suppressMessages(library(MASS, quietly = T))
suppressMessages(library(ISLR, quietly = T))
suppressMessages(library(ggplot2, quietly = T))
suppressMessages(library(corrplot, quietly = T))
suppressMessages(library("readxl",quietly = T))
suppressMessages(library(Metrics,quietly = T))
suppressMessages(library(ggpubr, quietly = T))
suppressMessages(library(tidyverse, quietly = T))
suppressMessages(library(boot,quietly = T))
suppressMessages(require(corrplot))
suppressMessages(library(e1071))

Actuadora FSAE GRUPO 6

suppressMessages(library(readxl, quietly = T))
suppressMessages(library(MASS, quietly = T))
suppressMessages(library(ISLR, quietly = T))
suppressMessages(library(ggplot2, quietly = T))
suppressMessages(library(corrplot, quietly = T))
suppressMessages(library("readxl",quietly = T))
suppressMessages(library(Metrics,quietly = T))
suppressMessages(library(ggpubr, quietly = T))
suppressMessages(library(tidyverse, quietly = T))
suppressMessages(library(boot,quietly = T))
suppressMessages(require(corrplot))
suppressMessages(library(e1071))


Actuadora_1 <- read_excel("C:/Users/User/OneDrive - Universidad Politécnica de Madrid/MasterIndustriales/Ingenia/Actuadora/Actuadora.xlsx",sheet = "Actuadora_1")
Actuadora_2 <- read_excel("C:/Users/User/OneDrive - Universidad Politécnica de Madrid/MasterIndustriales/Ingenia/Actuadora/Actuadora.xlsx", sheet = "Actuadora_2")
Actuadora_3 <- read_excel("C:/Users/User/OneDrive - Universidad Politécnica de Madrid/MasterIndustriales/Ingenia/Actuadora/Actuadora.xlsx", sheet = "Actuadora_3")

Fuerza y Galgas

Colors00<- c("Fuerza" = "black", "A_10" = "turquoise4","A_20" = "turquoise2")
p1<- ggplot(Actuadora_1) +
  geom_line(aes(y = fuerza , x = Time, color = "Fuerza")) +
  geom_line(aes(y = A_10 , x = Time, color = "A_10")) +
  geom_line(aes(y = A_20 , x = Time, color = "A_20"))+
  theme(legend.position="bottom")+
  ylab ("Fuerza (Scaled)") +
  ggtitle("Primer_Testeo")  +
  scale_color_manual(values = Colors00) + 
  labs(color = "Legend") +
  theme(legend.position="bottom")

p2<- ggplot(Actuadora_2) +
  geom_line(aes(y = fuerza , x = Time, color = "Fuerza")) +
  geom_line(aes(y = A_10 , x = Time, color = "A_10")) +
  geom_line(aes(y = A_20 , x = Time, color = "A_20"))+
  theme(legend.position="bottom")+
  ylab ("Fuerza (Scaled)") +
  ggtitle("Segundo_Testeo")  +
  scale_color_manual(values = Colors00) + 
  labs(color = "Legend") +
  theme(legend.position="bottom")

p3<- ggplot(Actuadora_1) +
  geom_line(aes(y = fuerza , x = Time, color = "Fuerza")) +
  geom_line(aes(y = A_10 , x = Time, color = "A_10")) +
  geom_line(aes(y = A_20 , x = Time, color = "A_20"))+
  theme(legend.position="bottom")+
  ylab ("Fuerza (Scaled)") +
  ggtitle("Tercer_Testeo")  +
  scale_color_manual(values = Colors00) + 
  labs(color = "Legend") +
  theme(legend.position="bottom")

p1

p2

p3

Correlaciones Actuadora

corr = cor(Actuadora_1[,c("A_10", "A_20","fuerza", 
                          "incli_sup", "Incli_inf")])
corrplot(corr,method="number",title="Primer_Testeo",mar=c(0,0,1,0))

corr = cor(Actuadora_2[,c("A_10", "A_20","fuerza", 
                          "incli_sup", "Incli_inf")])
corrplot(corr,method="number",title="Segundo_Testeo",mar=c(0,0,1,0))

corr = cor(Actuadora_3[,c("A_10", "A_20","fuerza", 
                          "incli_sup", "Incli_inf")])
corrplot(corr,method="number",title="Tercer_Testeo",mar=c(0,0,1,0))

