ICP-MS on root and shoot of Arabidopsis duf247-5 and col-0 grown on plate containing varoius concentrations of NaCl including 0, 75, and 125 mM NaCl. However, the 125 mM samples were not sent for the analysis because we have not seen any phenotype in RSA of col-0 and duf mutant grown at this concentration.So this is the ICP-MS result for col and duf160-5 root and shoot grown on the 1/2 MS plate +/-75 mM salt. After two weeks salt stress, shoot and root were weighted and harvested for ICP-MS. this is the same batch as RSA analysis for this allele on January 2021.
getwd()
## [1] "C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20211004_duf160-5_RSA_correct_genotype"
setwd("C:/Users/Julkowska Lab/Desktop/R codes by Maryam/20211004_duf160-5_RSA_correct_genotype/")
list.files(pattern = ".csv")
## [1] "20211011_duf-5_growth_factors.csv"
## [2] "20211013_duf-5_growth_factors.csv"
## [3] "8-19-21 FW for duf160-5 correct genotype at 0 75 125 salt_2weeksOnSalt.csv"
## [4] "d11_duf160-5_correct_Genotype.csv"
## [5] "d13_duf160-5_correct_Genotype.csv"
## [6] "d5_duf160-5_correct_Genotype.csv"
## [7] "d7_duf160-5_correct_Genotype.csv"
## [8] "d9_duf160-5_correct_Genotype.csv"
## [9] "Eric10282021R1and R2_analyzed v3 for R analysis.csv"
duf_ICP<-read.csv("Eric10282021R1and R2_analyzed v3 for R analysis.csv")
duf_ICP
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.5
library(ggpubr)
## Warning: package 'ggpubr' was built under R version 4.0.5
library(multcompView)
## Warning: package 'multcompView' was built under R version 4.0.5
colnames(duf_ICP)
## [1] "ï..All.ID" "Genotype"
## [3] "Condition" "Tissue"
## [5] "DW.mg" "K.con..mg.mg.dry.weight"
## [7] "Na.con.mg.mg.dry.weight" "Na.K.ratio"
duf_ICP$GenoConTiss <- paste(duf_ICP$Condition, duf_ICP$Tissue, duf_ICP$Genotype, sep="_")
duf_ICP
aov(Na.con.mg.mg.dry.weight ~ GenoConTiss, data = duf_ICP)
## Call:
## aov(formula = Na.con.mg.mg.dry.weight ~ GenoConTiss, data = duf_ICP)
##
## Terms:
## GenoConTiss Residuals
## Sum of Squares 7441.536 224.720
## Deg. of Freedom 7 16
##
## Residual standard error: 3.747668
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(Na.con.mg.mg.dry.weight ~ GenoConTiss, data = duf_ICP))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Na.con.mg.mg.dry.weight ~ GenoConTiss, data = duf_ICP)
##
## $GenoConTiss
## diff lwr upr p adj
## control_root_duf-control_root_col 0.10033969 -10.493696 10.694376 1.0000000
## control_shoot_col-control_root_col 0.37299364 -10.221042 10.967029 1.0000000
## control_shoot_duf-control_root_col 0.39462602 -10.199410 10.988662 1.0000000
## salt_root_col-control_root_col 17.96392949 7.369894 28.557965 0.0004909
## salt_root_duf-control_root_col 14.46663165 3.872596 25.060667 0.0043333
## salt_shoot_col-control_root_col 42.41290184 31.818866 53.006938 0.0000000
## salt_shoot_duf-control_root_col 44.08117200 33.487136 54.675208 0.0000000
## control_shoot_col-control_root_duf 0.27265395 -10.321382 10.866690 1.0000000
## control_shoot_duf-control_root_duf 0.29428633 -10.299750 10.888322 1.0000000
## salt_root_col-control_root_duf 17.86358980 7.269554 28.457626 0.0005217
## salt_root_duf-control_root_duf 14.36629195 3.772256 24.960328 0.0046187
## salt_shoot_col-control_root_duf 42.31256214 