Financial Mathematics 1 - Sample Final
Instructor: Dr. Le Nhat Tan
1 Problems
1.1 Question 1
Given three assets \(S_1,S_2,S_3\) with annual mean returns \(r_1=4\%,r_2=5\%,r_3=6\%,\) volatilities \(\sigma_1=2\%,\sigma_2=4\%,\sigma_3=8\%\) and correlations \(\rho_{12}=0.1,\rho_{23}=0.2,\rho_{13}=-0.1.\)
- (15 pts) If short sell is permitted, find the efficient portfolio \(P_1\) with the mean return \(4.8\%.\)
- (15 pts) If short sell is not permitted, find the minimum variance portfolio \(P_2.\)
1.2 Question 2
Consider a \(1-\)year forward contract on a stock of current price $\(100.\) The risk-free rate \(r\) is \(5\%\) p.a.
- (10 pts) Assume \(r\) compounds semi-annually. Compute the delivery price of this contract if (i) the stock pays no dividend and (ii) the stock pays a \(4\%\) dividend every \(6\) months (the \(1^{\textrm{st}}\) dividend payment is in \(6\) months).
- (10 pts) Assume \(r\) compounds continuously. Compute the delivery price of this contract if (i) the stock pays no dividend and (ii) the stock pays a \(4\%\) dividend p.a. continuously.
1.3 Question 3
Consider a \(1-\)year European put of $\(5\) with strike price $\(50\) on a stock \(S\) of current price $\(52.\) Assume the continuously compounded interest rate \(r\) is \(8\%.\)
- (10 pts) Evaluate the value of a \(1-\)year European call option \(C\) on the same stock, with the same strike price.
- (6 pts) What is the maximum loss to the buyer of this call?
- (10 pts) Assume that a \(1-\)year European call \(C'\) with the strike price $\(49\) is priced at $\(12.\) Show that there exists an arbitrage opportunity. What should you do to earn at least $\(100\) guaranteed profit?
1.4 Question 4
Consider a \(1-\) year European put with strike price $\(100\) on a stock of current price $\(90.\) Assume the stock volatility is \(20\%\) p.a. and the interest rate \(r\) is \(5\%\) p.a. compounded continuously. Consider the \(3-\)step CRR model.
- (6 pts) Draw the binomial tree and compute the stock price at each node.
- (6 pts) Compute the option price at each node.
- (10 pts) Compute the price of the corresponding American put option.
- (2 pts) When should the American put option be exercised?
2 Solutions
2.1 Question 1
Note that \[\sigma_1^2=\frac{1}{2500},\sigma_2^2=\frac{1}{625},\sigma_3^2=\frac{4}{625},\] \[\rho_{12}=\frac{1}{12500},\rho_{23}=\frac{2}{3125},\rho_{13}=\frac{-1}{6250}.\] Assume \(P=(\omega_1,\omega_2,1-\omega_1-\omega_2),\) the portfolio return is \[\begin{align*}r_P &= \omega_1r_1+\omega_2r_2+(1-\omega_1-\omega_2)r_3\\ &= \omega_1\left(4\%-6\%\right)+\omega_2\left(5\%-6\%\right)+6\%\\ &= 0.06-0.02\omega_1-0.01\omega_2\end{align*}\] and portfolio variance is \[\begin{align*}\sigma_P^2 &= \omega_1^2\sigma_1^2+\omega_2^2\sigma_2^2+(1-\omega_1-\omega_2)^2\sigma_3^2+2\omega_1\omega_2\rho_{12}+2\omega_2(1-\omega_1-\omega_2)\rho_{23}\\ &+2\omega_1(1-\omega_1-\omega_2)\rho_{13}\\&= \omega_1^2\left(\frac{1}{2500}+\frac{4}{625}+\frac{1}{3125}\right)+\omega_2^2\left(\frac{1}{625}+\frac{4}{625}-\frac{4}{3125}\right)\\&+ \omega_1\omega_2\left(\frac{8}{625}+\frac{1}{6250}-\frac{4}{3125}+\frac{1}{3125}\right)\\&+ \omega_1\left(\frac{-8}{625}-\frac{1}{3125}\right)+\omega_2\left(\frac{-8}{625}+\frac{4}{3125}\right)+\frac{4}{625}\\&= \frac{89\omega_1^2}{12500}+\frac{21\omega_2^2}{3125}+\frac{3\omega_1\omega_2}{250}-\frac{41\omega_1}{3125}-\frac{36\omega_2}{3125}+\frac{4}{625}\end{align*}\]
