3- Albumina

dat = read.csv("Albumina.csv", 
                #colClasses = c(rep("integer", 15), rep("NULL", 4)), 
                dec=".", header=T, sep=",", check.names=FALSE, 
                na.strings=".")
dat <- dat[,1:11]

2 - Batimento

bati = read.csv("batimento.csv", 
                dec=".", header=T, sep=";", check.names=FALSE, 
                na.strings=".")
long <-melt(dat, id.vars = c("ani","trat", "bloc"),
                 variable.name="dias", value.name="val") 
head(long)

long = long[complete.cases(long),]

head(long) # str(long3)
#for (i in 1:4) long3[,i] <- as.factor(long3[,i]) 

da = aggregate(cbind(ger_bda, ger_f) ~ exp * rep * transf, data = long3, mean)
da3$resp = da3$ger_f / da3$ger_bda 
da3$sy <- c(1,19)[match(da3$exp, c(1,2))]
#str(da3)
boxplot(bat ~ trat, data=bati, col=c("green", "red", "blue"))

mod = lm(bat ~ trat + bloc, data=bati)
anova(mod)
## Analysis of Variance Table
## 
## Response: bat
##           Df  Sum Sq Mean Sq F value Pr(>F)
## trat       1    1.37  1.3750  0.0461 0.8311
## bloc       1    9.60  9.6014  0.3220 0.5737
## Residuals 38 1132.97 29.8150
par(mfrow=c(2,2)); plot(mod, which=1:3); boxcox(mod); layout(1)

(mo1 = ea1(dplyr::select(bati, Treatments=trat, Blocks=bloc, bat), design=2))

## $`Analysis of variance`
##            df type III SS mean square F value    p>F
## treatments  2      1.3338      0.6669   0.022 0.9783
## blocks      3     75.6523     25.2174  0.8305 0.4861
## Residuals  35   1062.7417     30.3640       -      -
## 
## $`Adjusted means`
##   treatment adjusted.mean standard.error tukey snk duncan t scott_knott
## 1         1       47.8213         1.5061     a   a      a a           a
## 2         3       47.6345         1.5019     a   a      a a           a
## 3         2       47.3605         1.5808     a   a      a a           a
## 
## $`Multiple comparison test`
##    pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 1 - 3   0.1868   0.9958 0.9305    0.9305 0.9305
## 2 1 - 2   0.4608   0.9758 0.9758    0.8443 0.8341
## 3 3 - 2   0.2740   0.9913 0.9007    0.9007 0.9007
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.1478
## p.value Bartlett test         0.8561
## coefficient of variation (%) 11.5200
## first value most discrepant   4.0000
## second value most discrepant 19.0000
## third value most discrepant  22.0000
df1 = data.frame(
trat = (mo3[[2]][with(mo3[[2]], order(treatment)), ])$treatment,
let = (mo3[[2]][with(mo3[[2]], order(treatment)), ])$tukey,
me = (mo3[[2]][with(mo3[[2]], order(treatment)), ])$adjusted.mean,
se = (mo3[[2]][with(mo3[[2]], order(treatment)), ])$standard.error
); df1


str(long)

ggplot(dat,  aes(trat, bat)) + geom_point() + geom_line() + facet_wrap(ani~trat) 

(p_ger6 = ggplot(sumdat1, aes(trat, resp)) + 
     theme_bw() +  geom_point(size=3, lty=3) +
     geom_errorbar(aes(x = trat, ymin = bati-ci, ymax = resp+ci), 
                   colour="black", width=.1)  + 
     geom_hline(yintercept=sumda3[1,3], linetype=2) +
     scale_y_continuous(limits= c(0,1)) +
    xlab("") +   ylab("Propor??o de con?dios resistentes germinados") +
    # ggtitle("Germinação de conídios \n (Pêssegos enlatados)") +
     annotate("text", x = (1:6) - 0.25, y = sumda3$resp + 0.02, 
              label = round(sumda3$resp,2), size=4)+  
     annotate("text", x = (1:6) - 0.25, y = sumda3$resp - 0.01, 
              label = df3$let, size=4) +
     theme(axis.title.x=element_text(vjust=0.1, size=14))+
     theme(axis.title.y=element_text(vjust=1, size=14))+
    theme(axis.text.x=element_text(size=14, vjust=0.5)) +
   theme(axis.text.y=element_text(size=14, vjust=0.5)) +
    annotate("text", x = 6.3, y = 0.1, label = "C", fontface=2)
)