31.718526 52.906598 0.0000000
## salt_shoot_duf-control_root_duf 43.98083230 33.386796 54.574868 0.0000000
## control_shoot_duf-control_shoot_col 0.02163238 -10.572403 10.615668 1.0000000
## salt_root_col-control_shoot_col 17.59093585 6.996900 28.184972 0.0006159
## salt_root_duf-control_shoot_col 14.09363800 3.499602 24.687674 0.0054937
## salt_shoot_col-control_shoot_col 42.03990819 31.445872 52.633944 0.0000000
## salt_shoot_duf-control_shoot_col 43.70817835 33.114143 54.302214 0.0000000
## salt_root_col-control_shoot_duf 17.56930347 6.975268 28.163339 0.0006241
## salt_root_duf-control_shoot_duf 14.07200562 3.477970 24.666041 0.0055699
## salt_shoot_col-control_shoot_duf 42.01827581 31.424240 52.612312 0.0000000
## salt_shoot_duf-control_shoot_duf 43.68654597 33.092510 54.280582 0.0000000
## salt_root_duf-salt_root_col -3.49729784 -14.091334 7.096738 0.9368946
## salt_shoot_col-salt_root_col 24.44897235 13.854936 35.043008 0.0000126
## salt_shoot_duf-salt_root_col 26.11724251 15.523207 36.711278 0.0000053
## salt_shoot_col-salt_root_duf 27.94627019 17.352234 38.540306 0.0000022
## salt_shoot_duf-salt_root_duf 29.61454035 19.020505 40.208576 0.0000010
## salt_shoot_duf-salt_shoot_col 1.66827016 -8.925766 12.262306 0.9991126
P7 = Output$GenoConTiss[,'p adj']
stat.test<- multcompLetters(P7)
stat.test
## control_root_duf control_shoot_col control_shoot_duf salt_root_col
## "a" "a" "a" "b"
## salt_root_duf salt_shoot_col salt_shoot_duf control_root_col
## "b" "c" "c" "a"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
Na_content <- ggplot(data = duf_ICP, mapping = aes(x = GenoConTiss, y = Na.con.mg.mg.dry.weight, colour = Condition))
Na_content <- Na_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
Na_content <- Na_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
Na_content <- Na_content+ scale_color_manual(values= c("blue", "red"))
Na_content <- Na_content + ylab("Na content, mg/mg dry weight") + xlab("")
Na_content <- Na_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
Na_content <- Na_content + stat_pvalue_manual(test, label = "Tukey", y.position = 80)
Na_content
when I did tetest compare to col in excel, duf accumulates less Na+ in root but here there is no difference.
#I have to facet grid condition,
Na_content <- ggplot(data = duf_ICP, mapping = aes(x = Genotype, y = Na.con.mg.mg.dry.weight, colour = Genotype))
Na_content <- Na_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
Na_content <- Na_content + facet_grid(Tissue ~ Condition)
Na_content <- Na_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
Na_content <- Na_content+ scale_color_manual(values= c("blue", "red"))
Na_content <- Na_content + ylab("Na content, mg/mg dry weight") + xlab("")
Na_content <- Na_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
Na_content <- Na_content + rremove("legend")
#my_box_plot2 <- my_box_plot2 + stat_pvalue_manual(test, label = "Tukey", y.position = 80)
Na_content
aov(K.con..mg.mg.dry.weight ~ GenoConTiss, data = duf_ICP)
## Call:
## aov(formula = K.con..mg.mg.dry.weight ~ GenoConTiss, data = duf_ICP)
##
## Terms:
## GenoConTiss Residuals
## Sum of Squares 1377.611 2290.678
## Deg. of Freedom 7 16
##
## Residual standard error: 11.96526
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(K.con..mg.mg.dry.weight ~ GenoConTiss, data = duf_ICP))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = K.con..mg.mg.dry.weight ~ GenoConTiss, data = duf_ICP)
