 3.14 0.01 – 12.31 1.96 0.050
Random Effects
σ2 377.88
τ00 id 289.02
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.056 / 0.465
Q.2 (POLITICAL ORIENTATION) How does political ideology depend on naturalness perception in predicting benefit perception, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.8784 <- lmer(Ben ~ Ideology.c*Naturalness + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + (1|id), data = L)

summary(modA.8784)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Ben ~ Ideology.c * Naturalness + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 28262.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5068 -0.5151  0.0534  0.5610  3.2928 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 273.9    16.55   
##  Residual             367.6    19.17   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                          Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              43.90473    1.54687 3040.11677  28.383  < 2e-16 ***
## Ideology.c               -1.14684    2.19192 3055.33274  -0.523  0.60087    
## Naturalness               0.24306    0.02353 2902.21313  10.330  < 2e-16 ***
## C1                        5.02278    1.64046 2489.60790   3.062  0.00222 ** 
## C2                       -2.50697    1.73880 2437.60047  -1.442  0.14949    
## C3                        9.43929    1.76651 2484.26613   5.343 9.95e-08 ***
## C4                        2.94621    1.63374 2473.66349   1.803  0.07145 .  
## C5                        0.36389    1.63724 2494.81094   0.222  0.82413    
## C6                        2.07318    1.64382 2476.09265   1.261  0.20736    
## C7                        9.59908    1.80174 2510.19853   5.328 1.08e-07 ***
## C8                        9.63885    1.70823 2532.39610   5.643 1.86e-08 ***
## C9                        8.76169    1.77976 2506.64787   4.923 9.08e-07 ***
## Ideology.c:Naturalness    0.02043    0.03728 2783.69564   0.548  0.58360    
## Ideology.c:C1             0.27946    2.26923 2453.94004   0.123  0.90200    
## Ideology.c:C2            -1.47001    2.46317 2497.86473  -0.597  0.55070    
## Ideology.c:C3             6.27311    2.68284 2555.93123   2.338  0.01945 *  
## Ideology.c:C4            -1.05943    2.33027 2541.63172  -0.455  0.64941    
## Ideology.c:C5            -1.81166    2.23267 2510.29251  -0.811  0.41719    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 18 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.8784,
          show.stat = T, show.se = T)
  Ben
Predictors Estimates std. Error CI Statistic p
(Intercept) 43.90 1.55 40.87 – 46.94 28.38 <0.001
Ideology c -1.15 2.19 -5.44 – 3.15 -0.52 0.601
Naturalness 0.24 0.02 0.20 – 0.29 10.33 <0.001
C1 5.02 1.64 1.81 – 8.24 3.06 0.002
C2 -2.51 1.74 -5.92 – 0.90 -1.44 0.149
C3 9.44 1.77 5.98 – 12.90 5.34 <0.001
C4 2.95 1.63 -0.26 – 6.15 1.80 0.071
C5 0.36 1.64 -2.85 – 3.57 0.22 0.824
C6 2.07 1.64 -1.15 – 5.30 1.26 0.207
C7 9.60 1.80 6.07 – 13.13 5.33 <0.001
C8 9.64 1.71 6.29 – 12.99 5.64 <0.001
C9 8.76 1.78 5.27 – 12.25 4.92 <0.001
Ideology c * Naturalness 0.02 0.04 -0.05 – 0.09 0.55 0.584
Ideology c * C1 0.28 2.27 -4.17 – 4.73 0.12 0.902
Ideology c * C2 -1.47 2.46 -6.30 – 3.36 -0.60 0.551
Ideology c * C3 6.27 2.68 1.01 – 11.53 2.34 0.019
Ideology c * C4 -1.06 2.33 -5.63 – 3.51 -0.45 0.649
Ideology c * C5 -1.81 2.23 -6.19 – 2.57 -0.81 0.417
Random Effects
σ2 367.58
τ00 id 273.89
ICC 0.43
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.082 / 0.474

Difference Benefit - Risk

Q.1 How do burger contrasts predict benefit perception?
modA.910 <- lmer(BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.910)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31282.5
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9132 -0.5398  0.0435  0.5736  3.1191 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  589.9   24.29   
##  Residual             1029.7   32.09   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##             Estimate Std. Error       df t value Pr(>|t|)    
## (Intercept)   18.318      2.037 3078.449   8.992  < 2e-16 ***
## C1            -6.048      2.671 2553.236  -2.264   0.0236 *  
## C2             6.112      2.885 2506.924   2.119   0.0342 *  
## C3           -12.037      2.885 2541.897  -4.172 3.12e-05 ***
## C4            -1.060      2.705 2553.147  -0.392   0.6953    
## C5            -4.087      2.705 2573.268  -1.511   0.1309    
## C6           -10.680      2.713 2553.934  -3.936 8.49e-05 ***
## C7            37.559      2.914 2547.501  12.890  < 2e-16 ***
## C8            34.209      2.683 2547.793  12.750  < 2e-16 ***
## C9            30.287      2.887 2557.379  10.493  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.676                                                        
## C2 -0.601  0.472                                                 
## C3 -0.610  0.478  0.393                                          
## C4 -0.667  0.509  0.467  0.469                                   
## C5 -0.672  0.515  0.469  0.477  0.508                            
## C6 -0.665  0.506  0.458  0.479  0.499  0.503                     
## C7 -0.605  0.472  0.390  0.396  0.468  0.471  0.462              
## C8 -0.672  0.512  0.468  0.467  0.503  0.509  0.505  0.477       
## C9 -0.614  0.485  0.396  0.402  0.475  0.476  0.473  0.398  0.480
tab_model(modA.910,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.32 2.04 14.32 – 22.31 8.99 <0.001
C1 -6.05 2.67 -11.28 – -0.81 -2.26 0.024
C2 6.11 2.88 0.46 – 11.77 2.12 0.034
C3 -12.04 2.88 -17.69 – -6.38 -4.17 <0.001
C4 -1.06 2.71 -6.36 – 4.24 -0.39 0.695
C5 -4.09 2.70 -9.39 – 1.22 -1.51 0.131
C6 -10.68 2.71 -16.00 – -5.36 -3.94 <0.001
C7 37.56 2.91 31.85 – 43.27 12.89 <0.001
C8 34.21 2.68 28.95 – 39.47 12.75 <0.001
C9 30.29 2.89 24.63 – 35.95 10.49 <0.001
Random Effects
σ2 1029.74
τ00 id 589.87
ICC 0.36
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.163 / 0.468

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict the benefit-risk difference, over and above burger contrasts?
modA.911 <- lmer(BRDiff ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.911)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c *  
##     C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c *  
##     C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31172.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.1075 -0.5493  0.0386  0.5796  3.4080 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  519.7   22.80   
##  Residual             1009.9   31.78   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      1.842e+01  1.997e+00  3.066e+03   9.223  < 2e-16 ***
## ATNS_Score.c    -4.169e-01  9.479e-02  3.061e+03  -4.398 1.13e-05 ***
## C1              -6.113e+00  2.635e+00  2.572e+03  -2.320  0.02041 *  
## C2               6.080e+00  2.849e+00  2.523e+03   2.134  0.03292 *  
## C3              -1.185e+01  2.846e+00  2.559e+03  -4.165 3.22e-05 ***
## C4              -1.842e+00  2.670e+00  2.574e+03  -0.690  0.49035    
## C5              -4.174e+00  2.668e+00  2.595e+03  -1.565  0.11781    
## C6              -1.044e+01  2.679e+00  2.574e+03  -3.896  0.00010 ***
## C7               3.760e+01  2.875e+00  2.567e+03  13.079  < 2e-16 ***
## C8               3.402e+01  2.647e+00  2.567e+03  12.852  < 2e-16 ***
## C9               2.995e+01  2.848e+00  2.575e+03  10.516  < 2e-16 ***
## ATNS_Score.c:C1  1.184e-04  1.242e-01  2.581e+03   0.001  0.99924    
## ATNS_Score.c:C2  1.924e-01  1.330e-01  2.513e+03   1.446  0.14834    
## ATNS_Score.c:C3 -3.093e-01  1.331e-01  2.547e+03  -2.323  0.02024 *  
## ATNS_Score.c:C4 -2.881e-01  1.231e-01  2.574e+03  -2.341  0.01933 *  
## ATNS_Score.c:C5 -1.116e-01  1.243e-01  2.602e+03  -0.899  0.36900    
## ATNS_Score.c:C6 -4.456e-02  1.288e-01  2.600e+03  -0.346  0.72930    
## ATNS_Score.c:C7  3.476e-01  1.345e-01  2.576e+03   2.584  0.00981 ** 
## ATNS_Score.c:C8  1.612e-01  1.245e-01  2.558e+03   1.295  0.19555    
## ATNS_Score.c:C9  2.409e-01  1.357e-01  2.610e+03   1.776  0.07590 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.911,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.42 2.00 14.51 – 22.34 9.22 <0.001
ATNS Score c -0.42 0.09 -0.60 – -0.23 -4.40 <0.001
C1 -6.11 2.63 -11.28 – -0.95 -2.32 0.020
C2 6.08 2.85 0.49 – 11.67 2.13 0.033
C3 -11.85 2.85 -17.44 – -6.27 -4.16 <0.001
C4 -1.84 2.67 -7.08 – 3.39 -0.69 0.490
C5 -4.17 2.67 -9.41 – 1.06 -1.56 0.118
C6 -10.44 2.68 -15.69 – -5.18 -3.90 <0.001
C7 37.60 2.87 31.96 – 43.24 13.08 <0.001
C8 34.02 2.65 28.83 – 39.21 12.85 <0.001
C9 29.95 2.85 24.37 – 35.54 10.52 <0.001
ATNS Score c * C1 0.00 0.12 -0.24 – 0.24 0.00 0.999
ATNS Score c * C2 0.19 0.13 -0.07 – 0.45 1.45 0.148
ATNS Score c * C3 -0.31 0.13 -0.57 – -0.05 -2.32 0.020
ATNS Score c * C4 -0.29 0.12 -0.53 – -0.05 -2.34 0.019
ATNS Score c * C5 -0.11 0.12 -0.36 – 0.13 -0.90 0.369
ATNS Score c * C6 -0.04 0.13 -0.30 – 0.21 -0.35 0.729
ATNS Score c * C7 0.35 0.13 0.08 – 0.61 2.58 0.010
ATNS Score c * C8 0.16 0.12 -0.08 – 0.41 1.29 0.196
ATNS Score c * C9 0.24 0.14 -0.03 – 0.51 1.78 0.076
Random Effects
σ2 1009.86
τ00 id 519.72
ICC 0.34
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.213 / 0.480
Q.2 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature depend on naturalness perception in predicting the benefit-risk difference, over and above burger contrasts?
modA.9114 <- lmer(BRDiff ~ ATNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.9114)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 +  
##     ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 +  
##     ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 +  
##     ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30828
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0294 -0.5419  0.0292  0.5884  3.1934 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 465.9    21.59   
##  Residual             897.2    29.95   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 1.938e+01  1.885e+00  3.064e+03  10.283  < 2e-16
## ATNS_Score.c               -3.819e-01  8.950e-02  3.060e+03  -4.268 2.04e-05
## Naturalness.c               6.642e-01  3.593e-02  2.994e+03  18.485  < 2e-16
## C1                          2.344e+00  2.528e+00  2.582e+03   0.927   0.3538
## C2                          5.444e+00  2.686e+00  2.516e+03   2.026   0.0428
## C3                         -2.857e+00  2.724e+00  2.568e+03  -1.049   0.2945
## C4                          1.145e+00  2.523e+00  2.564e+03   0.454   0.6500
## C5                         -1.822e+00  2.519e+00  2.587e+03  -0.723   0.4696
## C6                         -5.774e+00  2.537e+00  2.566e+03  -2.276   0.0229
## C7                          2.606e+01  2.777e+00  2.601e+03   9.383  < 2e-16
## C8                          1.856e+01  2.631e+00  2.626e+03   7.055 2.20e-12
## C9                          1.965e+01  2.742e+00  2.592e+03   7.165 1.01e-12
## ATNS_Score.c:Naturalness.c  6.766e-03  1.419e-03  2.991e+03   4.768 1.95e-06
## ATNS_Score.c:C1             6.274e-02  1.187e-01  2.576e+03   0.528   0.5973
## ATNS_Score.c:C2             1.724e-01  1.254e-01  2.506e+03   1.374   0.1695
## ATNS_Score.c:C3            -1.358e-01  1.270e-01  2.553e+03  -1.069   0.2851
## ATNS_Score.c:C4            -1.630e-01  1.164e-01  2.561e+03  -1.400   0.1615
## ATNS_Score.c:C5            -9.886e-03  1.174e-01  2.591e+03  -0.084   0.9329
## ATNS_Score.c:C6             6.754e-02  1.217e-01  2.586e+03   0.555   0.5789
## ATNS_Score.c:C7             1.507e-01  1.293e-01  2.610e+03   1.166   0.2438
## ATNS_Score.c:C8            -7.320e-03  1.220e-01  2.601e+03  -0.060   0.9522
## ATNS_Score.c:C9             1.127e-01  1.302e-01  2.639e+03   0.865   0.3870
##                               
## (Intercept)                ***
## ATNS_Score.c               ***
## Naturalness.c              ***
## C1                            
## C2                         *  
## C3                            
## C4                            
## C5                            
## C6                         *  
## C7                         ***
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c ***
## ATNS_Score.c:C1               
## ATNS_Score.c:C2               
## ATNS_Score.c:C3               
## ATNS_Score.c:C4               
## ATNS_Score.c:C5               
## ATNS_Score.c:C6               
## ATNS_Score.c:C7               
## ATNS_Score.c:C8               
## ATNS_Score.c:C9               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9114,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 19.38 1.88 15.69 – 23.08 10.28 <0.001
ATNS Score c -0.38 0.09 -0.56 – -0.21 -4.27 <0.001
Naturalness c 0.66 0.04 0.59 – 0.73 18.48 <0.001
C1 2.34 2.53 -2.61 – 7.30 0.93 0.354
C2 5.44 2.69 0.18 – 10.71 2.03 0.043
C3 -2.86 2.72 -8.20 – 2.48 -1.05 0.294
C4 1.14 2.52 -3.80 – 6.09 0.45 0.650
C5 -1.82 2.52 -6.76 – 3.12 -0.72 0.470
C6 -5.77 2.54 -10.75 – -0.80 -2.28 0.023
C7 26.06 2.78 20.61 – 31.50 9.38 <0.001
C8 18.56 2.63 13.40 – 23.72 7.06 <0.001
C9 19.65 2.74 14.27 – 25.03 7.17 <0.001
ATNS Score c *
Naturalness c
0.01 0.00 0.00 – 0.01 4.77 <0.001
ATNS Score c * C1 0.06 0.12 -0.17 – 0.30 0.53 0.597
ATNS Score c * C2 0.17 0.13 -0.07 – 0.42 1.37 0.169
ATNS Score c * C3 -0.14 0.13 -0.38 – 0.11 -1.07 0.285
ATNS Score c * C4 -0.16 0.12 -0.39 – 0.07 -1.40 0.161
ATNS Score c * C5 -0.01 0.12 -0.24 – 0.22 -0.08 0.933
ATNS Score c * C6 0.07 0.12 -0.17 – 0.31 0.56 0.579
ATNS Score c * C7 0.15 0.13 -0.10 – 0.40 1.17 0.244
ATNS Score c * C8 -0.01 0.12 -0.25 – 0.23 -0.06 0.952
ATNS Score c * C9 0.11 0.13 -0.14 – 0.37 0.87 0.387
Random Effects
σ2 897.22
τ00 id 465.91
ICC 0.34
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.293 / 0.535

