data("PlantGrowth")
dim(PlantGrowth)
## [1] 30 2
PlantGrowth
## weight group
## 1 4.17 ctrl
## 2 5.58 ctrl
## 3 5.18 ctrl
## 4 6.11 ctrl
## 5 4.50 ctrl
## 6 4.61 ctrl
## 7 5.17 ctrl
## 8 4.53 ctrl
## 9 5.33 ctrl
## 10 5.14 ctrl
## 11 4.81 trt1
## 12 4.17 trt1
## 13 4.41 trt1
## 14 3.59 trt1
## 15 5.87 trt1
## 16 3.83 trt1
## 17 6.03 trt1
## 18 4.89 trt1
## 19 4.32 trt1
## 20 4.69 trt1
## 21 6.31 trt2
## 22 5.12 trt2
## 23 5.54 trt2
## 24 5.50 trt2
## 25 5.37 trt2
## 26 5.29 trt2
## 27 4.92 trt2
## 28 6.15 trt2
## 29 5.80 trt2
## 30 5.26 trt2
class(PlantGrowth)
## [1] "data.frame"
oneway.test(weight ~ group, data = PlantGrowth, var.equal = T)
##
## One-way analysis of means
##
## data: weight and group
## F = 4.8461, num df = 2, denom df = 27, p-value = 0.01591
################
unique(PlantGrowth$group)
## [1] ctrl trt1 trt2
## Levels: ctrl trt1 trt2
t.test(PlantGrowth$weight[PlantGrowth$group == "ctrl"], PlantGrowth$weight[PlantGrowth$group == "trt1"])
##
## Welch Two Sample t-test
##
## data: PlantGrowth$weight[PlantGrowth$group == "ctrl"] and PlantGrowth$weight[PlantGrowth$group == "trt1"]
## t = 1.1913, df = 16.524, p-value = 0.2504
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2875162 1.0295162
## sample estimates:
## mean of x mean of y
## 5.032 4.661
data_1 <- aov(weight ~ group, data = PlantGrowth)
summary(data_1)
## Df Sum Sq Mean Sq F value Pr(>F)
## group 2 3.766 1.8832 4.846 0.0159 *
## Residuals 27 10.492 0.3886
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#################################___ttest == oneway.test(when var-equal = F)
data_2 <- PlantGrowth[PlantGrowth$group == "ctrl" | PlantGrowth$group == "trt1", ]
t.test(PlantGrowth$weight[PlantGrowth$group == "ctrl"], PlantGrowth$weight[PlantGrowth$group == "trt1"])
##
## Welch Two Sample t-test
##
## data: PlantGrowth$weight[PlantGrowth$group == "ctrl"] and PlantGrowth$weight[PlantGrowth$group == "trt1"]
## t = 1.1913, df = 16.524, p-value = 0.2504
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2875162 1.0295162
## sample estimates:
## mean of x mean of y
## 5.032 4.661
oneway.test(weight ~ group, data = data_2, var.equal = F)
##
## One-way analysis of means (not assuming equal variances)
##
## data: weight and group
## F = 1.4191, num df = 1.000, denom df = 16.524, p-value = 0.2504