##
## $GenoConTiss
## diff lwr upr p adj
## control_root_duf-control_root_col 0.7099204 -33.11388 34.53372 1.0000000
## control_shoot_col-control_root_col -15.2225373 -49.04634 18.60126 0.7667731
## control_shoot_duf-control_root_col -19.7048391 -53.52864 14.11896 0.5009242
## salt_root_col-control_root_col -12.1794505 -46.00325 21.64435 0.9053795
## salt_root_duf-control_root_col -18.6910846 -52.51488 15.13271 0.5615436
## salt_shoot_col-control_root_col -16.5657970 -50.38960 17.25800 0.6900430
## salt_shoot_duf-control_root_col -16.3307343 -50.15453 17.49307 0.7038912
## control_shoot_col-control_root_duf -15.9324578 -49.75626 17.89134 0.7269969
## control_shoot_duf-control_root_duf -20.4147595 -54.23856 13.40904 0.4597816
## salt_root_col-control_root_duf -12.8893710 -46.71317 20.93443 0.8786539
## salt_root_duf-control_root_duf -19.4010051 -53.22480 14.42279 0.5189043
## salt_shoot_col-control_root_duf -17.2757174 -51.09952 16.54808 0.6475203
## salt_shoot_duf-control_root_duf -17.0406547 -50.86445 16.78314 0.6616943
## control_shoot_duf-control_shoot_col -4.4823017 -38.30610 29.34150 0.9997108
## salt_root_col-control_shoot_col 3.0430868 -30.78071 36.86689 0.9999784
## salt_root_duf-control_shoot_col -3.4685473 -37.29235 30.35525 0.9999476
## salt_shoot_col-control_shoot_col -1.3432596 -35.16706 32.48054 0.9999999
## salt_shoot_duf-control_shoot_col -1.1081970 -34.93200 32.71560 1.0000000
## salt_root_col-control_shoot_duf 7.5253885 -26.29841 41.34919 0.9925058
## salt_root_duf-control_shoot_duf 1.0137544 -32.81004 34.83755 1.0000000
## salt_shoot_col-control_shoot_duf 3.1390421 -30.68476 36.96284 0.9999733
## salt_shoot_duf-control_shoot_duf 3.3741047 -30.44969 37.19790 0.9999565
## salt_root_duf-salt_root_col -6.5116341 -40.33543 27.31217 0.9968630
## salt_shoot_col-salt_root_col -4.3863465 -38.21015 29.43745 0.9997492
## salt_shoot_duf-salt_root_col -4.1512838 -37.97508 29.67252 0.9998258
## salt_shoot_col-salt_root_duf 2.1252876 -31.69851 35.94909 0.9999982
## salt_shoot_duf-salt_root_duf 2.3603503 -31.46345 36.18415 0.9999962
## salt_shoot_duf-salt_shoot_col 0.2350627 -33.58874 34.05886 1.0000000
P6 = Output$GenoConTiss[,'p adj']
stat.test<- multcompLetters(P6)
stat.test
## $Letters
## control_root_duf control_shoot_col control_shoot_duf salt_root_col
## "a" "a" "a" "a"
## salt_root_duf salt_shoot_col salt_shoot_duf control_root_col
## "a" "a" "a" "a"
##
## $LetterMatrix
## a
## control_root_duf TRUE
## control_shoot_col TRUE
## control_shoot_duf TRUE
## salt_root_col TRUE
## salt_root_duf TRUE
## salt_shoot_col TRUE
## salt_shoot_duf TRUE
## control_root_col TRUE
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
k_content <- ggplot(data = duf_ICP, mapping = aes(x = GenoConTiss, y = K.con..mg.mg.dry.weight, colour = Condition))
k_content <- k_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
k_content <- k_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
k_content <- k_content + scale_color_manual(values= c("blue", "red"))
k_content <- k_content + ylab("K content, mg/mg dry weight") + xlab("")