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict the benefit-risk difference, over and above burger contrasts?
modA.913 <- lmer(BRDiff ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 +  CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 +(1|id), data = L)

summary(modA.913)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c *  
##     C3 + CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c *  
##     C6 + CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c *      C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31258.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3377 -0.5396  0.0339  0.5751  3.2496 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  582.1   24.13   
##  Residual             1017.5   31.90   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      18.33700    2.02514 3068.19713   9.055  < 2e-16 ***
## CNS_Score.c       0.05276    0.12114 3069.82526   0.435  0.66323    
## C1               -5.85715    2.65547 2544.32399  -2.206  0.02749 *  
## C2                6.18443    2.87521 2497.52032   2.151  0.03158 *  
## C3              -11.95391    2.86880 2533.76239  -4.167 3.19e-05 ***
## C4               -1.19882    2.69159 2544.82786  -0.445  0.65607    
## C5               -4.21313    2.68959 2564.33313  -1.566  0.11737    
## C6              -10.80225    2.69847 2544.90438  -4.003 6.43e-05 ***
## C7               37.52857    2.89760 2539.77735  12.952  < 2e-16 ***
## C8               33.91791    2.66948 2537.35178  12.706  < 2e-16 ***
## C9               29.86713    2.87191 2547.21347  10.400  < 2e-16 ***
## CNS_Score.c:C1    0.22489    0.15622 2531.97868   1.440  0.15011    
## CNS_Score.c:C2    0.06786    0.16714 2481.92765   0.406  0.68476    
## CNS_Score.c:C3   -0.50506    0.17439 2497.03597  -2.896  0.00381 ** 
## CNS_Score.c:C4   -0.16800    0.15840 2554.93757  -1.061  0.28898    
## CNS_Score.c:C5   -0.12035    0.16496 2583.25351  -0.730  0.46570    
## CNS_Score.c:C6   -0.02266    0.16063 2527.47601  -0.141  0.88783    
## CNS_Score.c:C7    0.43562    0.17571 2567.11685   2.479  0.01323 *  
## CNS_Score.c:C8    0.26426    0.16459 2560.71281   1.606  0.10850    
## CNS_Score.c:C9    0.42349    0.17360 2585.06140   2.439  0.01477 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.913,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.34 2.03 14.37 – 22.31 9.05 <0.001
CNS Score c 0.05 0.12 -0.18 – 0.29 0.44 0.663
C1 -5.86 2.66 -11.06 – -0.65 -2.21 0.027
C2 6.18 2.88 0.55 – 11.82 2.15 0.032
C3 -11.95 2.87 -17.58 – -6.33 -4.17 <0.001
C4 -1.20 2.69 -6.48 – 4.08 -0.45 0.656
C5 -4.21 2.69 -9.49 – 1.06 -1.57 0.117
C6 -10.80 2.70 -16.09 – -5.51 -4.00 <0.001
C7 37.53 2.90 31.85 – 43.21 12.95 <0.001
C8 33.92 2.67 28.68 – 39.15 12.71 <0.001
C9 29.87 2.87 24.24 – 35.50 10.40 <0.001
CNS Score c * C1 0.22 0.16 -0.08 – 0.53 1.44 0.150
CNS Score c * C2 0.07 0.17 -0.26 – 0.40 0.41 0.685
CNS Score c * C3 -0.51 0.17 -0.85 – -0.16 -2.90 0.004
CNS Score c * C4 -0.17 0.16 -0.48 – 0.14 -1.06 0.289
CNS Score c * C5 -0.12 0.16 -0.44 – 0.20 -0.73 0.466
CNS Score c * C6 -0.02 0.16 -0.34 – 0.29 -0.14 0.888
CNS Score c * C7 0.44 0.18 0.09 – 0.78 2.48 0.013
CNS Score c * C8 0.26 0.16 -0.06 – 0.59 1.61 0.108
CNS Score c * C9 0.42 0.17 0.08 – 0.76 2.44 0.015
Random Effects
σ2 1017.55
τ00 id 582.15
ICC 0.36
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.175 / 0.475
Q.2 (CONNECTEDNESS TO NATURE) How does connectedness to nature depend on naturalness perception in predicting the benefit-risk difference, over and above burger contrasts?
modA.9135 <- lmer(BRDiff ~ CNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 +  CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.9135)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ CNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CNS_Score.c * C1 + CNS_Score.c * C2 +  
##     CNS_Score.c * C3 + CNS_Score.c * C4 + CNS_Score.c * C5 +  
##     CNS_Score.c * C6 + CNS_Score.c * C7 + CNS_Score.c * C8 +  
##     CNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30919.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3731 -0.5294  0.0164  0.5731  3.0596 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 533.3    23.09   
##  Residual             901.1    30.02   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                             Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                1.922e+01  1.913e+00  3.067e+03  10.049  < 2e-16 ***
## CNS_Score.c                4.781e-02  1.145e-01  3.069e+03   0.418   0.6763    
## Naturalness.c              6.933e-01  3.619e-02  2.967e+03  19.155  < 2e-16 ***
## C1                         3.140e+00  2.545e+00  2.546e+03   1.234   0.2174    
## C2                         5.551e+00  2.709e+00  2.487e+03   2.049   0.0405 *  
## C3                        -2.700e+00  2.745e+00  2.539e+03  -0.983   0.3255    
## C4                         1.370e+00  2.540e+00  2.531e+03   0.539   0.5897    
## C5                        -1.977e+00  2.537e+00  2.553e+03  -0.779   0.4358    
## C6                        -6.005e+00  2.555e+00  2.533e+03  -2.351   0.0188 *  
## C7                         2.582e+01  2.797e+00  2.567e+03   9.234  < 2e-16 ***
## C8                         1.788e+01  2.652e+00  2.590e+03   6.743 1.91e-11 ***
## C9                         1.913e+01  2.763e+00  2.561e+03   6.924 5.52e-12 ***
## CNS_Score.c:Naturalness.c  3.935e-03  2.024e-03  3.001e+03   1.944   0.0520 .  
## CNS_Score.c:C1             3.213e-01  1.501e-01  2.546e+03   2.141   0.0324 *  
## CNS_Score.c:C2             5.611e-02  1.575e-01  2.474e+03   0.356   0.7216    
## CNS_Score.c:C3            -3.008e-01  1.657e-01  2.494e+03  -1.815   0.0696 .  
## CNS_Score.c:C4            -1.125e-01  1.496e-01  2.538e+03  -0.752   0.4521    
## CNS_Score.c:C5            -5.659e-02  1.556e-01  2.568e+03  -0.364   0.7161    
## CNS_Score.c:C6             7.641e-02  1.518e-01  2.509e+03   0.503   0.6147    
## CNS_Score.c:C7             2.893e-01  1.693e-01  2.588e+03   1.709   0.0876 .  
## CNS_Score.c:C8             1.549e-01  1.642e-01  2.650e+03   0.944   0.3453    
## CNS_Score.c:C9             2.624e-01  1.674e-01  2.611e+03   1.567   0.1172    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9135,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 19.22 1.91 15.47 – 22.97 10.05 <0.001
CNS Score c 0.05 0.11 -0.18 – 0.27 0.42 0.676
Naturalness c 0.69 0.04 0.62 – 0.76 19.16 <0.001
C1 3.14 2.54 -1.85 – 8.13 1.23 0.217
C2 5.55 2.71 0.24 – 10.86 2.05 0.041
C3 -2.70 2.75 -8.08 – 2.68 -0.98 0.325
C4 1.37 2.54 -3.61 – 6.35 0.54 0.590
C5 -1.98 2.54 -6.95 – 3.00 -0.78 0.436
C6 -6.00 2.55 -11.01 – -1.00 -2.35 0.019
C7 25.82 2.80 20.34 – 31.31 9.23 <0.001
C8 17.88 2.65 12.68 – 23.08 6.74 <0.001
C9 19.13 2.76 13.71 – 24.55 6.92 <0.001
CNS Score c * Naturalness
c
0.00 0.00 -0.00 – 0.01 1.94 0.052
CNS Score c * C1 0.32 0.15 0.03 – 0.62 2.14 0.032
CNS Score c * C2 0.06 0.16 -0.25 – 0.36 0.36 0.722
CNS Score c * C3 -0.30 0.17 -0.63 – 0.02 -1.82 0.070
CNS Score c * C4 -0.11 0.15 -0.41 – 0.18 -0.75 0.452
CNS Score c * C5 -0.06 0.16 -0.36 – 0.25 -0.36 0.716
CNS Score c * C6 0.08 0.15 -0.22 – 0.37 0.50 0.615
CNS Score c * C7 0.29 0.17 -0.04 – 0.62 1.71 0.088
CNS Score c * C8 0.15 0.16 -0.17 – 0.48 0.94 0.345
CNS Score c * C9 0.26 0.17 -0.07 – 0.59 1.57 0.117
Random Effects
σ2 901.06
τ00 id 533.27
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.256 / 0.532

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict the benefit-risk difference, over and above burger contrasts?
modA.914 <- lmer(BRDiff ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 +(1|id), data = L)

summary(modA.914)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 +  
##     CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31093.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0602 -0.5522  0.0396  0.5793  3.1982 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  449     21.19   
##  Residual             1013     31.83   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          1.838e+01  1.974e+00  3.063e+03   9.311  < 2e-16 ***
## CCBelief_Score.c     4.460e-01  8.409e-02  3.061e+03   5.304 1.21e-07 ***
## C1                  -6.039e+00  2.624e+00  2.613e+03  -2.302 0.021438 *  
## C2                   6.188e+00  2.837e+00  2.558e+03   2.181 0.029269 *  
## C3                  -1.229e+01  2.836e+00  2.597e+03  -4.332 1.53e-05 ***
## C4                  -7.918e-01  2.661e+00  2.612e+03  -0.298 0.766079    
## C5                  -4.756e+00  2.658e+00  2.635e+03  -1.790 0.073630 .  
## C6                  -1.055e+01  2.665e+00  2.613e+03  -3.957 7.78e-05 ***
## C7                   3.718e+01  2.863e+00  2.602e+03  12.985  < 2e-16 ***
## C8                   3.385e+01  2.638e+00  2.609e+03  12.834  < 2e-16 ***
## C9                   3.002e+01  2.835e+00  2.613e+03  10.588  < 2e-16 ***
## CCBelief_Score.c:C1 -6.950e-03  1.110e-01  2.631e+03  -0.063 0.950078    
## CCBelief_Score.c:C2  1.886e-02  1.225e-01  2.564e+03   0.154 0.877592    
## CCBelief_Score.c:C3 -4.109e-01  1.146e-01  2.570e+03  -3.585 0.000344 ***
## CCBelief_Score.c:C4 -5.134e-03  1.091e-01  2.619e+03  -0.047 0.962480    
## CCBelief_Score.c:C5  1.129e-01  1.153e-01  2.626e+03   0.979 0.327582    
## CCBelief_Score.c:C6  1.054e-01  1.119e-01  2.585e+03   0.942 0.346071    
## CCBelief_Score.c:C7  2.279e-01  1.235e-01  2.586e+03   1.846 0.064958 .  
## CCBelief_Score.c:C8  1.471e-01  1.152e-01  2.648e+03   1.278 0.201456    
## CCBelief_Score.c:C9  4.516e-01  1.230e-01  2.666e+03   3.670 0.000247 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.914,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.38 1.97 14.51 – 22.25 9.31 <0.001
CCBelief Score c 0.45 0.08 0.28 – 0.61 5.30 <0.001
C1 -6.04 2.62 -11.18 – -0.89 -2.30 0.021
C2 6.19 2.84 0.63 – 11.75 2.18 0.029
C3 -12.29 2.84 -17.85 – -6.73 -4.33 <0.001
C4 -0.79 2.66 -6.01 – 4.43 -0.30 0.766
C5 -4.76 2.66 -9.97 – 0.45 -1.79 0.074
C6 -10.55 2.67 -15.77 – -5.32 -3.96 <0.001
C7 37.18 2.86 31.57 – 42.79 12.99 <0.001
C8 33.85 2.64 28.68 – 39.02 12.83 <0.001
C9 30.02 2.84 24.46 – 35.58 10.59 <0.001
CCBelief Score c * C1 -0.01 0.11 -0.22 – 0.21 -0.06 0.950
CCBelief Score c * C2 0.02 0.12 -0.22 – 0.26 0.15 0.878
CCBelief Score c * C3 -0.41 0.11 -0.64 – -0.19 -3.58 <0.001
CCBelief Score c * C4 -0.01 0.11 -0.22 – 0.21 -0.05 0.962
CCBelief Score c * C5 0.11 0.12 -0.11 – 0.34 0.98 0.328
CCBelief Score c * C6 0.11 0.11 -0.11 – 0.32 0.94 0.346
CCBelief Score c * C7 0.23 0.12 -0.01 – 0.47 1.85 0.065
CCBelief Score c * C8 0.15 0.12 -0.08 – 0.37 1.28 0.201
CCBelief Score c * C9 0.45 0.12 0.21 – 0.69 3.67 <0.001
Random Effects
σ2 1012.88
τ00 id 449.00
ICC 0.31
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.247 / 0.478
Q.2 (CLIMATE CHANGE BELIEF) How does climate change belief depend on naturalness perception in predicting the benefit-risk difference, over and above burger contrasts?
modA.9145 <- lmer(BRDiff ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.9145)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30748.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5645 -0.5566  0.0185  0.5764  3.0210 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 408.4    20.21   
##  Residual             896.9    29.95   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     1.945e+01  1.864e+00  3.062e+03  10.437
## CCBelief_Score.c                3.681e-01  7.979e-02  3.066e+03   4.613
## Naturalness.c                   6.755e-01  3.536e-02  3.025e+03  19.102
## C1                              2.538e+00  2.515e+00  2.621e+03   1.009
## C2                              5.689e+00  2.672e+00  2.550e+03   2.129
## C3                             -3.784e+00  2.715e+00  2.611e+03  -1.394
## C4                              1.502e+00  2.511e+00  2.602e+03   0.598
## C5                             -2.724e+00  2.506e+00  2.626e+03  -1.087
## C6                             -6.160e+00  2.522e+00  2.605e+03  -2.442
## C7                              2.599e+01  2.761e+00  2.632e+03   9.415
## C8                              1.809e+01  2.616e+00  2.670e+03   6.913
## C9                              1.962e+01  2.727e+00  2.630e+03   7.192
## CCBelief_Score.c:Naturalness.c -3.919e-03  1.339e-03  3.037e+03  -2.927
## CCBelief_Score.c:C1            -1.353e-04  1.056e-01  2.611e+03  -0.001
## CCBelief_Score.c:C2             7.212e-03  1.154e-01  2.556e+03   0.063
## CCBelief_Score.c:C3            -3.573e-01  1.088e-01  2.549e+03  -3.283
## CCBelief_Score.c:C4             3.649e-02  1.028e-01  2.608e+03   0.355
## CCBelief_Score.c:C5             1.268e-01  1.087e-01  2.613e+03   1.167
## CCBelief_Score.c:C6             1.326e-01  1.055e-01  2.570e+03   1.257
## CCBelief_Score.c:C7             2.793e-01  1.182e-01  2.652e+03   2.363
## CCBelief_Score.c:C8             2.874e-01  1.153e-01  2.782e+03   2.492
## CCBelief_Score.c:C9             4.953e-01  1.183e-01  2.720e+03   4.188
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c               4.13e-06 ***
## Naturalness.c                   < 2e-16 ***
## C1                              0.31295    
## C2                              0.03338 *  
## C3                              0.16352    
## C4                              0.54981    
## C5                              0.27721    
## C6                              0.01467 *  
## C7                              < 2e-16 ***
## C8                             5.90e-12 ***
## C9                             8.26e-13 ***
## CCBelief_Score.c:Naturalness.c  0.00344 ** 
## CCBelief_Score.c:C1             0.99898    
## CCBelief_Score.c:C2             0.95015    
## CCBelief_Score.c:C3             0.00104 ** 
## CCBelief_Score.c:C4             0.72272    
## CCBelief_Score.c:C5             0.24349    
## CCBelief_Score.c:C6             0.20877    
## CCBelief_Score.c:C7             0.01822 *  
## CCBelief_Score.c:C8             0.01275 *  
## CCBelief_Score.c:C9            2.91e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9145,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 19.45 1.86 15.80 – 23.11 10.44 <0.001
CCBelief Score c 0.37 0.08 0.21 – 0.52 4.61 <0.001
Naturalness c 0.68 0.04 0.61 – 0.74 19.10 <0.001
C1 2.54 2.52 -2.39 – 7.47 1.01 0.313
C2 5.69 2.67 0.45 – 10.93 2.13 0.033
C3 -3.78 2.72 -9.11 – 1.54 -1.39 0.164
C4 1.50 2.51 -3.42 – 6.43 0.60 0.550
C5 -2.72 2.51 -7.64 – 2.19 -1.09 0.277
C6 -6.16 2.52 -11.11 – -1.21 -2.44 0.015
C7 25.99 2.76 20.58 – 31.40 9.41 <0.001
C8 18.09 2.62 12.96 – 23.22 6.91 <0.001
C9 19.62 2.73 14.27 – 24.96 7.19 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.01 – -0.00 -2.93 0.003
CCBelief Score c * C1 -0.00 0.11 -0.21 – 0.21 -0.00 0.999
CCBelief Score c * C2 0.01 0.12 -0.22 – 0.23 0.06 0.950
CCBelief Score c * C3 -0.36 0.11 -0.57 – -0.14 -3.28 0.001
CCBelief Score c * C4 0.04 0.10 -0.17 – 0.24 0.35 0.723
CCBelief Score c * C5 0.13 0.11 -0.09 – 0.34 1.17 0.243
CCBelief Score c * C6 0.13 0.11 -0.07 – 0.34 1.26 0.209
CCBelief Score c * C7 0.28 0.12 0.05 – 0.51 2.36 0.018
CCBelief Score c * C8 0.29 0.12 0.06 – 0.51 2.49 0.013
CCBelief Score c * C9 0.50 0.12 0.26 – 0.73 4.19 <0.001
Random Effects
σ2 896.92
τ00 id 408.45
ICC 0.31
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.325 / 0.536

