Table 1

Demographics by FST (with P-values)

Table 1. Demographics by Fitzpatrick Scale
Demographics Overall, N = 8541 Fitzpatrick Skin Type (FST) p-value2
FST Type I
N = 97 (11%)1
FST Type II
N = 665 (78%)1
FST Type III-V
N = 92 (11%)1
Patient Age <0.001
Mean (SD) 58 (14) 64 (14) 59 (13) 50 (15)
Median (IQR) 60 (51, 68) 66 (57, 73) 60 (51, 68) 50 (40, 61)
Range 10, 94 27, 94 10, 92 17, 90
Sex 0.7
Male 446 (52%) 50 (52%) 344 (52%) 52 (57%)
Female 408 (48%) 47 (48%) 321 (48%) 40 (43%)
Melanocytosis 0.002
No 815 (97%) 92 (99%) 641 (97%) 82 (91%)
Yes 27 (3.2%) 1 (1.1%) 18 (2.7%) 8 (8.9%)
Heterochromia 0.068
No 825 (98%) 92 (99%) 646 (98%) 87 (97%)
Yes 17 (2.0%) 1 (1.1%) 13 (2.0%) 3 (3.3%)
Study Eye 0.13
Right Eye 457 (54%) 55 (57%) 359 (54%) 43 (47%)
Left Eye 396 (46%) 42 (43%) 306 (46%) 48 (53%)
Visual Acuity 0.060
20/20-20/50 624 (73%) 66 (68%) 501 (75%) 57 (62%)
20/60-20/200 147 (17%) 21 (22%) 104 (16%) 22 (24%)
20/400-NLP 83 (9.7%) 10 (10%) 60 (9.0%) 13 (14%)
1 n (%)
2 Kruskal-Wallis rank sum test; Pearson's Chi-squared test; Fisher's exact test

Tables 2

A) Clinical Features by FST

Table 2A. Clinical Features by Fitzpatrick Scale
Clinical Features Overall, N = 8541 Fitzpatrick Skin Type (FST) p-value2
FST Type I
N = 97 (11%)1
FST Type II
N = 665 (78%)1
FST Type III-V
N = 92 (11%)1
Distance to optic disc (mm) 0.4
Mean (SD) 4.6 (4.2) 4.9 (4.0) 4.5 (4.3) 4.9 (4.5)
Median (IQR) 4.0 (1.0, 7.0) 4.0 (2.0, 7.0) 3.5 (1.0, 7.0) 4.0 (1.0, 7.0)
Range 0.0, 20.0 0.0, 15.0 0.0, 20.0 0.0, 19.0
Unknown 52 4 37 11
Distance to foveola (mm) 0.3
Mean (SD) 4.4 (4.2) 4.7 (3.8) 4.3 (4.3) 4.3 (4.5)
Median (IQR) 3.0 (1.0, 6.0) 4.0 (1.0, 7.0) 3.0 (1.0, 6.0) 3.0 (0.0, 6.0)
Range 0.0, 18.4 0.0, 15.0 0.0, 18.4 0.0, 17.0
Unknown 53 4 38 11
Largest basal diameter (mm) 0.003
Mean (SD) 12.3 (4.4) 13.2 (4.2) 12.0 (4.3) 13.3 (4.7)
Median (IQR) 12.0 (9.0, 16.0) 14.0 (10.0, 16.0) 12.0 (8.0, 16.0) 14.0 (9.0, 17.0)
Range 1.0, 24.0 5.0, 24.0 1.0, 24.0 3.5, 22.0
Thickness at DFS (mm) 0.029
Mean (SD) 5.8 (3.3) 6.0 (3.5) 5.6 (3.2) 6.7 (3.8)
Median (IQR) 4.9 (3.0, 8.0) 5.1 (3.1, 8.1) 4.7 (3.0, 7.8) 5.8 (3.0, 9.9)
Range 0.7, 20.4 1.0, 20.4 1.0, 19.8 0.7, 16.0
Thickness at DLS (mm) <0.001
Mean (SD) 3.23 (2.03) 3.25 (1.86) 3.09 (1.95) 4.23 (2.47)
Median (IQR) 2.60 (2.00, 3.90) 2.60 (1.90, 3.95) 2.50 (1.90, 3.60) 3.30 (2.40, 5.40)
Range 0.00, 19.80 1.00, 12.50 0.00, 19.80 0.70, 12.00
Unknown 62 6 49 7
Change in thickness (DLS-DFS) 0.2
Mean (SD) -2.23 (2.27) -2.46 (2.25) -2.22 (2.24) -2.09 (2.49)
Median (IQR) -1.50 (-3.50, -0.60) -1.70 (-4.05, -0.75) -1.60 (-3.40, -0.60) -1.10 (-3.70, -0.40)
Range -13.50, 5.10 -8.30, 2.10 -13.50, 5.10 -10.80, 2.90
Unknown 62 6 49 7
Percent change in thickness (DLS-DFS/DFS) 0.005
Mean (SD) -0.35 (0.28) -0.37 (0.27) -0.35 (0.28) -0.27 (0.26)
Median (IQR) -0.37 (-0.54, -0.18) -0.41 (-0.57, -0.22) -0.37 (-0.54, -0.18) -0.24 (-0.45, -0.12)
Range -1.00, 2.12 -0.76, 0.81 -1.00, 2.12 -0.79, 0.55
Unknown 62 6 49 7
Tumor epicenter 0.2
Choroid 772 (91%) 92 (95%) 603 (91%) 77 (84%)
Ciliary Body 64 (7.5%) 4 (4.1%) 49 (7.4%) 11 (12%)
Iris 16 (1.9%) 1 (1.0%) 11 (1.7%) 4 (4.3%)
1 n (%)
2 Kruskal-Wallis rank sum test; Fisher's exact test