k_content <- k_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
k_content <- k_content + stat_pvalue_manual(test, label = "Tukey", y.position = 80)
k_content
k_content <- ggplot(data = duf_ICP, mapping = aes(x = Genotype, y = K.con..mg.mg.dry.weight, colour = Genotype))
k_content <- k_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
k_content <- k_content + facet_grid(Tissue ~ Condition)
k_content <- k_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
k_content <- k_content + scale_color_manual(values= c("blue", "red"))
k_content <- k_content + ylab("K content, mg/mg dry weight") + xlab("")
k_content <- k_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
k_content <- k_content + rremove("legend")
#my_box_plot2 <- my_box_plot2 + stat_pvalue_manual(test, label = "Tukey", y.position = 80)
k_content
aov(Na.K.ratio ~ GenoConTiss, data = duf_ICP)
## Call:
## aov(formula = Na.K.ratio ~ GenoConTiss, data = duf_ICP)
##
## Terms:
## GenoConTiss Residuals
## Sum of Squares 2.5296248 0.0739099
## Deg. of Freedom 7 16
##
## Residual standard error: 0.06796596
## Estimated effects may be unbalanced
Output <- TukeyHSD(aov(Na.K.ratio ~ GenoConTiss, data = duf_ICP))
Output
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Na.K.ratio ~ GenoConTiss, data = duf_ICP)
##
## $GenoConTiss
## diff lwr upr
## control_root_duf-control_root_col 0.001336107 -0.19079238 0.1934646
## control_shoot_col-control_root_col 0.011596602 -0.18053189 0.2037251
## control_shoot_duf-control_root_col 0.013071667 -0.17905682 0.2052002
## salt_root_col-control_root_col 0.308294440 0.11616595 0.5004229
## salt_root_duf-control_root_col 0.279999840 0.08787135 0.4721283
## salt_shoot_col-control_root_col 0.779478922 0.58735043 0.9716074
## salt_shoot_duf-control_root_col 0.821901962 0.62977347 1.0140305
## control_shoot_col-control_root_duf 0.010260494 -0.18186799 0.2023890
## control_shoot_duf-control_root_duf 0.011735560 -0.18039293 0.2038640
## salt_root_col-control_root_duf 0.306958333 0.11482984 0.4990868
## salt_root_duf-control_root_duf 0.278663733 0.08653524 0.4707922
## salt_shoot_col-control_root_duf 0.778142814 0.58601433 0.9702713
## salt_shoot_duf-control_root_duf 0.820565855 0.62843737 1.0126943
## control_shoot_duf-control_shoot_col 0.001475066 -0.19065342 0.1936036
## salt_root_col-control_shoot_col 0.296697838 0.10456935 0.4888263
## salt_root_duf-control_shoot_col 0.268403238 0.07627475 0.4605317
## salt_shoot_col-control_shoot_col 0.767882320 0.57575383 0.9600108
## salt_shoot_duf-control_shoot_col 0.810305361 0.61817687 1.0024338
## salt_root_col-control_shoot_duf 0.295222773 0.10309428 0.4873513
## salt_root_duf-control_shoot_duf 0.266928173 0.07479968 0.4590567
## salt_shoot_col-control_shoot_duf 0.766407254 0.57427877 0.9585357
## salt_shoot_duf-control_shoot_duf 0.808830295 0.61670181 1.0009588
## salt_root_duf-salt_root_col -0.028294600 -0.22042309 0.1638339
## salt_shoot_col-salt_root_col 0.471184482 0.27905599 0.6633130
## salt_shoot_duf-salt_root_col 0.513607522 0.32147903 0.7057360
## salt_shoot_col-salt_root_duf 0.499479082 0.30735059 0.6916076
## salt_shoot_duf-salt_root_duf 0.541902122 0.34977363 0.7340306
## salt_shoot_duf-salt_shoot_col 0.042423041 -0.14970545 0.2345515
## p adj