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict the benefit-risk difference, over and above burger contrasts?
modA.916 <- lmer(BRDiff ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.916)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31301
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0425 -0.5419  0.0425  0.5765  3.1185 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  593.4   24.36   
##  Residual             1027.3   32.05   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)               18.23090    2.03830 3068.32735   8.944  < 2e-16 ***
## Collectivism_Score.c       0.04778    0.07961 3078.88135   0.600   0.5484    
## C1                        -5.95530    2.67043 2541.45385  -2.230   0.0258 *  
## C2                         6.17731    2.88566 2496.39127   2.141   0.0324 *  
## C3                       -11.89238    2.88747 2529.27492  -4.119 3.93e-05 ***
## C4                        -1.04275    2.70770 2544.18635  -0.385   0.7002    
## C5                        -3.73089    2.71197 2563.51159  -1.376   0.1690    
## C6                       -10.61721    2.71267 2541.84003  -3.914 9.32e-05 ***
## C7                        37.60129    2.91352 2536.01823  12.906  < 2e-16 ***
## C8                        34.42700    2.68378 2536.01442  12.828  < 2e-16 ***
## C9                        30.71540    2.88858 2545.63150  10.633  < 2e-16 ***
## Collectivism_Score.c:C1   -0.11881    0.11223 2525.71325  -1.059   0.2899    
## Collectivism_Score.c:C2   -0.05590    0.11729 2475.30518  -0.477   0.6337    
## Collectivism_Score.c:C3   -0.01571    0.11364 2471.30900  -0.138   0.8901    
## Collectivism_Score.c:C4   -0.03066    0.10946 2523.86807  -0.280   0.7794    
## Collectivism_Score.c:C5    0.03911    0.10749 2538.69683   0.364   0.7160    
## Collectivism_Score.c:C6   -0.10396    0.11029 2533.71809  -0.943   0.3459    
## Collectivism_Score.c:C7   -0.12859    0.11854 2551.12297  -1.085   0.2781    
## Collectivism_Score.c:C8   -0.18116    0.10964 2553.83618  -1.652   0.0986 .  
## Collectivism_Score.c:C9   -0.28501    0.12043 2578.71645  -2.367   0.0180 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.916,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.23 2.04 14.23 – 22.23 8.94 <0.001
Collectivism Score c 0.05 0.08 -0.11 – 0.20 0.60 0.548
C1 -5.96 2.67 -11.19 – -0.72 -2.23 0.026
C2 6.18 2.89 0.52 – 11.84 2.14 0.032
C3 -11.89 2.89 -17.55 – -6.23 -4.12 <0.001
C4 -1.04 2.71 -6.35 – 4.27 -0.39 0.700
C5 -3.73 2.71 -9.05 – 1.59 -1.38 0.169
C6 -10.62 2.71 -15.94 – -5.30 -3.91 <0.001
C7 37.60 2.91 31.89 – 43.31 12.91 <0.001
C8 34.43 2.68 29.16 – 39.69 12.83 <0.001
C9 30.72 2.89 25.05 – 36.38 10.63 <0.001
Collectivism Score c * C1 -0.12 0.11 -0.34 – 0.10 -1.06 0.290
Collectivism Score c * C2 -0.06 0.12 -0.29 – 0.17 -0.48 0.634
Collectivism Score c * C3 -0.02 0.11 -0.24 – 0.21 -0.14 0.890
Collectivism Score c * C4 -0.03 0.11 -0.25 – 0.18 -0.28 0.779
Collectivism Score c * C5 0.04 0.11 -0.17 – 0.25 0.36 0.716
Collectivism Score c * C6 -0.10 0.11 -0.32 – 0.11 -0.94 0.346
Collectivism Score c * C7 -0.13 0.12 -0.36 – 0.10 -1.08 0.278
Collectivism Score c * C8 -0.18 0.11 -0.40 – 0.03 -1.65 0.099
Collectivism Score c * C9 -0.29 0.12 -0.52 – -0.05 -2.37 0.018
Random Effects
σ2 1027.34
τ00 id 593.39
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.165 / 0.471
Q.2 (COLLECTIVISM) How does collectivism depend on naturalness perception in predicting the benefit-risk difference, over and above burger contrasts?
modA.9166 <- lmer(BRDiff ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.9166)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 +  
##     Collectivism_Score.c * C2 + Collectivism_Score.c * C3 + Collectivism_Score.c *  
##     C4 + Collectivism_Score.c * C5 + Collectivism_Score.c * C6 +  
##     Collectivism_Score.c * C7 + Collectivism_Score.c * C8 + Collectivism_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30949.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.5184 -0.5354  0.0242  0.5642  2.9212 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 540.4    23.25   
##  Residual             906.3    30.10   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         1.915e+01  1.921e+00  3.067e+03   9.971
## Collectivism_Score.c                4.160e-02  7.515e-02  3.077e+03   0.554
## Naturalness.c                       7.118e-01  3.624e-02  2.968e+03  19.639
## C1                                  3.253e+00  2.554e+00  2.545e+03   1.274
## C2                                  5.597e+00  2.713e+00  2.487e+03   2.063
## C3                                 -2.716e+00  2.755e+00  2.535e+03  -0.986
## C4                                  1.527e+00  2.550e+00  2.531e+03   0.599
## C5                                 -1.351e+00  2.554e+00  2.553e+03  -0.529
## C6                                 -5.778e+00  2.563e+00  2.533e+03  -2.255
## C7                                  2.565e+01  2.806e+00  2.563e+03   9.141
## C8                                  1.794e+01  2.665e+00  2.594e+03   6.731
## C9                                  1.974e+01  2.774e+00  2.560e+03   7.117
## Collectivism_Score.c:Naturalness.c  1.708e-03  1.424e-03  2.963e+03   1.200
## Collectivism_Score.c:C1            -1.006e-01  1.076e-01  2.529e+03  -0.935
## Collectivism_Score.c:C2            -5.331e-02  1.103e-01  2.467e+03  -0.483
## Collectivism_Score.c:C3            -1.761e-02  1.083e-01  2.481e+03  -0.163
## Collectivism_Score.c:C4             1.541e-03  1.030e-01  2.511e+03   0.015
## Collectivism_Score.c:C5             1.035e-01  1.013e-01  2.525e+03   1.022
## Collectivism_Score.c:C6            -4.360e-02  1.041e-01  2.518e+03  -0.419
## Collectivism_Score.c:C7            -1.736e-01  1.149e-01  2.587e+03  -1.511
## Collectivism_Score.c:C8            -1.394e-01  1.086e-01  2.617e+03  -1.283
## Collectivism_Score.c:C9            -3.182e-01  1.164e-01  2.615e+03  -2.735
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c                0.57993    
## Naturalness.c                       < 2e-16 ***
## C1                                  0.20289    
## C2                                  0.03925 *  
## C3                                  0.32436    
## C4                                  0.54937    
## C5                                  0.59696    
## C6                                  0.02424 *  
## C7                                  < 2e-16 ***
## C8                                 2.06e-11 ***
## C9                                 1.42e-12 ***
## Collectivism_Score.c:Naturalness.c  0.23042    
## Collectivism_Score.c:C1             0.35013    
## Collectivism_Score.c:C2             0.62889    
## Collectivism_Score.c:C3             0.87087    
## Collectivism_Score.c:C4             0.98806    
## Collectivism_Score.c:C5             0.30690    
## Collectivism_Score.c:C6             0.67535    
## Collectivism_Score.c:C7             0.13092    
## Collectivism_Score.c:C8             0.19958    
## Collectivism_Score.c:C9             0.00628 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9166,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 19.15 1.92 15.39 – 22.92 9.97 <0.001
Collectivism Score c 0.04 0.08 -0.11 – 0.19 0.55 0.580
Naturalness c 0.71 0.04 0.64 – 0.78 19.64 <0.001
C1 3.25 2.55 -1.75 – 8.26 1.27 0.203
C2 5.60 2.71 0.28 – 10.92 2.06 0.039
C3 -2.72 2.76 -8.12 – 2.69 -0.99 0.324
C4 1.53 2.55 -3.47 – 6.53 0.60 0.549
C5 -1.35 2.55 -6.36 – 3.66 -0.53 0.597
C6 -5.78 2.56 -10.80 – -0.75 -2.25 0.024
C7 25.65 2.81 20.15 – 31.16 9.14 <0.001
C8 17.94 2.66 12.71 – 23.16 6.73 <0.001
C9 19.74 2.77 14.30 – 25.18 7.12 <0.001
Collectivism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.20 0.230
Collectivism Score c * C1 -0.10 0.11 -0.31 – 0.11 -0.93 0.350
Collectivism Score c * C2 -0.05 0.11 -0.27 – 0.16 -0.48 0.629
Collectivism Score c * C3 -0.02 0.11 -0.23 – 0.19 -0.16 0.871
Collectivism Score c * C4 0.00 0.10 -0.20 – 0.20 0.01 0.988
Collectivism Score c * C5 0.10 0.10 -0.10 – 0.30 1.02 0.307
Collectivism Score c * C6 -0.04 0.10 -0.25 – 0.16 -0.42 0.675
Collectivism Score c * C7 -0.17 0.11 -0.40 – 0.05 -1.51 0.131
Collectivism Score c * C8 -0.14 0.11 -0.35 – 0.07 -1.28 0.200
Collectivism Score c * C9 -0.32 0.12 -0.55 – -0.09 -2.74 0.006
Random Effects
σ2 906.27
τ00 id 540.41
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.250 / 0.530