2.1.1 Part 1
The corresponding linear program is \[\begin{matrix}\textrm{minimize} & \sigma_P^2\\ \textrm{subject to} & r_P=0.048\\ & \omega_1,\omega_2\in\mathbb{R}\end{matrix}\] i.e. \[\begin{matrix}\textrm{minimize} & \frac{89\omega_1^2}{12500}+\frac{21\omega_2^2}{3125}+\frac{3\omega_1\omega_2}{250}-\frac{41\omega_1}{3125}-\frac{36\omega_2}{3125}+\frac{4}{625}\\ \textrm{subject to} & 0.06-0.02\omega_1-0.01\omega_2=0.048\\ & \omega_1,\omega_2\in\mathbb{R}\end{matrix}\] The Lagrangian function is \[\begin{align*}\mathcal{L}(\omega_1,\omega_2,\lambda) &= \frac{89\omega_1^2}{12500}+\frac{21\omega_2^2}{3125}+\frac{3\omega_1\omega_2}{250}-\frac{41\omega_1}{3125}-\frac{36\omega_2}{3125}\\&+\frac{4}{625}+\lambda(0.012-0.02\omega_1-0.01\omega_2)\end{align*}\] with the system \[\left\{\begin{matrix} \frac{89\omega_1}{6250}+\frac{3\omega_2}{250}-\frac{41}{3125}-0.02\lambda=0\\ \frac{42\omega_2}{3125}+\frac{3\omega_1}{250}-\frac{36}{3125}-0.01\lambda=0\\ 0.012-0.02\omega_1-0.01\omega_2=0 \end{matrix}\right.\Rightarrow\left\{\begin{matrix}\omega_1=248/625\\\omega_2=254/625\\\lambda\approx-0.1296\end{matrix}\right..\] The optimal portfolio is \(\left(\frac{248}{625},\frac{254}{625},\frac{123}{625}\right)\) with the variance \(6.783\cdot10^{-4}.\)
2.1.2 Part 2
The corresponding linear program is \[\begin{matrix}\textrm{minimize} & \frac{89\omega_1^2}{12500}+\frac{21\omega_2^2}{3125}+\frac{3\omega_1\omega_2}{250}-\frac{41\omega_1}{3125}-\frac{36\omega_2}{3125}+\frac{4}{625}\\ \textrm{subject to} & \omega_1+\omega_2\leq1\\ & \omega_1,\omega_2\geq0\end{matrix}\] The Lagrangian function is \[\begin{align*}\mathcal{L}(\omega_1,\omega_2,\lambda) &= \frac{89\omega_1^2}{12500}+\frac{21\omega_2^2}{3125}+\frac{3\omega_1\omega_2}{250}-\frac{41\omega_1}{3125}-\frac{36\omega_2}{3125}\\&+\frac{4}{625}- \lambda_1\omega_1-\lambda_2\omega_2+\lambda_3(\omega_1+\omega_2-1)\end{align*}\] with the system \[\left\{\begin{matrix} \frac{89\omega_1}{6250}+\frac{3\omega_2}{250}-\frac{41}{3125}-\lambda_1+\lambda_3=0\\ \frac{42\omega_2}{3125}+\frac{3\omega_1}{250}-\frac{36}{3125}-\lambda_2+\lambda_3=0\\ \lambda_1\omega_1=\lambda_2\omega_2=\lambda_3(\omega_1+\omega_2-1)=0 \end{matrix}\right.\]
- If \(\omega_1=0,\) the system becomes \[\left\{\begin{matrix} \frac{3\omega_2}{250}-\frac{41}{3125}-\lambda_1+\lambda_3=0\\ \frac{42\omega_2}{3125}-\frac{36}{3125}-\lambda_2+\lambda_3=0\\ \lambda_2\omega_2=\lambda_3(\omega_2-1)=0 \end{matrix}\right.\] If \(\omega_2=0,\) then \(\lambda_3=0\) and so \[0=-\frac{36}{3125}-\lambda_2\leq-\frac{36}{3125}<0,\] a contradiction, hence \(\omega_2\neq0\Rightarrow\lambda_2=0.\) The system now is \[\left\{\begin{matrix} \frac{3\omega_2}{250}-\frac{41}{3125}-\lambda_1+\lambda_3=0\\ \frac{42\omega_2}{3125}-\frac{36}{3125}+\lambda_3=0\\ \lambda_3(\omega_2-1)=0 \end{matrix}\right.\] If \(\omega_2=1\) then \[0=\frac{42}{3125}-\frac{36}{3125}+\lambda_3\geq\frac{6}{3125}>0,\] a contradiction, hence \(\omega_2\neq1\Rightarrow\lambda_3=0\) and \[\omega_2=\frac{6}{7},\lambda_1=\frac{62}{21875}.\]
- If \(\omega_1\neq0,\) then \(\lambda_1=0.\) The system becomes \[\left\{\begin{matrix} \frac{89\omega_1}{6250}+\frac{3\omega_2}{250}-\frac{41}{3125}+\lambda_3=0\\ \frac{42\omega_2}{3125}+\frac{3\omega_1}{250}-\frac{36}{3125}-\lambda_2+\lambda_3=0\\ \lambda_2\omega_2=\lambda_3(\omega_1+\omega_2-1)=0 \end{matrix}\right.\]