Table 3

Clinical Treatment/Management by FST

Table 3. Clinical Treatment/Management by Fitzpatrick Scale
Clinical Treatment/Management Overall, N = 8541 Fitzpatrick Skin Type (FST) p-value2
FST Type I
N = 97 (11%)1
FST Type II
N = 665 (78%)1
FST Type III-V
N = 92 (11%)1
Time from DFS to date of treatment (mons) 0.5
Mean (SD) 1.62 (9.11) 2.15 (9.79) 1.71 (9.61) 0.38 (0.76)
Median (IQR) 0.10 (0.10, 0.33) 0.10 (0.10, 0.33) 0.10 (0.10, 0.33) 0.10 (0.10, 0.33)
Range -28.43, 122.07 -0.23, 68.70 -28.43, 122.07 -0.23, 5.57
Treatment 0.3
Plaque 657 (77%) 66 (68%) 518 (78%) 73 (79%)
Plaque and TTT 131 (15%) 25 (26%) 93 (14%) 13 (14%)
Plaque and PDT 5 (0.6%) 2 (2.1%) 3 (0.5%) 0 (0%)
Enucleation 55 (6.4%) 4 (4.1%) 45 (6.8%) 6 (6.5%)
PLSU 2 (0.2%) 0 (0%) 2 (0.3%) 0 (0%)
Stereotactic Radiation 1 (0.1%) 0 (0%) 1 (0.2%) 0 (0%)
No Follow up after FNAB 2 (0.2%) 0 (0%) 2 (0.3%) 0 (0%)
Fine Needle Aspiration Biopsy (FNAB) >0.9
No 2 (0.2%) 0 (0%) 2 (0.3%) 0 (0%)
Yes 852 (100%) 97 (100%) 663 (100%) 92 (100%)
Route of FNAB
Not done 4 (0.5%) 1 (1.0%) 3 (0.5%) 0 (0%)
Trans-scleral 230 (27%) 32 (33%) 167 (25%) 31 (34%)
Pars Plana 544 (64%) 59 (61%) 434 (66%) 51 (57%)
Clear Cornea 22 (2.6%) 1 (1.0%) 18 (2.7%) 3 (3.3%)
Enucleation 48 (5.7%) 3 (3.1%) 40 (6.0%) 5 (5.6%)
Cells Visible 0.8
No 153 (19%) 18 (20%) 120 (19%) 15 (17%)
Yes 653 (81%) 70 (80%) 509 (81%) 74 (83%)
1 n (%)
2 Kruskal-Wallis rank sum test; Fisher's exact test; Pearson's Chi-squared test