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict the benefit-risk difference, over and above burger contrasts?
modA.917 <- lmer(BRDiff ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.917)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31288.3
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9615 -0.5434  0.0455  0.5695  3.3463 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  591.4   24.32   
##  Residual             1025.8   32.03   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                           Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)                18.0957     2.0378 3068.2587   8.880  < 2e-16 ***
## Individualism_Score.c       0.2935     0.1170 3074.9481   2.507 0.012211 *  
## C1                         -5.8328     2.6694 2544.3378  -2.185 0.028976 *  
## C2                          6.4065     2.8865 2497.3109   2.219 0.026543 *  
## C3                        -11.2422     2.8904 2533.4822  -3.890 0.000103 ***
## C4                         -0.7577     2.7039 2543.2513  -0.280 0.779317    
## C5                         -3.8110     2.7037 2565.5953  -1.410 0.158793    
## C6                        -10.5256     2.7118 2543.7188  -3.881 0.000107 ***
## C7                         37.8854     2.9130 2537.2695  13.006  < 2e-16 ***
## C8                         34.3960     2.6816 2537.7570  12.827  < 2e-16 ***
## C9                         30.4728     2.8836 2545.6713  10.568  < 2e-16 ***
## Individualism_Score.c:C1   -0.2319     0.1547 2517.6763  -1.499 0.133899    
## Individualism_Score.c:C2   -0.1644     0.1749 2543.8761  -0.940 0.347315    
## Individualism_Score.c:C3   -0.5773     0.1619 2476.3711  -3.566 0.000369 ***
## Individualism_Score.c:C4   -0.1271     0.1579 2532.2790  -0.805 0.420857    
## Individualism_Score.c:C5   -0.1237     0.1587 2569.1258  -0.780 0.435712    
## Individualism_Score.c:C6   -0.3056     0.1617 2554.5028  -1.890 0.058922 .  
## Individualism_Score.c:C7   -0.1358     0.1653 2518.7100  -0.822 0.411130    
## Individualism_Score.c:C8   -0.2317     0.1553 2540.5450  -1.492 0.135869    
## Individualism_Score.c:C9   -0.1673     0.1763 2567.9226  -0.949 0.342693    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.917,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.10 2.04 14.10 – 22.09 8.88 <0.001
Individualism Score c 0.29 0.12 0.06 – 0.52 2.51 0.012
C1 -5.83 2.67 -11.07 – -0.60 -2.19 0.029
C2 6.41 2.89 0.75 – 12.07 2.22 0.027
C3 -11.24 2.89 -16.91 – -5.58 -3.89 <0.001
C4 -0.76 2.70 -6.06 – 4.54 -0.28 0.779
C5 -3.81 2.70 -9.11 – 1.49 -1.41 0.159
C6 -10.53 2.71 -15.84 – -5.21 -3.88 <0.001
C7 37.89 2.91 32.17 – 43.60 13.01 <0.001
C8 34.40 2.68 29.14 – 39.65 12.83 <0.001
C9 30.47 2.88 24.82 – 36.13 10.57 <0.001
Individualism Score c *
C1
-0.23 0.15 -0.54 – 0.07 -1.50 0.134
Individualism Score c *
C2
-0.16 0.17 -0.51 – 0.18 -0.94 0.347
Individualism Score c *
C3
-0.58 0.16 -0.89 – -0.26 -3.57 <0.001
Individualism Score c *
C4
-0.13 0.16 -0.44 – 0.18 -0.81 0.421
Individualism Score c *
C5
-0.12 0.16 -0.43 – 0.19 -0.78 0.436
Individualism Score c *
C6
-0.31 0.16 -0.62 – 0.01 -1.89 0.059
Individualism Score c *
C7
-0.14 0.17 -0.46 – 0.19 -0.82 0.411
Individualism Score c *
C8
-0.23 0.16 -0.54 – 0.07 -1.49 0.136
Individualism Score c *
C9
-0.17 0.18 -0.51 – 0.18 -0.95 0.343
Random Effects
σ2 1025.85
τ00 id 591.40
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.167 / 0.472
Q.2 (INDIVIDUALISM) How does individualism depend on naturalness perception in predicting the benefit-risk difference, over and above burger contrasts?
modA.9177 <- lmer(BRDiff ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.9177)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 +  
##     C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 +  
##     Individualism_Score.c * C2 + Individualism_Score.c * C3 +  
##     Individualism_Score.c * C4 + Individualism_Score.c * C5 +  
##     Individualism_Score.c * C6 + Individualism_Score.c * C7 +  
##     Individualism_Score.c * C8 + Individualism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 30933.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.4199 -0.5223  0.0274  0.5693  3.1047 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 537.2    23.18   
##  Residual             904.6    30.08   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          1.903e+01  1.920e+00  3.067e+03   9.909
## Individualism_Score.c                2.746e-01  1.103e-01  3.074e+03   2.489
## Naturalness.c                        7.053e-01  3.638e-02  2.965e+03  19.389
## C1                                   3.263e+00  2.552e+00  2.548e+03   1.278
## C2                                   5.858e+00  2.714e+00  2.488e+03   2.159
## C3                                  -2.019e+00  2.757e+00  2.539e+03  -0.732
## C4                                   1.840e+00  2.545e+00  2.531e+03   0.723
## C5                                  -1.533e+00  2.545e+00  2.555e+03  -0.602
## C6                                  -5.708e+00  2.561e+00  2.533e+03  -2.229
## C7                                   2.608e+01  2.807e+00  2.565e+03   9.291
## C8                                   1.805e+01  2.661e+00  2.590e+03   6.783
## C9                                   1.954e+01  2.769e+00  2.560e+03   7.057
## Individualism_Score.c:Naturalness.c  3.744e-03  2.054e-03  3.003e+03   1.823
## Individualism_Score.c:C1            -1.784e-01  1.477e-01  2.514e+03  -1.208
## Individualism_Score.c:C2            -1.188e-01  1.645e-01  2.536e+03  -0.722
## Individualism_Score.c:C3            -4.924e-01  1.546e-01  2.477e+03  -3.186
## Individualism_Score.c:C4            -5.055e-02  1.487e-01  2.519e+03  -0.340
## Individualism_Score.c:C5             2.150e-03  1.495e-01  2.554e+03   0.014
## Individualism_Score.c:C6            -1.909e-01  1.528e-01  2.539e+03  -1.250
## Individualism_Score.c:C7            -1.735e-01  1.608e-01  2.569e+03  -1.079
## Individualism_Score.c:C8            -2.950e-01  1.545e-01  2.614e+03  -1.909
## Individualism_Score.c:C9            -2.389e-01  1.690e-01  2.589e+03  -1.414
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c                0.01287 *  
## Naturalness.c                        < 2e-16 ***
## C1                                   0.20130    
## C2                                   0.03097 *  
## C3                                   0.46412    
## C4                                   0.46972    
## C5                                   0.54696    
## C6                                   0.02590 *  
## C7                                   < 2e-16 ***
## C8                                  1.45e-11 ***
## C9                                  2.18e-12 ***
## Individualism_Score.c:Naturalness.c  0.06837 .  
## Individualism_Score.c:C1             0.22722    
## Individualism_Score.c:C2             0.47010    
## Individualism_Score.c:C3             0.00146 ** 
## Individualism_Score.c:C4             0.73393    
## Individualism_Score.c:C5             0.98853    
## Individualism_Score.c:C6             0.21151    
## Individualism_Score.c:C7             0.28057    
## Individualism_Score.c:C8             0.05636 .  
## Individualism_Score.c:C9             0.15743    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9177,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 19.03 1.92 15.26 – 22.79 9.91 <0.001
Individualism Score c 0.27 0.11 0.06 – 0.49 2.49 0.013
Naturalness c 0.71 0.04 0.63 – 0.78 19.39 <0.001
C1 3.26 2.55 -1.74 – 8.27 1.28 0.201
C2 5.86 2.71 0.54 – 11.18 2.16 0.031
C3 -2.02 2.76 -7.43 – 3.39 -0.73 0.464
C4 1.84 2.55 -3.15 – 6.83 0.72 0.470
C5 -1.53 2.55 -6.52 – 3.46 -0.60 0.547
C6 -5.71 2.56 -10.73 – -0.69 -2.23 0.026
C7 26.08 2.81 20.58 – 31.59 9.29 <0.001
C8 18.05 2.66 12.83 – 23.26 6.78 <0.001
C9 19.54 2.77 14.11 – 24.97 7.06 <0.001
Individualism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.01 1.82 0.068
Individualism Score c *
C1
-0.18 0.15 -0.47 – 0.11 -1.21 0.227
Individualism Score c *
C2
-0.12 0.16 -0.44 – 0.20 -0.72 0.470
Individualism Score c *
C3
-0.49 0.15 -0.80 – -0.19 -3.19 0.001
Individualism Score c *
C4
-0.05 0.15 -0.34 – 0.24 -0.34 0.734
Individualism Score c *
C5
0.00 0.15 -0.29 – 0.30 0.01 0.989
Individualism Score c *
C6
-0.19 0.15 -0.49 – 0.11 -1.25 0.211
Individualism Score c *
C7
-0.17 0.16 -0.49 – 0.14 -1.08 0.281
Individualism Score c *
C8
-0.29 0.15 -0.60 – 0.01 -1.91 0.056
Individualism Score c *
C9
-0.24 0.17 -0.57 – 0.09 -1.41 0.157
Random Effects
σ2 904.60
τ00 id 537.22
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.251 / 0.530

Political Ideology

Q.1 (POLITICAL ORIENTATION) How does individualism predict the benefit-risk difference, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.918 <- lmer(BRDiff ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.918)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 +  
##     Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c *  
##     C7 + Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 31235.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9114 -0.5381  0.0444  0.5710  3.0414 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept)  589.4   24.28   
##  Residual             1032.9   32.14   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     18.3142     2.0400 3068.3188   8.978  < 2e-16 ***
## Ideology.c      -0.5207     3.4182 3076.9725  -0.152   0.8789    
## C1              -6.0079     2.6755 2546.1899  -2.246   0.0248 *  
## C2               6.1514     2.8895 2499.8743   2.129   0.0334 *  
## C3             -12.0443     2.8897 2535.5097  -4.168 3.17e-05 ***
## C4              -1.0371     2.7095 2546.1005  -0.383   0.7019    
## C5              -4.1194     2.7140 2567.0261  -1.518   0.1292    
## C6             -10.6856     2.7191 2548.7856  -3.930 8.73e-05 ***
## C7              37.5256     2.9183 2539.9758  12.859  < 2e-16 ***
## C8              34.2757     2.6942 2544.6166  12.722  < 2e-16 ***
## C9              30.2994     2.8910 2549.6648  10.481  < 2e-16 ***
## Ideology.c:C1    3.9436     4.5413 2509.4696   0.868   0.3853    
## Ideology.c:C2    3.0957     4.8059 2442.0972   0.644   0.5195    
## Ideology.c:C3    2.6452     5.0203 2536.1361   0.527   0.5983    
## Ideology.c:C4   -0.9968     4.7125 2569.9352  -0.212   0.8325    
## Ideology.c:C5    1.9100     4.6532 2623.7823   0.410   0.6815    
## Ideology.c:C6    2.2428     4.7099 2554.2088   0.476   0.6340    
## Ideology.c:C7    3.5917     4.9166 2595.2950   0.731   0.4651    
## Ideology.c:C8    2.8187     4.5812 2523.0553   0.615   0.5384    
## Ideology.c:C9    3.3360     5.1298 2561.7095   0.650   0.5155    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.918,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 18.31 2.04 14.31 – 22.31 8.98 <0.001
Ideology c -0.52 3.42 -7.22 – 6.18 -0.15 0.879
C1 -6.01 2.68 -11.25 – -0.76 -2.25 0.025
C2 6.15 2.89 0.49 – 11.82 2.13 0.033
C3 -12.04 2.89 -17.71 – -6.38 -4.17 <0.001
C4 -1.04 2.71 -6.35 – 4.28 -0.38 0.702
C5 -4.12 2.71 -9.44 – 1.20 -1.52 0.129
C6 -10.69 2.72 -16.02 – -5.35 -3.93 <0.001
C7 37.53 2.92 31.80 – 43.25 12.86 <0.001
C8 34.28 2.69 28.99 – 39.56 12.72 <0.001
C9 30.30 2.89 24.63 – 35.97 10.48 <0.001
Ideology c * C1 3.94 4.54 -4.96 – 12.85 0.87 0.385
Ideology c * C2 3.10 4.81 -6.33 – 12.52 0.64 0.520
Ideology c * C3 2.65 5.02 -7.20 – 12.49 0.53 0.598
Ideology c * C4 -1.00 4.71 -10.24 – 8.24 -0.21 0.832
Ideology c * C5 1.91 4.65 -7.21 – 11.03 0.41 0.681
Ideology c * C6 2.24 4.71 -6.99 – 11.48 0.48 0.634
Ideology c * C7 3.59 4.92 -6.05 – 13.23 0.73 0.465
Ideology c * C8 2.82 4.58 -6.16 – 11.80 0.62 0.538
Ideology c * C9 3.34 5.13 -6.72 – 13.39 0.65 0.516
Random Effects
σ2 1032.94
τ00 id 589.37
ICC 0.36
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.164 / 0.467
Q.2 (POLITICAL ORIENTATION) How does individualism depend on naturalness perception in predicting the benefit-risk difference, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.9188 <- lmer(BRDiff ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.9188)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: BRDiff ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 +  
##     Ideology.c * C7 + Ideology.c * C8 + Ideology.c * C9 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 30879.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.3829 -0.5347  0.0271  0.5763  2.9198 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 536.6    23.16   
##  Residual             912.4    30.21   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                19.27726    1.92394 3067.23856  10.020  < 2e-16 ***
## Ideology.c                  0.93376    3.22455 3075.50658   0.290   0.7722    
## Naturalness.c               0.71238    0.03645 2971.10346  19.544  < 2e-16 ***
## C1                          3.18736    2.56278 2551.87725   1.244   0.2137    
## C2                          5.51687    2.71900 2491.38974   2.029   0.0426 *  
## C3                         -2.75510    2.75957 2541.39894  -0.998   0.3182    
## C4                          1.49880    2.55255 2533.51128   0.587   0.5571    
## C5                         -1.90367    2.55722 2557.84391  -0.744   0.4567    
## C6                         -5.96926    2.57021 2539.18042  -2.322   0.0203 *  
## C7                         25.60447    2.81274 2568.05189   9.103  < 2e-16 ***
## C8                         17.61135    2.67328 2600.97612   6.588 5.38e-11 ***
## C9                         19.26580    2.77896 2565.47228   6.933 5.20e-12 ***
## Ideology.c:Naturalness.c    0.01622    0.06362 2967.11621   0.255   0.7988    
## Ideology.c:C1               2.24927    4.31849 2495.93671   0.521   0.6025    
## Ideology.c:C2               1.41184    4.52158 2434.95695   0.312   0.7549    
## Ideology.c:C3               3.87465    4.82339 2584.12513   0.803   0.4219    
## Ideology.c:C4              -0.94968    4.43729 2562.64263  -0.214   0.8305    
## Ideology.c:C5              -0.45034    4.38063 2613.62580  -0.103   0.9181    
## Ideology.c:C6               1.34408    4.44128 2544.14130   0.303   0.7622    
## Ideology.c:C7               3.08152    4.72504 2620.33342   0.652   0.5144    
## Ideology.c:C8              -0.29586    4.52768 2615.47604  -0.065   0.9479    
## Ideology.c:C9               3.93880    4.96386 2609.18935   0.793   0.4276    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9188,
          show.stat = T, show.se = T)
  BRDiff
Predictors Estimates std. Error CI Statistic p
(Intercept) 19.28 1.92 15.50 – 23.05 10.02 <0.001
Ideology c 0.93 3.22 -5.39 – 7.26 0.29 0.772
Naturalness c 0.71 0.04 0.64 – 0.78 19.54 <0.001
C1 3.19 2.56 -1.84 – 8.21 1.24 0.214
C2 5.52 2.72 0.19 – 10.85 2.03 0.043
C3 -2.76 2.76 -8.17 – 2.66 -1.00 0.318
C4 1.50 2.55 -3.51 – 6.50 0.59 0.557
C5 -1.90 2.56 -6.92 – 3.11 -0.74 0.457
C6 -5.97 2.57 -11.01 – -0.93 -2.32 0.020
C7 25.60 2.81 20.09 – 31.12 9.10 <0.001
C8 17.61 2.67 12.37 – 22.85 6.59 <0.001
C9 19.27 2.78 13.82 – 24.71 6.93 <0.001
Ideology c * Naturalness
c
0.02 0.06 -0.11 – 0.14 0.25 0.799
Ideology c * C1 2.25 4.32 -6.22 – 10.72 0.52 0.603
Ideology c * C2 1.41 4.52 -7.45 – 10.28 0.31 0.755
Ideology c * C3 3.87 4.82 -5.58 – 13.33 0.80 0.422
Ideology c * C4 -0.95 4.44 -9.65 – 7.75 -0.21 0.831
Ideology c * C5 -0.45 4.38 -9.04 – 8.14 -0.10 0.918
Ideology c * C6 1.34 4.44 -7.36 – 10.05 0.30 0.762
Ideology c * C7 3.08 4.73 -6.18 – 12.35 0.65 0.514
Ideology c * C8 -0.30 4.53 -9.17 – 8.58 -0.07 0.948
Ideology c * C9 3.94 4.96 -5.79 – 13.67 0.79 0.428
Random Effects
σ2 912.36
τ00 id 536.59
ICC 0.37
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.247 / 0.526

Familiarity/Understanding (Mean score)