Regresión Lineal Todas Las Galgas (A_10 y A_20)

modelo_simple_1 <- lm(formula = fuerza ~ Actuadora_1$A_10 + Actuadora_1$A_20, data = Actuadora_1)
modelo_simple_2 <- lm(formula = fuerza ~ Actuadora_2$A_10 + Actuadora_2$A_20, data = Actuadora_2)
modelo_simple_3 <- lm(formula = fuerza ~ Actuadora_3$A_10 + Actuadora_3$A_20, data = Actuadora_3)

summary(modelo_simple_1)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_1$A_10 + Actuadora_1$A_20, data = Actuadora_1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.4774  -2.6503  -0.0813   2.6930  13.0966 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -3.496908   0.145881  -23.97   <2e-16 ***
## Actuadora_1$A_10  0.257074   0.003542   72.57   <2e-16 ***
## Actuadora_1$A_20  0.279981   0.004342   64.48   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.929 on 8312 degrees of freedom
## Multiple R-squared:  0.9957, Adjusted R-squared:  0.9957 
## F-statistic: 9.58e+05 on 2 and 8312 DF,  p-value: < 2.2e-16
summary(modelo_simple_2)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_2$A_10 + Actuadora_2$A_20, data = Actuadora_2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -14.9805  -2.7133   0.0058   2.7111  13.7360 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      1.031479   0.067700   15.24   <2e-16 ***
## Actuadora_2$A_10 0.221676   0.003912   56.67   <2e-16 ***
## Actuadora_2$A_20 0.318069   0.004754   66.91   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.974 on 7051 degrees of freedom
## Multiple R-squared:  0.9931, Adjusted R-squared:  0.9931 
## F-statistic: 5.063e+05 on 2 and 7051 DF,  p-value: < 2.2e-16
summary(modelo_simple_3)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_3$A_10 + Actuadora_3$A_20, data = Actuadora_3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -13.4774  -2.6503  -0.0813   2.6930  13.0966 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -3.496908   0.145881  -23.97   <2e-16 ***
## Actuadora_3$A_10  0.257074   0.003542   72.57   <2e-16 ***
## Actuadora_3$A_20  0.279981   0.004342   64.48   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.929 on 8312 degrees of freedom
## Multiple R-squared:  0.9957, Adjusted R-squared:  0.9957 
## F-statistic: 9.58e+05 on 2 and 8312 DF,  p-value: < 2.2e-16
#Predecimos valores con los mismos que realizamos el modelo#
#Primer_Testeo
fuerzaPredict = predict(object = modelo_simple_1, newdata = Actuadora_1)
Actuadora_1$fuerzaPredict = fuerzaPredict 
rmse_1_2_G <- sqrt(sum((fuerzaPredict - Actuadora_1$fuerza)^2)/length(fuerzaPredict))

colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p11<-ggplot(data = Actuadora_1, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Primer_Testeo_2_Galgas")+ 
  scale_color_manual(values = colors)

#Sedundo Testeo
fuerzaPredict = predict(object = modelo_simple_2, newdata = Actuadora_2)
Actuadora_2$fuerzaPredict = fuerzaPredict 
rmse_2_2_G <- sqrt(sum((fuerzaPredict - Actuadora_2$fuerza)^2)/length(fuerzaPredict))


colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p22<-ggplot(data = Actuadora_2, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Segundo_Testeo_2_Galgas")+ 
  scale_color_manual(values = colors)

#Tercer Testeo
fuerzaPredict = predict(object = modelo_simple_3, newdata = Actuadora_3)
Actuadora_3$fuerzaPredict = fuerzaPredict 
rmse_3_2_G <- sqrt(sum((fuerzaPredict - Actuadora_3$fuerza)^2)/length(fuerzaPredict))


colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p33<-ggplot(data = Actuadora_3, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Tercer_Testeo_2_Galgas")+ 
  scale_color_manual(values = colors)

p11

p22

p33

Regresion Lineal A_10

modelo_simple_1 <- lm(formula = fuerza ~ Actuadora_1$A_10, data = Actuadora_1)
modelo_simple_2 <- lm(formula = fuerza ~ Actuadora_2$A_10, data = Actuadora_2)
modelo_simple_3 <- lm(formula = fuerza ~ Actuadora_3$A_10, data = Actuadora_3)