Table 4

Outcomes by FST

Table 4. Outcomes by Fitzpatrick Scale
Outcomes Overall, N = 8541 Fitzpatrick Skin Type (FST) p-value2
FST Type I
N = 97 (11%)1
FST Type II
N = 665 (78%)1
FST Type III-V
N = 92 (11%)1
Follow-up period (mons) 0.3
Mean (SD) 43 (35) 39 (30) 44 (36) 41 (37)
Median (IQR) 33 (17, 63) 34 (14, 58) 34 (18, 64) 28 (15, 54)
Range 0, 210 0, 115 0, 210 0, 154
Unknown 3 0 1 2
Local Recurrence 0.3
No 828 (97%) 94 (97%) 645 (97%) 89 (98%)
Yes 25 (2.9%) 3 (3.1%) 20 (3.0%) 2 (2.2%)
Vision Loss 0.6
No 374 (44%) 39 (41%) 291 (44%) 44 (48%)
Yes 474 (56%) 57 (59%) 370 (56%) 47 (52%)
Death 0.003
No 808 (95%) 85 (88%) 636 (96%) 87 (96%)
Yes 45 (5.3%) 12 (12%) 29 (4.4%) 4 (4.4%)
Death from malignant melanoma 0.006
No 35 (78%) 9 (69%) 22 (79%) 4 (100%)
Yes 10 (22%) 4 (31%) 6 (21%) 0 (0%)
1 n (%)
2 Kruskal-Wallis rank sum test; Fisher's exact test

Tables 5 (A, B and C)

A) Univariate Analysis

Table 5A. Metastasis by Fitzpatrick Scale
Outcomes Overall, N = 8541 Fitzpatrick Skin Type (FST) p-value2
FST Type I
N = 97 (11%)1
FST Type II
N = 665 (78%)1
FST Type III-V
N = 92 (11%)1
Metastasis 0.019
No 708 (83%) 72 (74%) 559 (84%) 77 (85%)
Yes 145 (17%) 25 (26%) 106 (16%) 14 (15%)
Location of Metastasis 0.023
Liver metastasis 113 (78%) 20 (80%) 83 (78%) 10 (71%)
Lung metastasis 4 (2.8%) 0 (0%) 4 (3.8%) 0 (0%)
Liver and lung metastasis 25 (17%) 4 (16%) 19 (18%) 2 (14%)
Other metastasis 3 (2.1%) 1 (4.0%) 0 (0%) 2 (14%)
1 n (%)
2 Fisher's exact test

B) Univariate Binomial Regression

Interpretation: as the Fitzpatrick scale increases (i.e. as skin color becomes darker), the odds of metastasis decrease!
Table 5B. Univariate Regression of Metastasis based on Fitzpatrick Scale
Metastasis N Event N OR1 95% CI1 p-value q-value2
Fitzpatrick Skin Type (FST) 853 0.066 0.066
FST Type I 25
FST Type II 106 0.55 0.33, 0.91
FST Type III-V 14 0.52 0.25, 1.07
1 OR = Odds Ratio, CI = Confidence Interval
2 False discovery rate correction for multiple testing
Table 5B. Univariate Regression of Metastasis based on Fitzpatrick Scale
Metastasis N Event N1 OR2 95% CI2 p-value q-value3
Fitzpatrick Skin Type (FST) 853 0.014 0.014
FST Type I 12
FST Type II 29 0.32 0.16, 0.68
FST Type III-V 4 0.33 0.09, 0.98
1 There were no instances of metastasis for FST types IV and V
2 OR = Odds Ratio, CI = Confidence Interval
3 False discovery rate correction for multiple testing

C) Multivariate Regression

Adjustments will be made for: age, tumor largest diameter, and thickness

I will try both Poisson and Binomial distributions for the glm link function (not sure which one is more accurate). A binomial logistic regression was used in the Genetic Analysis of Uveal Melanoma paper from 2019.

Explanation of when to use Poisson versus Binomial from stackexchange:

"If your outcome is discrete, or more precisely, you are dealing with counts (how many times something happen in given time interval),then the most common choice of the distribution to start with is Poisson distribution. The problem with Poisson distribution is that it is rather inflexible in the fact that it assumes that mean is equal to variance, if this assumption is not met, you may consider using quasi-Poisson family, or negative binomial distribution (see also Definition of dispersion parameter for quasipoisson family).