Q.1 How do burger contrasts predict familiarity/understanding?
modA.920 <- lmer(FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1|id), data = L)

summary(modA.920)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27833.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0364 -0.5885 -0.0151  0.5956  3.1054 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 206.2    14.36   
##  Residual             331.1    18.20   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##              Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)   37.4355     1.1648 3080.8192  32.140  < 2e-16 ***
## C1            -1.2691     1.5193 2532.2689  -0.835  0.40361    
## C2            22.4050     1.6405 2488.8121  13.657  < 2e-16 ***
## C3            29.9624     1.6409 2522.6960  18.259  < 2e-16 ***
## C4             0.2945     1.5387 2532.1634   0.191  0.84823    
## C5            -4.9841     1.5388 2551.5791  -3.239  0.00121 ** 
## C6             0.7724     1.5433 2532.9878   0.501  0.61676    
## C7            48.3596     1.6574 2528.0376  29.178  < 2e-16 ***
## C8            29.8444     1.5261 2527.0387  19.556  < 2e-16 ***
## C9            44.9082     1.6420 2537.6100  27.350  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##    (Intr) C1     C2     C3     C4     C5     C6     C7     C8    
## C1 -0.673                                                        
## C2 -0.598  0.472                                                 
## C3 -0.606  0.478  0.392                                          
## C4 -0.664  0.509  0.467  0.469                                   
## C5 -0.669  0.515  0.469  0.478  0.508                            
## C6 -0.661  0.506  0.457  0.480  0.499  0.503                     
## C7 -0.601  0.471  0.389  0.394  0.469  0.471  0.462              
## C8 -0.668  0.512  0.468  0.467  0.503  0.509  0.505  0.477       
## C9 -0.610  0.485  0.395  0.401  0.475  0.476  0.473  0.397  0.480
tab_model(modA.920,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.44 1.16 35.15 – 39.72 32.14 <0.001
C1 -1.27 1.52 -4.25 – 1.71 -0.84 0.404
C2 22.40 1.64 19.19 – 25.62 13.66 <0.001
C3 29.96 1.64 26.74 – 33.18 18.26 <0.001
C4 0.29 1.54 -2.72 – 3.31 0.19 0.848
C5 -4.98 1.54 -8.00 – -1.97 -3.24 0.001
C6 0.77 1.54 -2.25 – 3.80 0.50 0.617
C7 48.36 1.66 45.11 – 51.61 29.18 <0.001
C8 29.84 1.53 26.85 – 32.84 19.56 <0.001
C9 44.91 1.64 41.69 – 48.13 27.35 <0.001
Random Effects
σ2 331.14
τ00 id 206.19
ICC 0.38
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.401 / 0.631

Aversion to Tampering with Nature

Q.1 (AVERSION TO TAMPERING WITH NATURE) How does aversion to tampering with nature predict familiarity/understanding, over and above burger contrasts?
modA.921 <- lmer(FR ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.921)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ ATNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     ATNS_Score.c * C1 + ATNS_Score.c * C2 + ATNS_Score.c * C3 +  
##     ATNS_Score.c * C4 + ATNS_Score.c * C5 + ATNS_Score.c * C6 +  
##     ATNS_Score.c * C7 + ATNS_Score.c * C8 + ATNS_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27847.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.8756 -0.5873 -0.0089  0.5948  2.9958 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 203.0    14.25   
##  Residual             330.4    18.18   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                   Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      3.741e+01  1.162e+00  3.070e+03  32.186  < 2e-16 ***
## ATNS_Score.c    -3.266e-02  5.514e-02  3.066e+03  -0.592  0.55370    
## C1              -1.235e+00  1.517e+00  2.525e+03  -0.814  0.41560    
## C2               2.234e+01  1.639e+00  2.481e+03  13.627  < 2e-16 ***
## C3               3.000e+01  1.639e+00  2.515e+03  18.307  < 2e-16 ***
## C4               1.788e-01  1.538e+00  2.526e+03   0.116  0.90744    
## C5              -4.909e+00  1.537e+00  2.546e+03  -3.194  0.00142 ** 
## C6               7.552e-01  1.542e+00  2.526e+03   0.490  0.62444    
## C7               4.842e+01  1.655e+00  2.522e+03  29.248  < 2e-16 ***
## C8               2.983e+01  1.524e+00  2.520e+03  19.572  < 2e-16 ***
## C9               4.490e+01  1.640e+00  2.529e+03  27.377  < 2e-16 ***
## ATNS_Score.c:C1  1.023e-02  7.152e-02  2.533e+03   0.143  0.88624    
## ATNS_Score.c:C2 -9.474e-02  7.655e-02  2.472e+03  -1.238  0.21596    
## ATNS_Score.c:C3 -1.124e-01  7.663e-02  2.504e+03  -1.467  0.14259    
## ATNS_Score.c:C4 -1.273e-01  7.088e-02  2.526e+03  -1.796  0.07259 .  
## ATNS_Score.c:C5 -5.841e-03  7.158e-02  2.553e+03  -0.082  0.93497    
## ATNS_Score.c:C6  2.745e-02  7.417e-02  2.551e+03   0.370  0.71139    
## ATNS_Score.c:C7 -2.266e-02  7.745e-02  2.531e+03  -0.293  0.76987    
## ATNS_Score.c:C8 -1.549e-01  7.168e-02  2.511e+03  -2.161  0.03083 *  
## ATNS_Score.c:C9  4.076e-02  7.817e-02  2.563e+03   0.521  0.60208    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.921,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.41 1.16 35.13 – 39.68 32.19 <0.001
ATNS Score c -0.03 0.06 -0.14 – 0.08 -0.59 0.554
C1 -1.24 1.52 -4.21 – 1.74 -0.81 0.416
C2 22.34 1.64 19.13 – 25.56 13.63 <0.001
C3 30.00 1.64 26.79 – 33.22 18.31 <0.001
C4 0.18 1.54 -2.84 – 3.19 0.12 0.907
C5 -4.91 1.54 -7.92 – -1.90 -3.19 0.001
C6 0.76 1.54 -2.27 – 3.78 0.49 0.624
C7 48.42 1.66 45.17 – 51.66 29.25 <0.001
C8 29.83 1.52 26.84 – 32.82 19.57 <0.001
C9 44.90 1.64 41.69 – 48.12 27.38 <0.001
ATNS Score c * C1 0.01 0.07 -0.13 – 0.15 0.14 0.886
ATNS Score c * C2 -0.09 0.08 -0.24 – 0.06 -1.24 0.216
ATNS Score c * C3 -0.11 0.08 -0.26 – 0.04 -1.47 0.143
ATNS Score c * C4 -0.13 0.07 -0.27 – 0.01 -1.80 0.073
ATNS Score c * C5 -0.01 0.07 -0.15 – 0.13 -0.08 0.935
ATNS Score c * C6 0.03 0.07 -0.12 – 0.17 0.37 0.711
ATNS Score c * C7 -0.02 0.08 -0.17 – 0.13 -0.29 0.770
ATNS Score c * C8 -0.15 0.07 -0.30 – -0.01 -2.16 0.031
ATNS Score c * C9 0.04 0.08 -0.11 – 0.19 0.52 0.602
Random Effects
σ2 330.44
τ00 id 202.98
ICC 0.38
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.406 / 0.632
Q.2 (AVERSION TO TAMPERING WITH NATURE) Does aversion to tampering with nature depend on perceptions of naturalness in predicting familiarity/understanding, over and above burger contrasts?
modA.9213 <- lmer(FR ~ ATNS_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + ATNS_Score.c*C1 + ATNS_Score.c*C2 + ATNS_Score.c*C3 + ATNS_Score.c*C4 + ATNS_Score.c*C5 + ATNS_Score.c*C6 + ATNS_Score.c*C7 + ATNS_Score.c*C8 + ATNS_Score.c*C9 + (1|id), data = L)

summary(modA.9213)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ ATNS_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + ATNS_Score.c * C1 + ATNS_Score.c * C2 +  
##     ATNS_Score.c * C3 + ATNS_Score.c * C4 + ATNS_Score.c * C5 +  
##     ATNS_Score.c * C6 + ATNS_Score.c * C7 + ATNS_Score.c * C8 +  
##     ATNS_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27649.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.7998 -0.5764 -0.0006  0.5957  3.2179 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 212.0    14.56   
##  Residual             298.5    17.28   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                              Estimate Std. Error         df t value Pr(>|t|)
## (Intercept)                 3.783e+01  1.122e+00  3.072e+03  33.718  < 2e-16
## ATNS_Score.c               -2.280e-02  5.324e-02  3.069e+03  -0.428  0.66846
## Naturalness.c               3.189e-01  2.123e-02  2.904e+03  15.023  < 2e-16
## C1                          2.904e+00  1.476e+00  2.496e+03   1.968  0.04918
## C2                          2.206e+01  1.566e+00  2.442e+03  14.087  < 2e-16
## C3                          3.414e+01  1.590e+00  2.489e+03  21.474  < 2e-16
## C4                          1.355e+00  1.472e+00  2.480e+03   0.921  0.35729
## C5                         -3.996e+00  1.470e+00  2.500e+03  -2.718  0.00662
## C6                          2.797e+00  1.480e+00  2.482e+03   1.889  0.05895
## C7                          4.306e+01  1.622e+00  2.519e+03  26.551  < 2e-16
## C8                          2.245e+01  1.537e+00  2.538e+03  14.605  < 2e-16
## C9                          3.998e+01  1.601e+00  2.510e+03  24.966  < 2e-16
## ATNS_Score.c:Naturalness.c -4.178e-04  8.383e-04  2.900e+03  -0.498  0.61823
## ATNS_Score.c:C1            -1.476e-02  6.931e-02  2.491e+03  -0.213  0.83139
## ATNS_Score.c:C2            -1.055e-01  7.311e-02  2.433e+03  -1.443  0.14912
## ATNS_Score.c:C3            -8.559e-02  7.412e-02  2.475e+03  -1.155  0.24827
## ATNS_Score.c:C4            -8.570e-02  6.789e-02  2.477e+03  -1.262  0.20696
## ATNS_Score.c:C5             2.013e-02  6.855e-02  2.503e+03   0.294  0.76898
## ATNS_Score.c:C6             5.716e-02  7.104e-02  2.500e+03   0.805  0.42111
## ATNS_Score.c:C7            -5.253e-02  7.551e-02  2.528e+03  -0.696  0.48674
## ATNS_Score.c:C8            -1.502e-01  7.125e-02  2.515e+03  -2.108  0.03517
## ATNS_Score.c:C9             4.009e-02  7.612e-02  2.553e+03   0.527  0.59850
##                               
## (Intercept)                ***
## ATNS_Score.c                  
## Naturalness.c              ***
## C1                         *  
## C2                         ***
## C3                         ***
## C4                            
## C5                         ** 
## C6                         .  
## C7                         ***
## C8                         ***
## C9                         ***
## ATNS_Score.c:Naturalness.c    
## ATNS_Score.c:C1               
## ATNS_Score.c:C2               
## ATNS_Score.c:C3               
## ATNS_Score.c:C4               
## ATNS_Score.c:C5               
## ATNS_Score.c:C6               
## ATNS_Score.c:C7               
## ATNS_Score.c:C8            *  
## ATNS_Score.c:C9               
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9213,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.83 1.12 35.63 – 40.02 33.72 <0.001
ATNS Score c -0.02 0.05 -0.13 – 0.08 -0.43 0.668
Naturalness c 0.32 0.02 0.28 – 0.36 15.02 <0.001
C1 2.90 1.48 0.01 – 5.80 1.97 0.049
C2 22.06 1.57 18.99 – 25.13 14.09 <0.001
C3 34.14 1.59 31.02 – 37.26 21.47 <0.001
C4 1.36 1.47 -1.53 – 4.24 0.92 0.357
C5 -4.00 1.47 -6.88 – -1.11 -2.72 0.007
C6 2.80 1.48 -0.11 – 5.70 1.89 0.059
C7 43.06 1.62 39.88 – 46.24 26.55 <0.001
C8 22.45 1.54 19.44 – 25.47 14.61 <0.001
C9 39.98 1.60 36.84 – 43.12 24.97 <0.001
ATNS Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.50 0.618
ATNS Score c * C1 -0.01 0.07 -0.15 – 0.12 -0.21 0.831
ATNS Score c * C2 -0.11 0.07 -0.25 – 0.04 -1.44 0.149
ATNS Score c * C3 -0.09 0.07 -0.23 – 0.06 -1.15 0.248
ATNS Score c * C4 -0.09 0.07 -0.22 – 0.05 -1.26 0.207
ATNS Score c * C5 0.02 0.07 -0.11 – 0.15 0.29 0.769
ATNS Score c * C6 0.06 0.07 -0.08 – 0.20 0.80 0.421
ATNS Score c * C7 -0.05 0.08 -0.20 – 0.10 -0.70 0.487
ATNS Score c * C8 -0.15 0.07 -0.29 – -0.01 -2.11 0.035
ATNS Score c * C9 0.04 0.08 -0.11 – 0.19 0.53 0.598
Random Effects
σ2 298.54
τ00 id 212.03
ICC 0.42
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.437 / 0.671

Connectedness to Nature

Q.1 (CONNECTEDNESS TO NATURE) How does connectedness to nature predict familiarity/understanding, over and above burger contrasts?
modA.923 <- lmer(FR ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 +  CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.923)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c * C3 +  
##     CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c * C6 +  
##     CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27841.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9235 -0.5821 -0.0116  0.5938  3.0997 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 206.2    14.36   
##  Residual             328.9    18.14   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      37.43448    1.16184 3070.81038  32.220   <2e-16 ***
## CNS_Score.c       0.02699    0.06950 3072.25188   0.388   0.6978    
## C1               -1.22854    1.51488 2521.45660  -0.811   0.4175    
## C2               22.75354    1.63971 2477.75289  13.877   <2e-16 ***
## C3               29.97399    1.63646 2512.83655  18.316   <2e-16 ***
## C4                0.22353    1.53549 2521.95285   0.146   0.8843    
## C5               -4.97592    1.53456 2540.68248  -3.243   0.0012 ** 
## C6                0.78738    1.53942 2522.07155   0.511   0.6091    
## C7               48.36798    1.65296 2518.52711  29.261   <2e-16 ***
## C8               29.74845    1.52280 2514.72858  19.535   <2e-16 ***
## C9               44.67518    1.63840 2525.67049  27.268   <2e-16 ***
## CNS_Score.c:C1    0.02096    0.08911 2509.82640   0.235   0.8141    
## CNS_Score.c:C2    0.20635    0.09531 2463.16545   2.165   0.0305 *  
## CNS_Score.c:C3   -0.07776    0.09945 2477.44671  -0.782   0.4343    
## CNS_Score.c:C4   -0.08575    0.09037 2531.90252  -0.949   0.3428    
## CNS_Score.c:C5   -0.06859    0.09413 2559.03204  -0.729   0.4663    
## CNS_Score.c:C6    0.03775    0.09162 2505.41908   0.412   0.6804    
## CNS_Score.c:C7    0.08251    0.10025 2544.97315   0.823   0.4106    
## CNS_Score.c:C8    0.08789    0.09391 2537.51472   0.936   0.3494    
## CNS_Score.c:C9    0.22495    0.09906 2562.37506   2.271   0.0232 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.923,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.43 1.16 35.16 – 39.71 32.22 <0.001
CNS Score c 0.03 0.07 -0.11 – 0.16 0.39 0.698
C1 -1.23 1.51 -4.20 – 1.74 -0.81 0.417
C2 22.75 1.64 19.54 – 25.97 13.88 <0.001
C3 29.97 1.64 26.77 – 33.18 18.32 <0.001
C4 0.22 1.54 -2.79 – 3.23 0.15 0.884
C5 -4.98 1.53 -7.98 – -1.97 -3.24 0.001
C6 0.79 1.54 -2.23 – 3.81 0.51 0.609
C7 48.37 1.65 45.13 – 51.61 29.26 <0.001
C8 29.75 1.52 26.76 – 32.73 19.54 <0.001
C9 44.68 1.64 41.46 – 47.89 27.27 <0.001
CNS Score c * C1 0.02 0.09 -0.15 – 0.20 0.24 0.814
CNS Score c * C2 0.21 0.10 0.02 – 0.39 2.17 0.030
CNS Score c * C3 -0.08 0.10 -0.27 – 0.12 -0.78 0.434
CNS Score c * C4 -0.09 0.09 -0.26 – 0.09 -0.95 0.343
CNS Score c * C5 -0.07 0.09 -0.25 – 0.12 -0.73 0.466
CNS Score c * C6 0.04 0.09 -0.14 – 0.22 0.41 0.680
CNS Score c * C7 0.08 0.10 -0.11 – 0.28 0.82 0.411
CNS Score c * C8 0.09 0.09 -0.10 – 0.27 0.94 0.349
CNS Score c * C9 0.22 0.10 0.03 – 0.42 2.27 0.023
Random Effects
σ2 328.92
τ00 id 206.18
ICC 0.39
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.405 / 0.634
Q.2 (CONNECTEDNESS TO NATURE) Does connectedness to nature depend on perceptions of naturalness in predicting familiarity/understanding, over and above burger contrasts?
modA.923 <- lmer(FR ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CNS_Score.c*C1 + CNS_Score.c*C2 + CNS_Score.c*C3 + CNS_Score.c*C4 + CNS_Score.c*C5 +  CNS_Score.c*C6 + CNS_Score.c*C7 + CNS_Score.c*C8 + CNS_Score.c*C9 + (1|id), data = L)