## control_root_duf-control_root_col 1.0000000
## control_shoot_col-control_root_col 0.9999986
## control_shoot_duf-control_root_col 0.9999968
## salt_root_col-control_root_col 0.0008851
## salt_root_duf-control_root_col 0.0023414
## salt_shoot_col-control_root_col 0.0000000
## salt_shoot_duf-control_root_col 0.0000000
## control_shoot_col-control_root_duf 0.9999994
## control_shoot_duf-control_root_duf 0.9999985
## salt_root_col-control_root_duf 0.0009263
## salt_root_duf-control_root_duf 0.0024526
## salt_shoot_col-control_root_duf 0.0000000
## salt_shoot_duf-control_root_duf 0.0000000
## control_shoot_duf-control_shoot_col 1.0000000
## salt_root_col-control_shoot_col 0.0013153
## salt_root_duf-control_shoot_col 0.0035073
## salt_shoot_col-control_shoot_col 0.0000000
## salt_shoot_duf-control_shoot_col 0.0000000
## salt_root_col-control_shoot_duf 0.0013836
## salt_root_duf-control_shoot_duf 0.0036929
## salt_shoot_col-control_shoot_duf 0.0000000
## salt_shoot_duf-control_shoot_duf 0.0000000
## salt_root_duf-salt_root_col 0.9994238
## salt_shoot_col-salt_root_col 0.0000057
## salt_shoot_duf-salt_root_col 0.0000018
## salt_shoot_col-salt_root_duf 0.0000026
## salt_shoot_duf-salt_root_duf 0.0000009
## salt_shoot_duf-salt_shoot_col 0.9928336
P8 = Output$GenoConTiss[,'p adj']
stat.test<- multcompLetters(P8)
stat.test
## control_root_duf control_shoot_col control_shoot_duf salt_root_col
## "a" "a" "a" "b"
## salt_root_duf salt_shoot_col salt_shoot_duf control_root_col
## "b" "c" "c" "a"
test <- as.data.frame(stat.test$Letters)
test$group1 <- rownames(test)
test$group2 <- rownames(test)
colnames(test)[1] <- "Tukey"
test
ratio_content <- ggplot(data = duf_ICP, mapping = aes(x = GenoConTiss, y = Na.K.ratio, colour = Condition))
ratio_content <- ratio_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
ratio_content <- ratio_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
ratio_content <- ratio_content + scale_color_manual(values= c("blue", "red"))
ratio_content <- ratio_content + ylab("Na/K") + xlab("")
ratio_content <- ratio_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
ratio_content <- ratio_content + stat_pvalue_manual(test, label = "Tukey", y.position = 10)
ratio_content
ratio_content <- ggplot(data = duf_ICP, mapping = aes(x = Genotype, y = Na.K.ratio, colour = Genotype))
ratio_content <- ratio_content + geom_boxplot(alpha=0.2) + geom_jitter(width=0.1,alpha=0.2)
ratio_content <- ratio_content + facet_grid(Tissue ~ Condition)
ratio_content <- ratio_content + stat_summary(fun=mean, geom="point", shape=95, size=6, color="black", fill="black")
ratio_content <- ratio_content + scale_color_manual(values= c("blue", "red"))
ratio_content <- ratio_content + ylab("Na/K ratio") + xlab("")
ratio_content <- ratio_content + theme(axis.text.x = element_text(angle=90, hjust=0.9, vjust=0.5))
ratio_content <- ratio_content + rremove("legend")
ratio_content
#pdf("20220610_Arabidopsis_duf-5_ICP-MS_From_PlateRSA_Graphs.pdf", width = 13, height = 5)
#plot_grid(Na_content , k_content, ratio_content, labels = c("AUTO"), ncol = 3)
#dev.off()
Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.
When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).
The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.