If \(\omega_2=0,\) the system becomes \[\left\{\begin{matrix} \frac{89\omega_1}{6250}-\frac{41}{3125}+\lambda_3=0\\ \frac{3\omega_1}{250}-\frac{36}{3125}-\lambda_2+\lambda_3=0\\ \lambda_3(\omega_1-1)=0 \end{matrix}\right.\] If \(\omega_1=1,\) then \[0=\frac{89}{6250}-\frac{41}{3125}+\lambda_3\geq\frac{7}{6250}>0,\] a contradiction. Hence \(\omega_1\neq1\Rightarrow\lambda_3=0\) and \[\omega_1=\frac{82}{89},\lambda_2\approx-4.638\cdot10^{-4}<0,\] a contradiction. Hence \(\omega_2\neq0\Rightarrow\lambda_2=0\) and the system becomes \[\left\{\begin{matrix} \frac{89\omega_1}{6250}+\frac{3\omega_2}{250}-\frac{41}{3125}+\lambda_3=0\\ \frac{42\omega_2}{3125}+\frac{3\omega_1}{250}-\frac{36}{3125}+\lambda_3=0\\ \lambda_3(\omega_1+\omega_2-1)=0 \end{matrix}\right.\] If \(\lambda_3\neq0,\) the system becomes \[\left\{\begin{matrix} \frac{89\omega_1}{6250}+\frac{3\omega_2}{250}-\frac{41}{3125}+\lambda_3=0\\ \frac{42\omega_2}{3125}+\frac{3\omega_1}{250}-\frac{36}{3125}+\lambda_3=0\\ \omega_1+\omega_2-1=0 \end{matrix}\right.\Rightarrow\left\{\begin{matrix}\omega_1=19/23\\\omega_2=4/23\\\lambda_3=-21/28570<0\end{matrix}\right.,\] a contradiction. Hence \(\lambda_3=0\) and the system becomes \[\left\{\begin{matrix} \frac{89\omega_1}{6250}+\frac{3\omega_2}{250}-\frac{41}{3125}=0\\ \frac{42\omega_2}{3125}+\frac{3\omega_1}{250}-\frac{36}{3125}=0\\ \end{matrix}\right.\Rightarrow\left\{\begin{matrix}\omega_1=496/617\\\omega_2=86/617\end{matrix}\right..\]
In summary, we obtain two solutions \[(\omega_1,\omega_2,1-\omega_1-\omega_2)=\left(0,\frac{6}{7},\frac{1}{7}\right),\left(\frac{496}{617},\frac{86}{617},\frac{35}{617}\right)\] with the variances \(0.00146,3.236\cdot10^{-4}.\) The optimal portfolio is \(\left(\frac{496}{617},\frac{86}{617},\frac{35}{617}\right).\)
2.2 Question 2
2.2.1 Part 1 (i)
We set up a portfolio \(V\) as follows:
- Today \((t=0):\)
- Borrow \(\$100\) to buy the share.
- Enter the contract to sell the share (at maturity) for \(\$K.\)
- Additional fees: \(\$0.\)
- Contract value: \(V_0=\$100-\$100+\$0=\$0.\)
- At maturity \((t=2):\)
- Repay the loan with \(\$100\cdot(1+5\%/2)^2=\$105.0625.\)
- Hand over one share and receive the delivery price \(\$K.\)
- Additional fees: \(\$0.\)
- Contract value: \(V_2=-\$105.0625+\$K+\$0=\$K-\$105.0625.\)
- Under the assumption of no arbitrage, \(V_2=\$0\Rightarrow K=\$105.0625.\)
- The delivery price is, therefore, \(\$105.0625.\)
2.2.2 Part 1 (ii)
We set up a portfolio \(V\) as follows:
- Today \((t=0):\)
- Borrow \(\$3.9024\) for \(6\) months and \(\$96.0976\) for \(1\) year to buy the share.
- Enter the contract to sell the share (at maturity) for \(\$K.\)
- Additional fees: \(\$0.\)
- Contract value: \(V_0=\$100-\$100+\$0=\$0.\)
- At \(t=1:\) use the dividend \(\$4\) to pay the first loan.
- At maturity \((t=2):\)
- Repay the second loan with \(\$96.0976\cdot(1+5\%/2)^2=\$100.9625.\)
- Receive the dividend \(\$4.\)
- Hand over one share and receive the delivery price \(\$K.\)
- Additional fees: \(\$0.\)
- Contract value: \(V_2=-\$100.9625+\$4+\$K+\$0=\$K-\$96.9625.\)
- Under the assumption of no arbitrage, \(V_2=\$0\Rightarrow K=\$96.9625.\)
- The delivery price is, therefore, \(\$96.9625.\)
2.2.3 Part 2 (i)
We set up a portfolio \(V\) as follows:
- Today \((t=0):\)
- Borrow \(\$100\) to buy the share.