summary(modA.923)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ CNS_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     CNS_Score.c * C1 + CNS_Score.c * C2 + CNS_Score.c * C3 +  
##     CNS_Score.c * C4 + CNS_Score.c * C5 + CNS_Score.c * C6 +  
##     CNS_Score.c * C7 + CNS_Score.c * C8 + CNS_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27841.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9235 -0.5821 -0.0116  0.5938  3.0997 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 206.2    14.36   
##  Residual             328.9    18.14   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                  Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)      37.43448    1.16184 3070.81038  32.220   <2e-16 ***
## CNS_Score.c       0.02699    0.06950 3072.25188   0.388   0.6978    
## C1               -1.22854    1.51488 2521.45660  -0.811   0.4175    
## C2               22.75354    1.63971 2477.75289  13.877   <2e-16 ***
## C3               29.97399    1.63646 2512.83655  18.316   <2e-16 ***
## C4                0.22353    1.53549 2521.95285   0.146   0.8843    
## C5               -4.97592    1.53456 2540.68248  -3.243   0.0012 ** 
## C6                0.78738    1.53942 2522.07155   0.511   0.6091    
## C7               48.36798    1.65296 2518.52711  29.261   <2e-16 ***
## C8               29.74845    1.52280 2514.72858  19.535   <2e-16 ***
## C9               44.67518    1.63840 2525.67049  27.268   <2e-16 ***
## CNS_Score.c:C1    0.02096    0.08911 2509.82640   0.235   0.8141    
## CNS_Score.c:C2    0.20635    0.09531 2463.16545   2.165   0.0305 *  
## CNS_Score.c:C3   -0.07776    0.09945 2477.44671  -0.782   0.4343    
## CNS_Score.c:C4   -0.08575    0.09037 2531.90252  -0.949   0.3428    
## CNS_Score.c:C5   -0.06859    0.09413 2559.03204  -0.729   0.4663    
## CNS_Score.c:C6    0.03775    0.09162 2505.41908   0.412   0.6804    
## CNS_Score.c:C7    0.08251    0.10025 2544.97315   0.823   0.4106    
## CNS_Score.c:C8    0.08789    0.09391 2537.51472   0.936   0.3494    
## CNS_Score.c:C9    0.22495    0.09906 2562.37506   2.271   0.0232 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.923,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.43 1.16 35.16 – 39.71 32.22 <0.001
CNS Score c 0.03 0.07 -0.11 – 0.16 0.39 0.698
C1 -1.23 1.51 -4.20 – 1.74 -0.81 0.417
C2 22.75 1.64 19.54 – 25.97 13.88 <0.001
C3 29.97 1.64 26.77 – 33.18 18.32 <0.001
C4 0.22 1.54 -2.79 – 3.23 0.15 0.884
C5 -4.98 1.53 -7.98 – -1.97 -3.24 0.001
C6 0.79 1.54 -2.23 – 3.81 0.51 0.609
C7 48.37 1.65 45.13 – 51.61 29.26 <0.001
C8 29.75 1.52 26.76 – 32.73 19.54 <0.001
C9 44.68 1.64 41.46 – 47.89 27.27 <0.001
CNS Score c * C1 0.02 0.09 -0.15 – 0.20 0.24 0.814
CNS Score c * C2 0.21 0.10 0.02 – 0.39 2.17 0.030
CNS Score c * C3 -0.08 0.10 -0.27 – 0.12 -0.78 0.434
CNS Score c * C4 -0.09 0.09 -0.26 – 0.09 -0.95 0.343
CNS Score c * C5 -0.07 0.09 -0.25 – 0.12 -0.73 0.466
CNS Score c * C6 0.04 0.09 -0.14 – 0.22 0.41 0.680
CNS Score c * C7 0.08 0.10 -0.11 – 0.28 0.82 0.411
CNS Score c * C8 0.09 0.09 -0.10 – 0.27 0.94 0.349
CNS Score c * C9 0.22 0.10 0.03 – 0.42 2.27 0.023
Random Effects
σ2 328.92
τ00 id 206.18
ICC 0.39
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.405 / 0.634

Climate Change Belief

Q.1 (CLIMATE CHANGE BELIEF) How does climate change belief predict familiarity/understanding, over and above burger contrasts?
modA.924 <- lmer(FR ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.924)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ CCBelief_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 +  
##     C9 + CCBelief_Score.c * C1 + CCBelief_Score.c * C2 + CCBelief_Score.c *  
##     C3 + CCBelief_Score.c * C4 + CCBelief_Score.c * C5 + CCBelief_Score.c *  
##     C6 + CCBelief_Score.c * C7 + CCBelief_Score.c * C8 + CCBelief_Score.c *  
##     C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27851.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0505 -0.5810 -0.0164  0.5989  3.1079 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 205.2    14.33   
##  Residual             329.7    18.16   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                       Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)          3.747e+01  1.163e+00  3.071e+03  32.225  < 2e-16 ***
## CCBelief_Score.c     2.546e-02  4.951e-02  3.069e+03   0.514  0.60707    
## C1                  -1.304e+00  1.516e+00  2.523e+03  -0.860  0.38992    
## C2                   2.234e+01  1.638e+00  2.479e+03  13.640  < 2e-16 ***
## C3                   2.983e+01  1.639e+00  2.514e+03  18.201  < 2e-16 ***
## C4                   2.071e-01  1.538e+00  2.521e+03   0.135  0.89288    
## C5                  -4.874e+00  1.537e+00  2.542e+03  -3.172  0.00153 ** 
## C6                   7.406e-01  1.540e+00  2.523e+03   0.481  0.63075    
## C7                   4.839e+01  1.654e+00  2.518e+03  29.251  < 2e-16 ***
## C8                   2.969e+01  1.524e+00  2.520e+03  19.480  < 2e-16 ***
## C9                   4.490e+01  1.639e+00  2.528e+03  27.395  < 2e-16 ***
## CCBelief_Score.c:C1  4.298e-02  6.418e-02  2.540e+03   0.670  0.50314    
## CCBelief_Score.c:C2  4.991e-02  7.071e-02  2.485e+03   0.706  0.48030    
## CCBelief_Score.c:C3 -4.128e-02  6.619e-02  2.491e+03  -0.624  0.53294    
## CCBelief_Score.c:C4 -2.779e-02  6.308e-02  2.528e+03  -0.440  0.65962    
## CCBelief_Score.c:C5 -1.166e-01  6.669e-02  2.535e+03  -1.749  0.08047 .  
## CCBelief_Score.c:C6 -2.856e-03  6.462e-02  2.498e+03  -0.044  0.96475    
## CCBelief_Score.c:C7  5.867e-03  7.131e-02  2.504e+03   0.082  0.93444    
## CCBelief_Score.c:C8  1.138e-01  6.661e-02  2.555e+03   1.708  0.08778 .  
## CCBelief_Score.c:C9  1.396e-01  7.121e-02  2.577e+03   1.961  0.05004 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.924,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.47 1.16 35.19 – 39.74 32.23 <0.001
CCBelief Score c 0.03 0.05 -0.07 – 0.12 0.51 0.607
C1 -1.30 1.52 -4.28 – 1.67 -0.86 0.390
C2 22.34 1.64 19.13 – 25.55 13.64 <0.001
C3 29.83 1.64 26.61 – 33.04 18.20 <0.001
C4 0.21 1.54 -2.81 – 3.22 0.13 0.893
C5 -4.87 1.54 -7.89 – -1.86 -3.17 0.002
C6 0.74 1.54 -2.28 – 3.76 0.48 0.631
C7 48.39 1.65 45.15 – 51.64 29.25 <0.001
C8 29.69 1.52 26.70 – 32.68 19.48 <0.001
C9 44.90 1.64 41.68 – 48.11 27.39 <0.001
CCBelief Score c * C1 0.04 0.06 -0.08 – 0.17 0.67 0.503
CCBelief Score c * C2 0.05 0.07 -0.09 – 0.19 0.71 0.480
CCBelief Score c * C3 -0.04 0.07 -0.17 – 0.09 -0.62 0.533
CCBelief Score c * C4 -0.03 0.06 -0.15 – 0.10 -0.44 0.660
CCBelief Score c * C5 -0.12 0.07 -0.25 – 0.01 -1.75 0.080
CCBelief Score c * C6 -0.00 0.06 -0.13 – 0.12 -0.04 0.965
CCBelief Score c * C7 0.01 0.07 -0.13 – 0.15 0.08 0.934
CCBelief Score c * C8 0.11 0.07 -0.02 – 0.24 1.71 0.088
CCBelief Score c * C9 0.14 0.07 -0.00 – 0.28 1.96 0.050
Random Effects
σ2 329.75
τ00 id 205.22
ICC 0.38
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.405 / 0.633
Q.2 (CLIMATE CHANGE BELIEF) Does climate change belief depend on perceptinos of naturalness in predicting familiarity/understanding, over and above burger contrasts?
modA.9245 <- lmer(FR ~ CCBelief_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + CCBelief_Score.c*C1 + CCBelief_Score.c*C2 + CCBelief_Score.c*C3 + CCBelief_Score.c*C4 + CCBelief_Score.c*C5 + CCBelief_Score.c*C6 + CCBelief_Score.c*C7 + CCBelief_Score.c*C8 + CCBelief_Score.c*C9 + (1|id), data = L)

summary(modA.9245)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ CCBelief_Score.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 +  
##     C6 + C7 + C8 + C9 + CCBelief_Score.c * C1 + CCBelief_Score.c *  
##     C2 + CCBelief_Score.c * C3 + CCBelief_Score.c * C4 + CCBelief_Score.c *  
##     C5 + CCBelief_Score.c * C6 + CCBelief_Score.c * C7 + CCBelief_Score.c *  
##     C8 + CCBelief_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27654.2
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0405 -0.5710 -0.0053  0.5821  3.1860 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 214.3    14.64   
##  Residual             297.9    17.26   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                  Estimate Std. Error         df t value
## (Intercept)                     3.792e+01  1.123e+00  3.073e+03  33.767
## CCBelief_Score.c               -1.525e-03  4.810e-02  3.074e+03  -0.032
## Naturalness.c                   3.163e-01  2.111e-02  2.904e+03  14.980
## C1                              2.766e+00  1.475e+00  2.496e+03   1.875
## C2                              2.206e+01  1.564e+00  2.441e+03  14.106
## C3                              3.395e+01  1.592e+00  2.495e+03  21.322
## C4                              1.319e+00  1.472e+00  2.479e+03   0.896
## C5                             -3.945e+00  1.470e+00  2.500e+03  -2.683
## C6                              2.807e+00  1.479e+00  2.482e+03   1.898
## C7                              4.310e+01  1.620e+00  2.513e+03  26.606
## C8                              2.234e+01  1.537e+00  2.541e+03  14.534
## C9                              3.998e+01  1.600e+00  2.510e+03  24.978
## CCBelief_Score.c:Naturalness.c -3.219e-04  8.002e-04  2.926e+03  -0.402
## CCBelief_Score.c:C1             6.362e-02  6.190e-02  2.487e+03   1.028
## CCBelief_Score.c:C2             4.204e-02  6.753e-02  2.446e+03   0.623
## CCBelief_Score.c:C3            -2.193e-03  6.369e-02  2.443e+03  -0.034
## CCBelief_Score.c:C4            -7.340e-03  6.029e-02  2.485e+03  -0.122
## CCBelief_Score.c:C5            -1.059e-01  6.373e-02  2.492e+03  -1.662
## CCBelief_Score.c:C6             1.131e-02  6.175e-02  2.454e+03   0.183
## CCBelief_Score.c:C7             6.148e-03  6.943e-02  2.536e+03   0.089
## CCBelief_Score.c:C8             1.334e-01  6.805e-02  2.647e+03   1.960
## CCBelief_Score.c:C9             1.366e-01  6.964e-02  2.594e+03   1.962
##                                Pr(>|t|)    
## (Intercept)                     < 2e-16 ***
## CCBelief_Score.c                0.97471    
## Naturalness.c                   < 2e-16 ***
## C1                              0.06089 .  
## C2                              < 2e-16 ***
## C3                              < 2e-16 ***
## C4                              0.37019    
## C5                              0.00735 ** 
## C6                              0.05782 .  
## C7                              < 2e-16 ***
## C8                              < 2e-16 ***
## C9                              < 2e-16 ***
## CCBelief_Score.c:Naturalness.c  0.68749    
## CCBelief_Score.c:C1             0.30413    
## CCBelief_Score.c:C2             0.53365    
## CCBelief_Score.c:C3             0.97254    
## CCBelief_Score.c:C4             0.90311    
## CCBelief_Score.c:C5             0.09659 .  
## CCBelief_Score.c:C6             0.85474    
## CCBelief_Score.c:C7             0.92944    
## CCBelief_Score.c:C8             0.05013 .  
## CCBelief_Score.c:C9             0.04988 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9245,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.92 1.12 35.71 – 40.12 33.77 <0.001
CCBelief Score c -0.00 0.05 -0.10 – 0.09 -0.03 0.975
Naturalness c 0.32 0.02 0.27 – 0.36 14.98 <0.001
C1 2.77 1.48 -0.13 – 5.66 1.88 0.061
C2 22.06 1.56 19.00 – 25.13 14.11 <0.001
C3 33.95 1.59 30.83 – 37.07 21.32 <0.001
C4 1.32 1.47 -1.57 – 4.21 0.90 0.370
C5 -3.94 1.47 -6.83 – -1.06 -2.68 0.007
C6 2.81 1.48 -0.09 – 5.71 1.90 0.058
C7 43.10 1.62 39.93 – 46.28 26.61 <0.001
C8 22.34 1.54 19.33 – 25.36 14.53 <0.001
C9 39.98 1.60 36.84 – 43.11 24.98 <0.001
CCBelief Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.40 0.687
CCBelief Score c * C1 0.06 0.06 -0.06 – 0.18 1.03 0.304
CCBelief Score c * C2 0.04 0.07 -0.09 – 0.17 0.62 0.534
CCBelief Score c * C3 -0.00 0.06 -0.13 – 0.12 -0.03 0.973
CCBelief Score c * C4 -0.01 0.06 -0.13 – 0.11 -0.12 0.903
CCBelief Score c * C5 -0.11 0.06 -0.23 – 0.02 -1.66 0.097
CCBelief Score c * C6 0.01 0.06 -0.11 – 0.13 0.18 0.855
CCBelief Score c * C7 0.01 0.07 -0.13 – 0.14 0.09 0.929
CCBelief Score c * C8 0.13 0.07 -0.00 – 0.27 1.96 0.050
CCBelief Score c * C9 0.14 0.07 0.00 – 0.27 1.96 0.050
Random Effects
σ2 297.88
τ00 id 214.33
ICC 0.42
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.436 / 0.672

