Manipulasi Data dengan Library dplyr
Oleh | Ihsan Bagus Fahad Arafat |
Dosen Pengampu | Prof. Dr. Suhartono, M.Kom |
Program | Magister Informatika |
Kampus | UIN Maulana Malik Ibrahim Malang |
Tanggal | 9 Juni 2022 |
library(readxl)
## Warning: package 'readxl' was built under R version 4.1.3
<- read_excel(path = "SUMATRA.xlsx")
datainflowsumatera datainflowsumatera
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.3
## Warning: package 'tibble' was built under R version 4.1.3
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'purrr' was built under R version 4.1.3
## Warning: package 'dplyr' was built under R version 4.1.3
## Warning: package 'stringr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
<- select(datainflowsumatera, '2011')
sumatera2011 sumatera2011
library(tidyverse)
<- select(datainflowsumatera, -'2011')
sumateranon2011 sumateranon2011
<- datainflowsumatera %>% select('2012')
sumatera2012 sumatera2012
library(dplyr)
<- datainflowsumatera %>% rename('2010' = '2011')
sumateratahun head(sumateratahun)
library(dplyr)
<- datainflowsumatera %>%
sumateraaceh filter(Propinsi == 'Aceh') %>%
select('2011','2012')
sumateraaceh
library(dplyr)
<- datainflowsumatera %>%
sumateraup1 filter(Propinsi == 'Aceh', Propinsi == 'Bengkulu') %>%
select('2011','2012')
sumateraup1
str(datainflowsumatera)
## tibble [10 x 12] (S3: tbl_df/tbl/data.frame)
## $ Propinsi: chr [1:10] "Aceh" "Sumatera Utara" "Sumatera Barat" "Riau" ...
## $ 2011 : num [1:10] 2308 23238 9385 3012 1426 ...
## $ 2012 : num [1:10] 2620 25981 11192 4447 2236 ...
## $ 2013 : num [1:10] 36337 18120 14056 8933 3378 ...
## $ 2014 : num [1:10] 4567 30503 14103 6358 2563 ...
## $ 2015 : num [1:10] 4710 30254 13309 7156 3218 ...
## $ 2016 : num [1:10] 5775 34427 14078 8211 4317 ...
## $ 2017 : num [1:10] 5514 35617 15312 8553 4412 ...
## $ 2018 : num [1:10] 5799 41769 15058 10730 5134 ...
## $ 2019 : num [1:10] 7509 47112 14750 10915 6077 ...
## $ 2020 : num [1:10] 6641 36609 10696 9148 6175 ...
## $ 2021 : num [1:10] 3702 31840 10748 7769 5009 ...
str(datainflowsumatera %>% group_by(Propinsi))
## grouped_df [10 x 12] (S3: grouped_df/tbl_df/tbl/data.frame)
## $ Propinsi: chr [1:10] "Aceh" "Sumatera Utara" "Sumatera Barat" "Riau" ...
## $ 2011 : num [1:10] 2308 23238 9385 3012 1426 ...
## $ 2012 : num [1:10] 2620 25981 11192 4447 2236 ...
## $ 2013 : num [1:10] 36337 18120 14056 8933 3378 ...
## $ 2014 : num [1:10] 4567 30503 14103 6358 2563 ...
## $ 2015 : num [1:10] 4710 30254 13309 7156 3218 ...
## $ 2016 : num [1:10] 5775 34427 14078 8211 4317 ...
## $ 2017 : num [1:10] 5514 35617 15312 8553 4412 ...
## $ 2018 : num [1:10] 5799 41769 15058 10730 5134 ...
## $ 2019 : num [1:10] 7509 47112 14750 10915 6077 ...
## $ 2020 : num [1:10] 6641 36609 10696 9148 6175 ...
## $ 2021 : num [1:10] 3702 31840 10748 7769 5009 ...
## - attr(*, "groups")= tibble [10 x 2] (S3: tbl_df/tbl/data.frame)
## ..$ Propinsi: chr [1:10] "Aceh" "Bengkulu" "Jambi" "Kep. Bangka Belitung" ...
## ..$ .rows : list<int> [1:10]
## .. ..$ : int 1
## .. ..$ : int 8
## .. ..$ : int 6
## .. ..$ : int 10
## .. ..$ : int 5
## .. ..$ : int 9
## .. ..$ : int 4
## .. ..$ : int 3
## .. ..$ : int 7
## .. ..$ : int 2
## .. ..@ ptype: int(0)
## ..- attr(*, ".drop")= logi TRUE
<- datainflowsumatera %>%
sumateraup3 group_by(Propinsi)
sumateraup3
%>%
datainflowsumatera filter(Propinsi == 'Aceh') %>%
count('2011', sort = TRUE)
<- datainflowsumatera %>%
sumateraacehup1 mutate('2010' = datainflowsumatera$'2011'/2)
sumateraacehup1
ggplot(data = datainflowsumatera, mapping = aes(x = Propinsi, y = `2011`)) +
geom_point()
Referensi
https://github.com/juba/rmdformats : Format Visual Rpubs