2 - Frequencia

freq = read.csv("frequencia.csv", 
                dec=".", header=T, sep=";", check.names=FALSE, 
                na.strings=".")
boxplot(freq ~ trat, data=freq, col=c("green", "red", "blue"))

modf = lm(freq ~ trat + bloc, data=freq)
anova(modf)
## Analysis of Variance Table
## 
## Response: freq
##           Df  Sum Sq Mean Sq F value   Pr(>F)   
## trat       1   0.004   0.004   0.001 0.974814   
## bloc       1  38.674  38.674  10.827 0.002164 **
## Residuals 38 135.733   3.572                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
par(mfrow=c(2,2)); plot(modf, which=1:3); boxcox(modf); layout(1)

(mo2 = ea1(dplyr::select(freq, Treatments=trat, Blocks=bloc, freq), design=2))

## $`Analysis of variance`
##            df type III SS mean square F value    p>F
## treatments  2      0.4310      0.2155    0.06 0.9419
## blocks      3     48.4342     16.1447  4.4929 0.0091
## Residuals  35    125.7676      3.5934       -      -
## 
## $`Adjusted means`
##   treatment adjusted.mean standard.error tukey snk duncan t scott_knott
## 1         1       11.1701         0.5181     a   a      a a           a
## 2         3       11.1333         0.5167     a   a      a a           a
## 3         2       10.9259         0.5438     a   a      a a           a
## 
## $`Multiple comparison test`
##    pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 1 - 3   0.0368   0.9986 0.9602    0.9602 0.9602
## 2 1 - 2   0.2442   0.9435 0.9435    0.7623 0.7470
## 3 3 - 2   0.2074   0.9588 0.7838    0.7838 0.7838
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.3770
## p.value Bartlett test         0.4329
## coefficient of variation (%) 16.9400
## first value most discrepant  14.0000
## second value most discrepant 11.0000
## third value most discrepant   8.0000

3 - temperatura retal

tret = read.csv("tempret.csv", dec=".", header=T, sep=";", check.names=FALSE, 
                na.strings=".")
boxplot(temp ~ trat, data=tret, col=c("green", "red", "blue"))

modt = lm(temp ~ trat + bloc, data=tret) ; anova(modt)
## Analysis of Variance Table
## 
## Response: temp
##           Df Sum Sq  Mean Sq F value Pr(>F)
## trat       1 0.0229 0.022873  0.1802 0.6736
## bloc       1 0.0338 0.033776  0.2661 0.6089
## Residuals 38 4.8230 0.126920
par(mfrow=c(2,2)); plot(modt, which=1:3); boxcox(modt); layout(1)

(mo3 = ea1(dplyr::select(tret, Treatments=trat, Blocks=bloc, temp), design=2))

## $`Analysis of variance`
##            df type III SS mean square F value    p>F
## treatments  2      0.1271      0.0636  0.6128 0.5475
## blocks      3      1.0625      0.3542  3.4142 0.0279
## Residuals  35      3.6308      0.1037       -      -
## 
## $`Adjusted means`
##   treatment adjusted.mean standard.error tukey snk duncan t scott_knott
## 1         2       38.4336         0.0924     a   a      a a           a
## 2         1       38.4324         0.0880     a   a      a a           a
## 3         3       38.3149         0.0878     a   a      a a           a
## 
## $`Multiple comparison test`
##    pair contrast p(tukey) p(snk) p(duncan)   p(t)
## 1 2 - 1   0.0012   1.0000 0.9925    0.9925 0.9925
## 2 2 - 3   0.1187   0.6245 0.6245    0.3872 0.3581
## 3 1 - 3   0.1175   0.6158 0.3510    0.3510 0.3510
## 
## $`Residual analysis`
##                               values
## p.value Shapiro-Wilk test     0.3843
## p.value Bartlett test         0.7275
## coefficient of variation (%)  0.8400
## first value most discrepant  31.0000
## second value most discrepant 41.0000
## third value most discrepant  23.0000