Collectivism

Q.1 (COLLECTIVISM) How does collectivism predict familiarity/understanding, over and above burger contrasts?
modA.926 <- lmer(FR ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.926)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Collectivism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27844.7
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0693 -0.5867 -0.0156  0.5943  3.1507 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 208.9    14.45   
##  Residual             327.2    18.09   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                           Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)              3.737e+01  1.162e+00  3.071e+03  32.164  < 2e-16 ***
## Collectivism_Score.c     6.263e-02  4.542e-02  3.079e+03   1.379  0.16800    
## C1                      -1.225e+00  1.513e+00  2.516e+03  -0.810  0.41822    
## C2                       2.240e+01  1.634e+00  2.474e+03  13.708  < 2e-16 ***
## C3                       2.986e+01  1.636e+00  2.506e+03  18.256  < 2e-16 ***
## C4                       2.970e-01  1.534e+00  2.519e+03   0.194  0.84646    
## C5                      -4.679e+00  1.537e+00  2.537e+03  -3.045  0.00235 ** 
## C6                       8.344e-01  1.537e+00  2.517e+03   0.543  0.58718    
## C7                       4.845e+01  1.650e+00  2.512e+03  29.355  < 2e-16 ***
## C8                       3.010e+01  1.520e+00  2.511e+03  19.801  < 2e-16 ***
## C9                       4.508e+01  1.636e+00  2.522e+03  27.551  < 2e-16 ***
## Collectivism_Score.c:C1 -5.038e-02  6.357e-02  2.501e+03  -0.793  0.42807    
## Collectivism_Score.c:C2 -4.138e-03  6.641e-02  2.454e+03  -0.062  0.95032    
## Collectivism_Score.c:C3 -1.697e-01  6.434e-02  2.451e+03  -2.638  0.00840 ** 
## Collectivism_Score.c:C4 -3.232e-02  6.200e-02  2.499e+03  -0.521  0.60219    
## Collectivism_Score.c:C5  3.353e-02  6.089e-02  2.514e+03   0.551  0.58191    
## Collectivism_Score.c:C6 -1.129e-01  6.247e-02  2.509e+03  -1.807  0.07090 .  
## Collectivism_Score.c:C7 -1.417e-02  6.716e-02  2.527e+03  -0.211  0.83297    
## Collectivism_Score.c:C8 -2.291e-01  6.211e-02  2.528e+03  -3.689  0.00023 ***
## Collectivism_Score.c:C9 -1.274e-01  6.824e-02  2.554e+03  -1.866  0.06210 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.926,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.37 1.16 35.09 – 39.65 32.16 <0.001
Collectivism Score c 0.06 0.05 -0.03 – 0.15 1.38 0.168
C1 -1.22 1.51 -4.19 – 1.74 -0.81 0.418
C2 22.40 1.63 19.20 – 25.60 13.71 <0.001
C3 29.86 1.64 26.65 – 33.06 18.26 <0.001
C4 0.30 1.53 -2.71 – 3.30 0.19 0.846
C5 -4.68 1.54 -7.69 – -1.67 -3.05 0.002
C6 0.83 1.54 -2.18 – 3.85 0.54 0.587
C7 48.45 1.65 45.21 – 51.68 29.36 <0.001
C8 30.10 1.52 27.12 – 33.08 19.80 <0.001
C9 45.08 1.64 41.87 – 48.29 27.55 <0.001
Collectivism Score c * C1 -0.05 0.06 -0.18 – 0.07 -0.79 0.428
Collectivism Score c * C2 -0.00 0.07 -0.13 – 0.13 -0.06 0.950
Collectivism Score c * C3 -0.17 0.06 -0.30 – -0.04 -2.64 0.008
Collectivism Score c * C4 -0.03 0.06 -0.15 – 0.09 -0.52 0.602
Collectivism Score c * C5 0.03 0.06 -0.09 – 0.15 0.55 0.582
Collectivism Score c * C6 -0.11 0.06 -0.24 – 0.01 -1.81 0.071
Collectivism Score c * C7 -0.01 0.07 -0.15 – 0.12 -0.21 0.833
Collectivism Score c * C8 -0.23 0.06 -0.35 – -0.11 -3.69 <0.001
Collectivism Score c * C9 -0.13 0.07 -0.26 – 0.01 -1.87 0.062
Random Effects
σ2 327.24
τ00 id 208.85
ICC 0.39
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.405 / 0.637
Q.2 (COLLECTIVISM) Does collectivism depend on perceptions of naturalness in predicting familiarity/understanding, over and above burger contrasts?
modA.9267 <- lmer(FR ~ Collectivism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c*C1 + Collectivism_Score.c*C2 + Collectivism_Score.c*C3 + Collectivism_Score.c*C4 + Collectivism_Score.c*C5 + Collectivism_Score.c*C6 + Collectivism_Score.c*C7 + Collectivism_Score.c*C8 + Collectivism_Score.c*C9 + (1|id), data = L)

summary(modA.9267)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Collectivism_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + Collectivism_Score.c * C1 + Collectivism_Score.c *  
##     C2 + Collectivism_Score.c * C3 + Collectivism_Score.c * C4 +  
##     Collectivism_Score.c * C5 + Collectivism_Score.c * C6 + Collectivism_Score.c *  
##     C7 + Collectivism_Score.c * C8 + Collectivism_Score.c * C9 +      (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27642.8
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9074 -0.5703 -0.0019  0.5798  3.3091 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 217.8    14.76   
##  Residual             295.0    17.18   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                      Estimate Std. Error         df t value
## (Intercept)                         3.779e+01  1.121e+00  3.073e+03  33.717
## Collectivism_Score.c                6.082e-02  4.393e-02  3.075e+03   1.385
## Naturalness.c                       3.179e-01  2.102e-02  2.902e+03  15.121
## C1                                  2.882e+00  1.469e+00  2.487e+03   1.962
## C2                                  2.212e+01  1.559e+00  2.436e+03  14.189
## C3                                  3.397e+01  1.584e+00  2.481e+03  21.437
## C4                                  1.440e+00  1.466e+00  2.474e+03   0.982
## C5                                 -3.650e+00  1.469e+00  2.494e+03  -2.485
## C6                                  2.988e+00  1.474e+00  2.476e+03   2.028
## C7                                  4.310e+01  1.615e+00  2.507e+03  26.693
## C8                                  2.276e+01  1.534e+00  2.533e+03  14.839
## C9                                  4.018e+01  1.596e+00  2.504e+03  25.175
## Collectivism_Score.c:Naturalness.c  8.692e-04  8.257e-04  2.897e+03   1.053
## Collectivism_Score.c:C1            -4.320e-02  6.189e-02  2.473e+03  -0.698
## Collectivism_Score.c:C2            -1.708e-03  6.335e-02  2.419e+03  -0.027
## Collectivism_Score.c:C3            -1.697e-01  6.223e-02  2.432e+03  -2.727
## Collectivism_Score.c:C4            -1.605e-02  5.919e-02  2.456e+03  -0.271
## Collectivism_Score.c:C5             6.132e-02  5.825e-02  2.468e+03   1.053
## Collectivism_Score.c:C6            -8.582e-02  5.984e-02  2.462e+03  -1.434
## Collectivism_Score.c:C7            -3.591e-02  6.614e-02  2.530e+03  -0.543
## Collectivism_Score.c:C8            -2.144e-01  6.255e-02  2.555e+03  -3.427
## Collectivism_Score.c:C9            -1.481e-01  6.700e-02  2.556e+03  -2.211
##                                    Pr(>|t|)    
## (Intercept)                         < 2e-16 ***
## Collectivism_Score.c                0.16630    
## Naturalness.c                       < 2e-16 ***
## C1                                  0.04988 *  
## C2                                  < 2e-16 ***
## C3                                  < 2e-16 ***
## C4                                  0.32604    
## C5                                  0.01304 *  
## C6                                  0.04269 *  
## C7                                  < 2e-16 ***
## C8                                  < 2e-16 ***
## C9                                  < 2e-16 ***
## Collectivism_Score.c:Naturalness.c  0.29258    
## Collectivism_Score.c:C1             0.48521    
## Collectivism_Score.c:C2             0.97850    
## Collectivism_Score.c:C3             0.00644 ** 
## Collectivism_Score.c:C4             0.78636    
## Collectivism_Score.c:C5             0.29251    
## Collectivism_Score.c:C6             0.15168    
## Collectivism_Score.c:C7             0.58720    
## Collectivism_Score.c:C8             0.00062 ***
## Collectivism_Score.c:C9             0.02713 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9267,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.79 1.12 35.59 – 39.99 33.72 <0.001
Collectivism Score c 0.06 0.04 -0.03 – 0.15 1.38 0.166
Naturalness c 0.32 0.02 0.28 – 0.36 15.12 <0.001
C1 2.88 1.47 0.00 – 5.76 1.96 0.050
C2 22.12 1.56 19.07 – 25.18 14.19 <0.001
C3 33.97 1.58 30.86 – 37.07 21.44 <0.001
C4 1.44 1.47 -1.43 – 4.31 0.98 0.326
C5 -3.65 1.47 -6.53 – -0.77 -2.48 0.013
C6 2.99 1.47 0.10 – 5.88 2.03 0.043
C7 43.10 1.61 39.93 – 46.26 26.69 <0.001
C8 22.76 1.53 19.76 – 25.77 14.84 <0.001
C9 40.18 1.60 37.05 – 43.31 25.18 <0.001
Collectivism Score c *
Naturalness c
0.00 0.00 -0.00 – 0.00 1.05 0.293
Collectivism Score c * C1 -0.04 0.06 -0.16 – 0.08 -0.70 0.485
Collectivism Score c * C2 -0.00 0.06 -0.13 – 0.12 -0.03 0.978
Collectivism Score c * C3 -0.17 0.06 -0.29 – -0.05 -2.73 0.006
Collectivism Score c * C4 -0.02 0.06 -0.13 – 0.10 -0.27 0.786
Collectivism Score c * C5 0.06 0.06 -0.05 – 0.18 1.05 0.292
Collectivism Score c * C6 -0.09 0.06 -0.20 – 0.03 -1.43 0.152
Collectivism Score c * C7 -0.04 0.07 -0.17 – 0.09 -0.54 0.587
Collectivism Score c * C8 -0.21 0.06 -0.34 – -0.09 -3.43 0.001
Collectivism Score c * C9 -0.15 0.07 -0.28 – -0.02 -2.21 0.027
Random Effects
σ2 295.04
τ00 id 217.76
ICC 0.42
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.436 / 0.675

Individualism

Q.1 (INDIVIDUALISM) How does individualism predict familiarity/understanding, over and above burger contrasts?
modA.927 <- lmer(FR ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.927)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Individualism_Score.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 +  
##     C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27831.9
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -4.0365 -0.5832 -0.0267  0.5918  3.0679 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 204.2    14.29   
##  Residual             328.5    18.12   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                37.15170    1.16178 3070.40068  31.978  < 2e-16 ***
## Individualism_Score.c       0.34006    0.06675 3076.41862   5.095 3.70e-07 ***
## C1                         -0.97959    1.51481 2525.28741  -0.647  0.51790    
## C2                         22.78230    1.63757 2480.84668  13.912  < 2e-16 ***
## C3                         30.45246    1.64010 2515.96643  18.567  < 2e-16 ***
## C4                          0.60660    1.53440 2524.18742   0.395  0.69263    
## C5                         -4.64983    1.53446 2545.88727  -3.030  0.00247 ** 
## C6                          1.04457    1.53887 2524.71393   0.679  0.49733    
## C7                         48.73084    1.65299 2519.57367  29.480  < 2e-16 ***
## C8                         30.15360    1.52166 2518.90781  19.816  < 2e-16 ***
## C9                         45.14152    1.63636 2527.75085  27.586  < 2e-16 ***
## Individualism_Score.c:C1   -0.26990    0.08775 2499.50346  -3.076  0.00212 ** 
## Individualism_Score.c:C2   -0.19853    0.09925 2526.03066  -2.000  0.04557 *  
## Individualism_Score.c:C3   -0.40247    0.09184 2460.84074  -4.383 1.22e-05 ***
## Individualism_Score.c:C4   -0.25831    0.08961 2513.61644  -2.883  0.00398 ** 
## Individualism_Score.c:C5   -0.21198    0.09008 2549.31641  -2.353  0.01869 *  
## Individualism_Score.c:C6   -0.22321    0.09178 2535.18534  -2.432  0.01508 *  
## Individualism_Score.c:C7   -0.20703    0.09376 2501.79734  -2.208  0.02734 *  
## Individualism_Score.c:C8   -0.34986    0.08812 2521.81931  -3.970 7.38e-05 ***
## Individualism_Score.c:C9   -0.20431    0.10007 2549.32736  -2.042  0.04130 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.927,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.15 1.16 34.87 – 39.43 31.98 <0.001
Individualism Score c 0.34 0.07 0.21 – 0.47 5.09 <0.001
C1 -0.98 1.51 -3.95 – 1.99 -0.65 0.518
C2 22.78 1.64 19.57 – 25.99 13.91 <0.001
C3 30.45 1.64 27.24 – 33.67 18.57 <0.001
C4 0.61 1.53 -2.40 – 3.62 0.40 0.693
C5 -4.65 1.53 -7.66 – -1.64 -3.03 0.002
C6 1.04 1.54 -1.97 – 4.06 0.68 0.497
C7 48.73 1.65 45.49 – 51.97 29.48 <0.001
C8 30.15 1.52 27.17 – 33.14 19.82 <0.001
C9 45.14 1.64 41.93 – 48.35 27.59 <0.001
Individualism Score c *
C1
-0.27 0.09 -0.44 – -0.10 -3.08 0.002
Individualism Score c *
C2
-0.20 0.10 -0.39 – -0.00 -2.00 0.046
Individualism Score c *
C3
-0.40 0.09 -0.58 – -0.22 -4.38 <0.001
Individualism Score c *
C4
-0.26 0.09 -0.43 – -0.08 -2.88 0.004
Individualism Score c *
C5
-0.21 0.09 -0.39 – -0.04 -2.35 0.019
Individualism Score c *
C6
-0.22 0.09 -0.40 – -0.04 -2.43 0.015
Individualism Score c *
C7
-0.21 0.09 -0.39 – -0.02 -2.21 0.027
Individualism Score c *
C8
-0.35 0.09 -0.52 – -0.18 -3.97 <0.001
Individualism Score c *
C9
-0.20 0.10 -0.40 – -0.01 -2.04 0.041
Random Effects
σ2 328.51
τ00 id 204.17
ICC 0.38
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.408 / 0.635
Q.2 (INDIVIDUALISM) Does individualism depend on perceptions of naturalness in predicting familiarity/understanding, over and above burger contrasts?
modA.9275 <- lmer(FR ~ Individualism_Score.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Individualism_Score.c*C1 + Individualism_Score.c*C2 + Individualism_Score.c*C3 + Individualism_Score.c*C4 + Individualism_Score.c*C5 + Individualism_Score.c*C6 + Individualism_Score.c*C7 + Individualism_Score.c*C8 + Individualism_Score.c*C9 + (1|id), data = L)

