Data member fitnes Buitenzorg telah diperoleh pada tanggal 22 Januari 2022 dengan susunan sebagai berikut
library(car) # Supaya bisa execute fungsi "Anova()"
## Loading required package: carData
DataMember <- read.csv("Data Fitnes.csv")
# Membuat kelompok; Metode dan Umur
DataMember$grpMetode <- cut(DataMember$Metode,
breaks = c(0, 1, 2, 3, Inf),
labels = c("Mod-1","Mod-2","Mod-3","Mod-4"))
DataMember$grpUmur <- cut(DataMember$Umur,
breaks = c(0, 1, 2, Inf),
labels = c("<20","20-40",">40"))
# Melihat korelasi antara perubahan berat badan dengan umur
cor.test(DataMember$Berat, DataMember$Metode)
##
## Pearson's product-moment correlation
##
## data: DataMember$Berat and DataMember$Metode
## t = -0.64964, df = 34, p-value = 0.5203
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.4238445 0.2260310
## sample estimates:
## cor
## -0.1107273
# Mengukur pengaruh antara umur terhadap penambahan berat badan
AnovaModel1Arah <- lm(data = DataMember,
formula = Berat~grpUmur)
Anova(AnovaModel1Arah)
## Anova Table (Type II tests)
##
## Response: Berat
## Sum Sq Df F value Pr(>F)
## grpUmur 0.667 2 0.0954 0.9093
## Residuals 115.333 33
# Mengukur pengaruh antara umur dan meotde terhadap berat badan
AnovaModel2Arah <- lm(data = DataMember,
formula = Berat~grpMetode*grpUmur)
Anova(AnovaModel2Arah)
## Anova Table (Type II tests)
##
## Response: Berat
## Sum Sq Df F value Pr(>F)
## grpMetode 23.111 3 3.0476 0.04811 *
## grpUmur 0.667 2 0.1319 0.87709
## grpMetode:grpUmur 31.556 6 2.0806 0.09350 .
## Residuals 60.667 24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
AnovaModel1AOV <- lm(data = DataMember,
formula = Berat~grpMetode+grpUmur)
Anova(AnovaModel1AOV)
## Anova Table (Type II tests)
##
## Response: Berat
## Sum Sq Df F value Pr(>F)
## grpMetode 23.111 3 2.5060 0.07797 .
## grpUmur 0.667 2 0.1084 0.89759
## Residuals 92.222 30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(AnovaModel2Arah)
##
## Call:
## lm(formula = Berat ~ grpMetode * grpUmur, data = DataMember)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.3333 -0.6667 -0.3333 1.0833 3.0000
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.6667 0.9179 5.084 3.36e-05 ***
## grpMetodeMod-2 -3.6667 1.2981 -2.825 0.00938 **
## grpMetodeMod-3 0.3333 1.2981 0.257 0.79954
## grpMetodeMod-4 -2.0000 1.2981 -1.541 0.13648
## grpUmur20-40 -0.3333 1.2981 -0.257 0.79954
## grpUmur>40 -0.3333 1.2981 -0.257 0.79954
## grpMetodeMod-2:grpUmur20-40 1.6667 1.8359 0.908 0.37299
## grpMetodeMod-3:grpUmur20-40 -2.0000 1.8359 -1.089 0.28679
## grpMetodeMod-4:grpUmur20-40 1.0000 1.8359 0.545 0.59098
## grpMetodeMod-2:grpUmur>40 2.6667 1.8359 1.453 0.15930
## grpMetodeMod-3:grpUmur>40 -3.0000 1.8359 -1.634 0.11529
## grpMetodeMod-4:grpUmur>40 2.3333 1.8359 1.271 0.21592
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.59 on 24 degrees of freedom
## Multiple R-squared: 0.477, Adjusted R-squared: 0.2373
## F-statistic: 1.99 on 11 and 24 DF, p-value: 0.07694
summary(AnovaModel1AOV)
##
## Call:
## lm(formula = Berat ~ grpMetode + grpUmur, data = DataMember)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.3889 -1.2361 -0.1667 0.7639 4.8889
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.4444 0.7158 6.209 7.78e-07 ***
## grpMetodeMod-2 -2.2222 0.8265 -2.689 0.0116 *
## grpMetodeMod-3 -1.3333 0.8265 -1.613 0.1172
## grpMetodeMod-4 -0.8889 0.8265 -1.075 0.2907
## grpUmur20-40 -0.1667 0.7158 -0.233 0.8175
## grpUmur>40 0.1667 0.7158 0.233 0.8175
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.753 on 30 degrees of freedom
## Multiple R-squared: 0.205, Adjusted R-squared: 0.07248
## F-statistic: 1.547 on 5 and 30 DF, p-value: 0.2053
head(DataMember)
## MemberName Berat Metode Umur grpMetode grpUmur
## 1 NUR MEI CHASANATI 5 1 1 Mod-1 <20
## 2 SUPRAPTO 4 1 1 Mod-1 <20
## 3 TITI PRIYONO 5 1 1 Mod-1 <20
## 4 SUSENO 5 1 2 Mod-1 20-40
## 5 ALIP ASMADI 6 1 2 Mod-1 20-40
## 6 IRAWAN EKOBOEDJO MARGONO 2 1 2 Mod-1 20-40
You can also embed plots, for example:
Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.