If your outcome is binary (zeros and ones), proportions of “successes” and “failures” (values between 0 and 1), or their counts, you can use Binomial distribution, i.e. the logistic regression model. If there is more then two categories, you would use multinomial distribution in multinomial regression."

C.1) Poisson

Interpretation: FST becomes less of a protective factor for metastasis as adjustments for age, largest basal diameter, and thickness DLS are made.

Table 5C. Staged, Multivariate Regression of Metastasis (Poisson)
Characteristic Metastasis ~ FST Metastasis ~ FST + Age Metastasis ~ FST + Age + Largest Basal Diameter Metastasis ~ FST + Age + Largest Basal Diameter + Thickness DLS
IRR1 95% CI1 p-value2 IRR1 95% CI1 p-value2 IRR1 95% CI1 p-value2 IRR1 95% CI1 p-value2
Fitzpatrick Skin Type (FST) 0.72 0.52, 0.99 0.046 0.78 0.56, 1.10 0.2 0.77 0.56, 1.05 0.10 0.75 0.54, 1.05 0.095
Age 1.01 1.00, 1.03 0.036 1.01 0.99, 1.02 0.3 1.01 1.00, 1.02 0.13
Largest Basal Diameter (mm) 1.18 1.14, 1.23 <0.001 1.24 1.17, 1.30 <0.001
Thickness DLS (mm) 0.95 0.88, 1.03 0.2
1 IRR = Incidence Rate Ratio, CI = Confidence Interval
2 Statistically significant P-values (<0.05) emboldened

C.2) Binomial

Interpretation: Similar trends to the Poisson regressions. FST become less of a protective factor for metastasis when adjustments for age, largest basal diameter, and thickness DLS are made.

Table 5C. Staged, Multivariate Regression of Metastasis (Binomial)
Characteristic Metastasis ~ FST Metastasis ~ FST + Age Metastasis ~ FST + Age + Largest Basal Diameter Metastasis ~ FST + Age + Largest Basal Diameter + Thickness DLS
OR1 95% CI1 p-value2 OR1 95% CI1 p-value2 OR1 95% CI1 p-value2 OR1 95% CI1 p-value2
Fitzpatrick Skin Type (FST) 0.67 0.46, 0.96 0.030 0.74 0.51, 1.08 0.12 0.69 0.47, 0.99 0.047 0.67 0.45, 0.99 0.048
Age 1.02 1.00, 1.03 0.021 1.01 1.00, 1.02 0.2 1.01 1.00, 1.03 0.070
Largest Basal Diameter (mm) 1.25 1.19, 1.31 <0.001 1.31 1.23, 1.40 <0.001
Thickness DLS (mm) 0.94 0.85, 1.04 0.2
1 OR = Odds Ratio, CI = Confidence Interval
2 Statistically significant P-values (<0.05) emboldened

Survival Analysis

Table 6

Adjusted Hazard Ratios of Metastasis and Death for FST and Relevant Covariates
Characteristic Metastasis Death
HR1 95% CI1 p-value HR1 95% CI1 p-value
FST 0.72 0.52, 0.99 0.045 0.91 0.47, 1.78 0.8
Age 1.03 1.01, 1.04 <0.001 1.04 1.01, 1.07 0.019
Largest Basal Diameter 1.03 0.97, 1.10 0.3 0.95 0.84, 1.09 0.5
Thickness DLS (mm) 1.19 1.07, 1.32 <0.001 1.29 1.03, 1.62 0.027
1 HR = Hazard Ratio, CI = Confidence Interval