summary(modA.9275)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Individualism_Score.c * Naturalness.c + C1 + C2 + C3 + C4 +  
##     C5 + C6 + C7 + C8 + C9 + Individualism_Score.c * C1 + Individualism_Score.c *  
##     C2 + Individualism_Score.c * C3 + Individualism_Score.c *  
##     C4 + Individualism_Score.c * C5 + Individualism_Score.c *  
##     C6 + Individualism_Score.c * C7 + Individualism_Score.c *  
##     C8 + Individualism_Score.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27627.6
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9663 -0.5705  0.0013  0.5920  3.3093 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 213      14.60   
##  Residual             296      17.21   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                                       Estimate Std. Error         df t value
## (Intercept)                          3.761e+01  1.120e+00  3.073e+03  33.572
## Individualism_Score.c                3.280e-01  6.443e-02  3.077e+03   5.091
## Naturalness.c                        3.217e-01  2.112e-02  2.906e+03  15.235
## C1                                   3.153e+00  1.471e+00  2.495e+03   2.144
## C2                                   2.246e+01  1.562e+00  2.442e+03  14.373
## C3                                   3.464e+01  1.589e+00  2.489e+03  21.803
## C4                                   1.722e+00  1.466e+00  2.479e+03   1.174
## C5                                  -3.763e+00  1.467e+00  2.501e+03  -2.565
## C6                                   3.131e+00  1.475e+00  2.481e+03   2.122
## C7                                   4.330e+01  1.618e+00  2.514e+03  26.764
## C8                                   2.268e+01  1.534e+00  2.535e+03  14.785
## C9                                   4.014e+01  1.596e+00  2.509e+03  25.153
## Individualism_Score.c:Naturalness.c -8.300e-04  1.193e-03  2.950e+03  -0.695
## Individualism_Score.c:C1            -2.798e-01  8.506e-02  2.463e+03  -3.289
## Individualism_Score.c:C2            -1.743e-01  9.477e-02  2.487e+03  -1.839
## Individualism_Score.c:C3            -3.974e-01  8.898e-02  2.433e+03  -4.467
## Individualism_Score.c:C4            -2.347e-01  8.565e-02  2.467e+03  -2.740
## Individualism_Score.c:C5            -1.667e-01  8.617e-02  2.500e+03  -1.935
## Individualism_Score.c:C6            -1.900e-01  8.800e-02  2.486e+03  -2.160
## Individualism_Score.c:C7            -1.728e-01  9.268e-02  2.518e+03  -1.864
## Individualism_Score.c:C8            -3.190e-01  8.912e-02  2.559e+03  -3.579
## Individualism_Score.c:C9            -2.026e-01  9.742e-02  2.535e+03  -2.080
##                                     Pr(>|t|)    
## (Intercept)                          < 2e-16 ***
## Individualism_Score.c               3.77e-07 ***
## Naturalness.c                        < 2e-16 ***
## C1                                  0.032137 *  
## C2                                   < 2e-16 ***
## C3                                   < 2e-16 ***
## C4                                  0.240476    
## C5                                  0.010366 *  
## C6                                  0.033922 *  
## C7                                   < 2e-16 ***
## C8                                   < 2e-16 ***
## C9                                   < 2e-16 ***
## Individualism_Score.c:Naturalness.c 0.486817    
## Individualism_Score.c:C1            0.001018 ** 
## Individualism_Score.c:C2            0.066013 .  
## Individualism_Score.c:C3            8.31e-06 ***
## Individualism_Score.c:C4            0.006189 ** 
## Individualism_Score.c:C5            0.053131 .  
## Individualism_Score.c:C6            0.030903 *  
## Individualism_Score.c:C7            0.062427 .  
## Individualism_Score.c:C8            0.000351 ***
## Individualism_Score.c:C9            0.037662 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9275,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.61 1.12 35.42 – 39.81 33.57 <0.001
Individualism Score c 0.33 0.06 0.20 – 0.45 5.09 <0.001
Naturalness c 0.32 0.02 0.28 – 0.36 15.23 <0.001
C1 3.15 1.47 0.27 – 6.04 2.14 0.032
C2 22.46 1.56 19.39 – 25.52 14.37 <0.001
C3 34.64 1.59 31.52 – 37.75 21.80 <0.001
C4 1.72 1.47 -1.15 – 4.60 1.17 0.240
C5 -3.76 1.47 -6.64 – -0.89 -2.57 0.010
C6 3.13 1.48 0.24 – 6.02 2.12 0.034
C7 43.30 1.62 40.13 – 46.47 26.76 <0.001
C8 22.68 1.53 19.67 – 25.69 14.79 <0.001
C9 40.14 1.60 37.02 – 43.27 25.15 <0.001
Individualism Score c *
Naturalness c
-0.00 0.00 -0.00 – 0.00 -0.70 0.487
Individualism Score c *
C1
-0.28 0.09 -0.45 – -0.11 -3.29 0.001
Individualism Score c *
C2
-0.17 0.09 -0.36 – 0.01 -1.84 0.066
Individualism Score c *
C3
-0.40 0.09 -0.57 – -0.22 -4.47 <0.001
Individualism Score c *
C4
-0.23 0.09 -0.40 – -0.07 -2.74 0.006
Individualism Score c *
C5
-0.17 0.09 -0.34 – 0.00 -1.93 0.053
Individualism Score c *
C6
-0.19 0.09 -0.36 – -0.02 -2.16 0.031
Individualism Score c *
C7
-0.17 0.09 -0.35 – 0.01 -1.86 0.062
Individualism Score c *
C8
-0.32 0.09 -0.49 – -0.14 -3.58 <0.001
Individualism Score c *
C9
-0.20 0.10 -0.39 – -0.01 -2.08 0.038
Random Effects
σ2 296.04
τ00 id 213.03
ICC 0.42
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.440 / 0.674

Political Ideology

Q.1 (POLITICAL IDEOLOGY) How does political ideology predict familiarity/understanding, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.928 <- lmer(FR ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.928)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Ideology.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 +  
##     Ideology.c * C1 + Ideology.c * C2 + Ideology.c * C3 + Ideology.c *  
##     C4 + Ideology.c * C5 + Ideology.c * C6 + Ideology.c * C7 +  
##     Ideology.c * C8 + Ideology.c * C9 + (1 | id)
##    Data: L
## 
## REML criterion at convergence: 27786.1
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9981 -0.5913 -0.0133  0.5982  3.0535 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 205.6    14.34   
##  Residual             330.9    18.19   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                Estimate Std. Error        df t value Pr(>|t|)    
## (Intercept)     37.3930     1.1643 3070.7080  32.116  < 2e-16 ***
## Ideology.c      -3.0735     1.9518 3078.0949  -1.575  0.11542    
## C1              -1.2746     1.5190 2523.9573  -0.839  0.40149    
## C2              22.4607     1.6400 2480.4876  13.695  < 2e-16 ***
## C3              30.0174     1.6405 2515.0658  18.298  < 2e-16 ***
## C4               0.3474     1.5383 2523.8258   0.226  0.82134    
## C5              -4.7546     1.5411 2544.0292  -3.085  0.00206 ** 
## C6               0.8301     1.5438 2526.5432   0.538  0.59084    
## C7              48.4017     1.6568 2519.2596  29.214  < 2e-16 ***
## C8              29.9469     1.5296 2522.4301  19.578  < 2e-16 ***
## C9              44.9294     1.6414 2528.6358  27.372  < 2e-16 ***
## Ideology.c:C1   -1.5345     2.5777 2488.8949  -0.595  0.55170    
## Ideology.c:C2    2.8620     2.7267 2425.1022   1.050  0.29400    
## Ideology.c:C3    4.2922     2.8501 2516.2712   1.506  0.13220    
## Ideology.c:C4    0.3290     2.6760 2547.8431   0.123  0.90216    
## Ideology.c:C5   -1.3360     2.6432 2599.4965  -0.505  0.61330    
## Ideology.c:C6    0.4832     2.6742 2532.3245   0.181  0.85662    
## Ideology.c:C7    1.1543     2.7923 2573.4315   0.413  0.67937    
## Ideology.c:C8    3.0049     2.6006 2501.8874   1.155  0.24801    
## Ideology.c:C9    2.7123     2.9127 2540.4253   0.931  0.35185    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 20 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.928,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.39 1.16 35.11 – 39.68 32.12 <0.001
Ideology c -3.07 1.95 -6.90 – 0.75 -1.57 0.115
C1 -1.27 1.52 -4.25 – 1.70 -0.84 0.401
C2 22.46 1.64 19.25 – 25.68 13.70 <0.001
C3 30.02 1.64 26.80 – 33.23 18.30 <0.001
C4 0.35 1.54 -2.67 – 3.36 0.23 0.821
C5 -4.75 1.54 -7.78 – -1.73 -3.09 0.002
C6 0.83 1.54 -2.20 – 3.86 0.54 0.591
C7 48.40 1.66 45.15 – 51.65 29.21 <0.001
C8 29.95 1.53 26.95 – 32.95 19.58 <0.001
C9 44.93 1.64 41.71 – 48.15 27.37 <0.001
Ideology c * C1 -1.53 2.58 -6.59 – 3.52 -0.60 0.552
Ideology c * C2 2.86 2.73 -2.48 – 8.21 1.05 0.294
Ideology c * C3 4.29 2.85 -1.30 – 9.88 1.51 0.132
Ideology c * C4 0.33 2.68 -4.92 – 5.58 0.12 0.902
Ideology c * C5 -1.34 2.64 -6.52 – 3.85 -0.51 0.613
Ideology c * C6 0.48 2.67 -4.76 – 5.73 0.18 0.857
Ideology c * C7 1.15 2.79 -4.32 – 6.63 0.41 0.679
Ideology c * C8 3.00 2.60 -2.09 – 8.10 1.16 0.248
Ideology c * C9 2.71 2.91 -3.00 – 8.42 0.93 0.352
Random Effects
σ2 330.85
τ00 id 205.62
ICC 0.38
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.404 / 0.632
Q.2 (POLITICAL IDEOLOGY) Does political ideology depend on perceptions of naturalness in predicting familiarity/understanding, over and above burger contrasts?
# Note: Ideology score is the mean of political party (-3 Dem to +3 Rep) and political orientation (-3 Lib to +3 Con).

modA.9281 <- lmer(FR ~ Ideology.c*Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + Ideology.c*C1 + Ideology.c*C2 + Ideology.c*C3 + Ideology.c*C4 + Ideology.c*C5 + Ideology.c*C6 + Ideology.c*C7 + Ideology.c*C8 + Ideology.c*C9 + (1|id), data = L)

summary(modA.9281)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: FR ~ Ideology.c * Naturalness.c + C1 + C2 + C3 + C4 + C5 + C6 +  
##     C7 + C8 + C9 + Ideology.c * C1 + Ideology.c * C2 + Ideology.c *  
##     C3 + Ideology.c * C4 + Ideology.c * C5 + Ideology.c * C6 +  
##     Ideology.c * C7 + Ideology.c * C8 + Ideology.c * C9 + (1 |      id)
##    Data: L
## 
## REML criterion at convergence: 27569
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.9454 -0.5764 -0.0018  0.5955  3.0866 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  id       (Intercept) 215.2    14.67   
##  Residual             297.1    17.24   
## Number of obs: 3099, groups:  id, 1033
## 
## Fixed effects:
##                            Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)                37.76430    1.12182 3073.01012  33.663  < 2e-16 ***
## Ideology.c                 -2.55277    1.88240 3076.98713  -1.356  0.17516    
## Naturalness.c               0.32667    0.02114 2907.39233  15.455  < 2e-16 ***
## C1                          3.04378    1.47401 2493.86754   2.065  0.03903 *  
## C2                         22.24077    1.56239 2440.81989  14.235  < 2e-16 ***
## C3                         34.25565    1.58697 2487.32263  21.586  < 2e-16 ***
## C4                          1.51454    1.46769 2476.44455   1.032  0.30221    
## C5                         -3.66804    1.47095 2498.75771  -2.494  0.01271 *  
## C6                          3.02971    1.47798 2481.96637   2.050  0.04048 *  
## C7                         42.94118    1.61825 2512.13257  26.536  < 2e-16 ***
## C8                         22.45510    1.53881 2540.43087  14.593  < 2e-16 ***
## C9                         39.83707    1.59874 2509.38307  24.918  < 2e-16 ***
## Ideology.c:Naturalness.c   -0.09705    0.03689 2904.74914  -2.631  0.00856 ** 
## Ideology.c:C1              -3.33032    2.48163 2442.95137  -1.342  0.17972    
## Ideology.c:C2               2.23183    2.59592 2390.38357   0.860  0.39002    
## Ideology.c:C3               3.33912    2.77584 2530.12710   1.203  0.22912    
## Ideology.c:C4               0.11667    2.55264 2505.57409   0.046  0.96355    
## Ideology.c:C5              -2.41656    2.52211 2551.32650  -0.958  0.33808    
## Ideology.c:C6              -0.39977    2.55416 2487.82772  -0.157  0.87564    
## Ideology.c:C7               2.32676    2.72081 2561.89234   0.855  0.39254    
## Ideology.c:C8               3.81552    2.60693 2556.08427   1.464  0.14342    
## Ideology.c:C9               4.83275    2.85780 2551.39152   1.691  0.09094 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation matrix not shown by default, as p = 22 > 12.
## Use print(x, correlation=TRUE)  or
##     vcov(x)        if you need it
tab_model(modA.9281,
          show.stat = T, show.se = T)
  FR
Predictors Estimates std. Error CI Statistic p
(Intercept) 37.76 1.12 35.56 – 39.96 33.66 <0.001
Ideology c -2.55 1.88 -6.24 – 1.14 -1.36 0.175
Naturalness c 0.33 0.02 0.29 – 0.37 15.45 <0.001
C1 3.04 1.47 0.15 – 5.93 2.06 0.039
C2 22.24 1.56 19.18 – 25.30 14.24 <0.001
C3 34.26 1.59 31.14 – 37.37 21.59 <0.001
C4 1.51 1.47 -1.36 – 4.39 1.03 0.302
C5 -3.67 1.47 -6.55 – -0.78 -2.49 0.013
C6 3.03 1.48 0.13 – 5.93 2.05 0.040
C7 42.94 1.62 39.77 – 46.11 26.54 <0.001
C8 22.46 1.54 19.44 – 25.47 14.59 <0.001
C9 39.84 1.60 36.70 – 42.97 24.92 <0.001
Ideology c * Naturalness
c
-0.10 0.04 -0.17 – -0.02 -2.63 0.009
Ideology c * C1 -3.33 2.48 -8.20 – 1.54 -1.34 0.180
Ideology c * C2 2.23 2.60 -2.86 – 7.32 0.86 0.390
Ideology c * C3 3.34 2.78 -2.10 – 8.78 1.20 0.229
Ideology c * C4 0.12 2.55 -4.89 – 5.12 0.05 0.964
Ideology c * C5 -2.42 2.52 -7.36 – 2.53 -0.96 0.338
Ideology c * C6 -0.40 2.55 -5.41 – 4.61 -0.16 0.876
Ideology c * C7 2.33 2.72 -3.01 – 7.66 0.86 0.393
Ideology c * C8 3.82 2.61 -1.30 – 8.93 1.46 0.143
Ideology c * C9 4.83 2.86 -0.77 – 10.44 1.69 0.091
Random Effects
σ2 297.12
τ00 id 215.23
ICC 0.42
N id 1033
Observations 3099
Marginal R2 / Conditional R2 0.436 / 0.673