- Enter the contract to sell the share (at maturity) for \(\$K.\)
- Additional fees: \(\$0.\)
- Contract value: \(V_0=\$100-\$100+\$0=\$0.\)
- At maturity \((t=2):\)
- Repay the loan with \(\$100\cdot e^{5\%}\approx\$105.1271.\)
- Hand over one share and receive the delivery price \(\$K.\)
- Additional fees: \(\$0.\)
- Contract value: \(V_2=-\$105.1271+\$K+\$0=\$K-\$105.1271.\)
- Under the assumption of no arbitrage, \(V_2=\$0\Rightarrow K=\$105.1271.\)
- The delivery price is, therefore, \(\$105.1271.\)
2.2.4 Part 2 (ii)
We set up a portfolio \(V\) as follows:
- Today \((t=0):\)
- Borrow \(\$100\cdot e^{-4\%}\approx\$96.0789\) to buy \(e^{-4\%}\) share.
- Enter the contract to sell \(1\) share (at maturity) for \(\$K.\)
- Additional fees: \(\$0.\)
- Contract value: \(V_0=\$96.0789-\$96.0789+\$0=\$0.\)
- At maturity \((t=2):\)
- Repay the loan with \(\$96.0789\cdot e^{5\%}\approx\$101.005.\)
- Hand over one share and receive the delivery price \(\$K.\)
- Additional fees: \(\$0.\)
- Contract value: \(V_2=-\$101.005+\$K+\$0=\$K-\$101.005.\)
- Under the assumption of no arbitrage, \(V_2=\$0\Rightarrow K=\$101.005.\)
- The delivery price is, therefore, \(\$101.005.\)
2.3 Question 3
- The put\(-\)call parity implies \[C_t+50\cdot e^{-8\%\cdot1}=5+52\Rightarrow C_t\approx10.844.\]
- Consider two cases:
- If the stock price at maturity \(S_1>50,\) then the buyer exercises the option and gain \((S_1-50)-10.844>-10.844.\)
- If \(S_t\leq50,\) then the buyer does not exercise the option and lose $\(10.844.\) In both cases, the maximum loss for the call buyer is $\(10.844.\)
- We sell 1 option \(C',\) buy 1 option \(C\) and earns $\(1.156.\) Consider two cases:
- If \(C'\) is exercised, then we exercise \(C\) to buy the stock \(S\) with price $\(50,\) hand the stock over and receive $\(49.\) The remaining profit is $\(0.156.\)
- If \(C'\) is not exercised, then we do nothing. The profit stays at $\(1.156.\) In both cases, we are ensured a profit of at least $\(0.156.\) Notice that \(100/0.156\approx641.0256,\) a $\(100\) profit can be guaranteed by selling \(642\) options \(C'\) and buying \(642\) options \(C.\)
2.4 Question 4
time = 1
delta_t = time / 3
sigma = 0.2
u = exp(sigma * sqrt(delta_t))
d = exp(-sigma * sqrt(delta_t))
price = 90
st = stock_tree(price, u, d, 4)
st## [,1] [,2] [,3] [,4]
## [1,] 90.00000 0.00000 0.0000 0.0000
## [2,] 80.18525 101.01608 0.0000 0.0000
## [3,] 71.44083 90.00000 113.3805 0.0000
## [4,] 63.65001 80.18525 101.0161 127.2584
k = 100
r = 0.05
p = (exp(r * delta_t) - d) / (u - d)
European_put(st, p, r, delta_t, k)## [,1] [,2] [,3] [,4]
## [1,] 9.683252 0.000000 0 0
## [2,] 16.826956 3.989029 0 0
## [3,] 26.906315 8.890534 0 0
## [4,] 36.349988 19.814747 0 0
a = American_put(st, p, r, delta_t, k)
a## [,1] [,2] [,3] [,4]
## [1,] 11.29004 0.000000 0 0
## [2,] 19.81475 4.486827 0 0
## [3,] 28.55917 10.000000 0 0
## [4,] 36.34999 19.814747 0 0
bool = (k - st == a)
for (i in 1:nrow(bool)) {
for (j in i:nrow(bool)) {
bool[i, j] = FALSE
}
}
bool## [,1] [,2] [,3] [,4]
## [1,] FALSE FALSE FALSE FALSE
## [2,] TRUE FALSE FALSE FALSE
## [3,] TRUE TRUE FALSE FALSE
## [4,] TRUE TRUE FALSE FALSE