Risk of and Survival Probability of Metastasis

Risk of and Survival Probability of Death

Log-Rank Tests and Cox Models for Metastasis

#Log-rank test: difference between the survival curves for metastasis
survival::survdiff(Surv(time_till_mets_new, mets_new) ~ fst_grouped, data=data)
## Call:
## survival::survdiff(formula = Surv(time_till_mets_new, mets_new) ~ 
##     fst_grouped, data = data)
## 
## n=139, 715 observations deleted due to missingness.
## 
##                 N Observed Expected (O-E)^2/E (O-E)^2/V
## fst_grouped=1  23       23     21.2     0.161     0.194
## fst_grouped=2 102      102     98.3     0.140     0.493
## fst_grouped=3  14       14     19.6     1.581     1.985
## 
##  Chisq= 2  on 2 degrees of freedom, p= 0.4
# Traditional adjustment for confounders is to use a Cox model and estimate hazard ratio
# Unadjusted Cox model
survival::coxph(Surv(time_till_mets_new, mets_new) ~ fst_grouped, data = data)
## Call:
## survival::coxph(formula = Surv(time_till_mets_new, mets_new) ~ 
##     fst_grouped, data = data)
## 
##                coef exp(coef) se(coef)      z     p
## fst_grouped -0.1928    0.8247   0.1611 -1.196 0.232
## 
## Likelihood ratio test=1.43  on 1 df, p=0.2318
## n= 139, number of events= 139 
##    (715 observations deleted due to missingness)
# Adjusted Cox model
survival::coxph(Surv(time_till_mets_new, mets_new) ~ fst_grouped + age + largest_basal_diameter + thickness_dls, data = data)
## Call:
## survival::coxph(formula = Surv(time_till_mets_new, mets_new) ~ 
##     fst_grouped + age + largest_basal_diameter + thickness_dls, 
##     data = data)
## 
##                             coef exp(coef)  se(coef)      z        p
## fst_grouped            -0.334225  0.715893  0.166843 -2.003 0.045153
## age                     0.028326  1.028731  0.007826  3.619 0.000295
## largest_basal_diameter  0.031738  1.032247  0.030256  1.049 0.294191
## thickness_dls           0.173688  1.189684  0.051972  3.342 0.000832
## 
## Likelihood ratio test=30.18  on 4 df, p=4.497e-06
## n= 123, number of events= 123 
##    (731 observations deleted due to missingness)

Log-Rank Tests and Cox Models for Death

#Log-rank test: difference between the survival curves
survival::survdiff(Surv(time_till_death, death_new) ~ fst_grouped, data=data)
## Call:
## survival::survdiff(formula = Surv(time_till_death, death_new) ~ 
##     fst_grouped, data = data)
## 
## n=42, 812 observations deleted due to missingness.
## 
##                N Observed Expected (O-E)^2/E (O-E)^2/V
## fst_grouped=1 11       10     9.43    0.0339     0.050
## fst_grouped=2 27       26    23.60    0.2434     0.666
## fst_grouped=3  4        4     6.96    1.2605     1.650
## 
##  Chisq= 1.7  on 2 degrees of freedom, p= 0.4
# Traditional adjustment for confounders is to use a Cox model and estimate hazard ratio
# Unadjusted Cox model
survival::coxph(Surv(time_till_death, death_new) ~ fst_grouped, data = data)
## Call:
## survival::coxph(formula = Surv(time_till_death, death_new) ~ 
##     fst_grouped, data = data)
## 
##                coef exp(coef) se(coef)      z     p
## fst_grouped -0.2397    0.7869   0.2595 -0.924 0.356
## 
## Likelihood ratio test=0.86  on 1 df, p=0.3551
## n= 42, number of events= 40 
##    (812 observations deleted due to missingness)
# Adjusted Cox model
survival::coxph(Surv(time_till_death, death_new) ~ fst_grouped + age + largest_basal_diameter + thickness_dls, data = data)
## Call:
## survival::coxph(formula = Surv(time_till_death, death_new) ~ 
##     fst_grouped + age + largest_basal_diameter + thickness_dls, 
##     data = data)
## 
##                            coef exp(coef) se(coef)      z      p
## fst_grouped            -0.09265   0.91151  0.34191 -0.271 0.7864
## age                     0.03626   1.03693  0.01547  2.344 0.0191
## largest_basal_diameter -0.04669   0.95438  0.06697 -0.697 0.4857
## thickness_dls           0.25716   1.29325  0.11608  2.215 0.0267
## 
## Likelihood ratio test=7.75  on 4 df, p=0.1014
## n= 37, number of events= 36 
##    (817 observations deleted due to missingness)