summary(modelo_simple_1)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_1$A_10, data = Actuadora_1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.7857  -3.4611   0.1044   3.1906  17.1563 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.1847137  0.0687875   75.37   <2e-16 ***
## Actuadora_1$A_10 0.4843829  0.0004291 1128.94   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.812 on 8313 degrees of freedom
## Multiple R-squared:  0.9935, Adjusted R-squared:  0.9935 
## F-statistic: 1.275e+06 on 1 and 8313 DF,  p-value: < 2.2e-16
summary(modelo_simple_2)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_2$A_10, data = Actuadora_2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -17.9508  -3.3763  -0.0615   3.6065  20.4906 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.3346908  0.0745338   44.74   <2e-16 ***
## Actuadora_2$A_10 0.4814381  0.0006131  785.27   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.081 on 7052 degrees of freedom
## Multiple R-squared:  0.9887, Adjusted R-squared:  0.9887 
## F-statistic: 6.167e+05 on 1 and 7052 DF,  p-value: < 2.2e-16
summary(modelo_simple_3)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_3$A_10, data = Actuadora_3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -20.7857  -3.4611   0.1044   3.1906  17.1563 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      5.1847137  0.0687875   75.37   <2e-16 ***
## Actuadora_3$A_10 0.4843829  0.0004291 1128.94   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.812 on 8313 degrees of freedom
## Multiple R-squared:  0.9935, Adjusted R-squared:  0.9935 
## F-statistic: 1.275e+06 on 1 and 8313 DF,  p-value: < 2.2e-16
#Predecimos valores con los mismos que realizamos el modelo#
#Primer_Testeo
fuerzaPredict = predict(object = modelo_simple_1, newdata = Actuadora_1)
Actuadora_1$fuerzaPredict = fuerzaPredict 
rmse_1_A_10 <- sqrt(sum((fuerzaPredict - Actuadora_1$fuerza)^2)/length(fuerzaPredict))


colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p111<-ggplot(data = Actuadora_1, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Primer_Testeo_A10")+ 
  scale_color_manual(values = colors)

#Sedundo Testeo
fuerzaPredict = predict(object = modelo_simple_2, newdata = Actuadora_2)
Actuadora_2$fuerzaPredict = fuerzaPredict 
rmse_2_A_10 <- sqrt(sum((fuerzaPredict - Actuadora_2$fuerza)^2)/length(fuerzaPredict))


colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p222<-ggplot(data = Actuadora_2, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Segundo_Testeo_A10")+ 
  scale_color_manual(values = colors)

#Tercer Testeo
fuerzaPredict = predict(object = modelo_simple_3, newdata = Actuadora_3)
Actuadora_3$fuerzaPredict = fuerzaPredict 
rmse_3_A_10 <- sqrt(sum((fuerzaPredict - Actuadora_3$fuerza)^2)/length(fuerzaPredict))


colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p333<-ggplot(data = Actuadora_3, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Tercer_Testeo_A_10")+ 
  scale_color_manual(values = colors)



p111

p222

p333

Regresión Lineal A_20

modelo_simple_1 <- lm(formula = fuerza ~ Actuadora_1$A_20, data = Actuadora_1)
modelo_simple_2 <- lm(formula = fuerza ~ Actuadora_2$A_20, data = Actuadora_2)
modelo_simple_3 <- lm(formula = fuerza ~ Actuadora_3$A_20, data = Actuadora_3)

summary(modelo_simple_1)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_1$A_20, data = Actuadora_1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -17.9761  -3.4658  -0.0659   3.4256  17.0756 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -1.296e+01  8.355e-02  -155.1   <2e-16 ***
## Actuadora_1$A_20  5.935e-01  5.488e-04  1081.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.022 on 8313 degrees of freedom
## Multiple R-squared:  0.9929, Adjusted R-squared:  0.9929 
## F-statistic: 1.17e+06 on 1 and 8313 DF,  p-value: < 2.2e-16
summary(modelo_simple_2)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_2$A_20, data = Actuadora_2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -18.4811  -3.2276   0.1595   3.1522  15.4357 
## 
## Coefficients:
##                   Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -0.667996   0.073219  -9.123   <2e-16 ***
## Actuadora_2$A_20  0.585425   0.000703 832.806   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 4.794 on 7052 degrees of freedom
## Multiple R-squared:  0.9899, Adjusted R-squared:  0.9899 
## F-statistic: 6.936e+05 on 1 and 7052 DF,  p-value: < 2.2e-16
summary(modelo_simple_3)
## 
## Call:
## lm(formula = fuerza ~ Actuadora_3$A_20, data = Actuadora_3)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -17.9761  -3.4658  -0.0659   3.4256  17.0756 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      -1.296e+01  8.355e-02  -155.1   <2e-16 ***
## Actuadora_3$A_20  5.935e-01  5.488e-04  1081.6   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 5.022 on 8313 degrees of freedom
## Multiple R-squared:  0.9929, Adjusted R-squared:  0.9929 
## F-statistic: 1.17e+06 on 1 and 8313 DF,  p-value: < 2.2e-16
#Predecimos valores con los mismos que realizamos el modelo#
#Primer_Testeo
fuerzaPredict = predict(object = modelo_simple_1, newdata = Actuadora_1)
Actuadora_1$fuerzaPredict = fuerzaPredict 
rmse_1_A_20 <- sqrt(sum((fuerzaPredict - Actuadora_1$fuerza)^2)/length(fuerzaPredict))


colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p111<-ggplot(data = Actuadora_1, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Primer_Testeo_A20")+ 
  scale_color_manual(values = colors)

#Sedundo Testeo
fuerzaPredict = predict(object = modelo_simple_2, newdata = Actuadora_2)
Actuadora_2$fuerzaPredict = fuerzaPredict 
rmse_2_A_20 <- sqrt(sum((fuerzaPredict - Actuadora_2$fuerza)^2)/length(fuerzaPredict))


colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p222<-ggplot(data = Actuadora_2, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Segundo_Testeo_A20")+ 
  scale_color_manual(values = colors)

#Tercer Testeo
fuerzaPredict = predict(object = modelo_simple_3, newdata = Actuadora_3)
Actuadora_3$fuerzaPredict = fuerzaPredict 
rmse_3_A_20 <- sqrt(sum((fuerzaPredict - Actuadora_3$fuerza)^2)/length(fuerzaPredict))


colors <- c("Fuerza_Real" = "black", "Fuerza_Predicha" = "aquamarine")
p333<-ggplot(data = Actuadora_3, aes(x = c(1:length(fuerza)))) +
  geom_line(aes(y = fuerza, color = "Fuerza_Real"), linetype = "solid") +
  geom_line(aes(y = fuerzaPredict, color = "Fuerza_Predicha"), linetype = "dashed") +
  labs(x = "Values",
       y = "Fuerza",
       color = "Legend") +
  ylab ("Fuerza (Scaled)") +
  ggtitle("Tercer_Testeo_A_20")+ 
  scale_color_manual(values = colors)

p111

p222

p333

Comparación

modelo <- c("Todas_Galgas_Primer_Testeo","A_10_Primer_Testeo", "A_20_Primer_Testeo",
            "Todas_Galgas_Segundo_Testeo", "A_10_Segundo_Testeo", "A_20_Segundo_Testeo",
            "Todas_Galgas_Tercer_Testeo","A_10_Tercer_Testeo", "A_20_Tercer_Testeo")
test.MSE <- c(rmse_1_2_G ,rmse_1_A_10,rmse_1_A_20,
              rmse_2_2_G ,rmse_2_A_10,rmse_2_A_20,
              rmse_3_2_G ,rmse_3_A_10,rmse_3_A_20)

comparacion <- data.frame(modelo = modelo, test.MSE = test.MSE)

p_comp00<- ggplot(data = comparacion, aes(x = reorder(x = modelo, X = test.MSE), 
                                          y = test.MSE, color = modelo, 
                                          label = round(test.MSE,2))) + 
  geom_point(size = 15) + 
  geom_text(color = "white", size = 4) + 
  labs(x = "Modelo regresión", y = "Test error(RMSE)", title = "RMSE all models lineal") + theme_bw() + 
  coord_flip() + theme(legend.position = "none")
#####
p_comp00