En este proyecto, buscamos realizar el análisis de los datos para una empresa la cual presenta un problema de materiales, en la cual existe una tendencia en la falla de creación y desarrollo de los materiales. Con el uso de la estadística podremos presentarle al cliente la razón de las fallas constantes.
library("skimr")
library("naniar")
library("Hmisc")
library("corrplot")
library("psych")
library("dplyr")
library("GGally")
library("kableExtra")
library("forecast");
library("smooth");
Aquí se muestran dos tablas con la información recabada de la situación problema, es necesario especificar que fué necesario realizar una “limpieza” de datos, esto con el fin de que no existiera problema al realizar los procedimientos de análisis. Así como fué necesario el cambio de nombres de algunas columnas (Cambio en los nombres de piezas defectuosas, así como en la información de las máquinas) junto con la eliminación de otras (Eliminación de forma individual de piezas producidas).
Nota: Solo se muestran los primeros datos, esto para tener una mejor visualización del documento. Así mismo, en lo que abarca el documento, la tabla de “histórico de defectos” será llamada como Tabla 1, y la tabla de “datos de muestreo” será llamada como Tabla 2.| DEFECTUOSAS A | DEFECTUOSAS B | DEFECTUOSAS C |
|---|---|---|
| 157800 | 1100 | 78050 |
| 57400 | 2100 | 63350 |
| 85800 | 1200 | 74900 |
| 12400 | 2200 | 72450 |
| 45600 | 1900 | 87150 |
| Pressure | PlasticPumpTemperature | PlasticMixerTemperature | ScrewTemperature | ScrewRPM | BarrelTemperature |
|---|---|---|---|---|---|
| 71 | 228 | 208 | 197 | 115 | 180 |
| 24 | 230 | 194 | 204 | 117 | 120 |
| 22 | 219 | 238 | 231 | 84 | 143 |
| 68 | 223 | 250 | 206 | 83 | 175 |
| 22 | 246 | 252 | 238 | 116 | 121 |
Para realizar el análisis de los datos se optaron por diversos procedimientos tales como:
Tras haber realizado el análisis general de los datos, pudimos apreciar que el 100% de los datos para cada categoría estaban presentes.
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
En lo que respecta el data summary, utilizando la libreria skimr, revisamos datos generales de cada variable, esto con el fin de tener una mejor perspectiva de los datos.
| skim_type | skim_variable | n_missing | complete_rate | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| numeric | DEFECTUOSAS A | 0 | 1 | 90933.333 | 61794.179 | 6400 | 24350 | 89950 | 152475 | 192800 | <U+2587><U+2585><U+2585><U+2585><U+2586> |
| numeric | DEFECTUOSAS B | 0 | 1 | 6229.167 | 4571.032 | 1100 | 2700 | 4650 | 8975 | 15900 | <U+2587><U+2586><U+2581><U+2582><U+2583> |
| numeric | DEFECTUOSAS C | 0 | 1 | 73689.583 | 14691.294 | 38850 | 64925 | 71925 | 85400 | 102200 | <U+2581><U+2585><U+2587><U+2587><U+2583> |
| skim_type | skim_variable | n_missing | complete_rate | numeric.mean | numeric.sd | numeric.p0 | numeric.p25 | numeric.p50 | numeric.p75 | numeric.p100 | numeric.hist |
|---|---|---|---|---|---|---|---|---|---|---|---|
| numeric | Pressure | 0 | 1 | 36.980000 | 23.2191927 | 16.0000 | 20.000000 | 22.00000 | 67.000000 | 75.00000 | <U+2587><U+2581><U+2581><U+2581><U+2583> |
| numeric | PlasticPumpTemperature | 0 | 1 | 221.660000 | 21.1216869 | 167.0000 | 205.000000 | 226.50000 | 237.000000 | 256.00000 | <U+2581><U+2583><U+2583><U+2587><U+2585> |
| numeric | PlasticMixerTemperature | 0 | 1 | 214.530000 | 20.1225814 | 184.0000 | 199.000000 | 207.00000 | 235.000000 | 252.00000 | <U+2585><U+2587><U+2582><U+2585><U+2583> |
| numeric | ScrewTemperature | 0 | 1 | 220.340000 | 22.7210666 | 186.0000 | 200.750000 | 212.50000 | 243.000000 | 264.00000 | <U+2587><U+2587><U+2583><U+2587><U+2583> |
| numeric | ScrewRPM | 0 | 1 | 98.510000 | 19.4190862 | 74.0000 | 81.000000 | 87.50000 | 118.000000 | 129.00000 | <U+2587><U+2582><U+2581><U+2583><U+2583> |
| numeric | BarrelTemperature | 0 | 1 | 146.660000 | 28.3403628 | 108.0000 | 120.000000 | 144.50000 | 175.000000 | 189.00000 | <U+2587><U+2582><U+2582><U+2582><U+2587> |
| numeric | ExtrusionVelocity | 0 | 1 | 1.975285 | 1.4526237 | 0.2387 | 0.698675 | 1.64380 | 2.793287 | 5.60625 | <U+2587><U+2585><U+2583><U+2582><U+2582> |
| numeric | CoolerTemperature | 0 | 1 | 85.290000 | 22.3581025 | 45.0000 | 67.000000 | 84.00000 | 105.000000 | 125.00000 | <U+2586><U+2587><U+2587><U+2586><U+2586> |
| numeric | RawMaterialType | 0 | 1 | 2.040000 | 0.9419516 | 1.0000 | 1.000000 | 2.00000 | 3.000000 | 3.00000 | <U+2587><U+2581><U+2582><U+2581><U+2587> |
| numeric | ErrorPercentage | 0 | 1 | 42.287161 | 12.5109817 | 15.7133 | 34.216707 | 41.65039 | 49.335154 | 72.45548 | <U+2583><U+2585><U+2587><U+2583><U+2582> |
##
## Pearson's product-moment correlation
##
## data: EXTRUSION and PERCENTAGE
## t = -2.7718, df = 98, p-value = 0.006672
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.44260213 -0.07729936
## sample estimates:
## cor
## -0.2696238
En este apartado podemos apreciar las gráficas de pares para cada variable, obteniendo cada uno de los índices de correlación para cada variable, teniendo una de C con B de índice negativo, así como C con A.
Aquí podemos apreciar los histogramas múltiples de las piezas defectuosas, en el que la gráfica azul es nuestro resultado, sin embargo podemos ver que hay una clara diferencia en las gráficas de pieza defectuosas A y B, pero, podemos ver que la gráfica de pieza C es la que podemos ver que se acerca más al resultado esperado.
Podemos observar de forma más gráfica un análisis de correlación más parcial en lo que respecta a cada una de las piezas defectuosas. En el que podemos ver que es mínima la relación entre las variables.
En este apartado tenemos las gráficas de pares, en el que la gráfica A es una visión general de todas las variables de la Tabla 2, sin embargo la gráfica B apreciamos una tabla general con los índices de correlación para cada una de las variables, tomando así en variables para remarcar la Velocidad de Extrusión con la Presión; de igual forma es importante señalar el alto índice negativo del Plastic Mixer Temperature con el porcentaje de error del mismo.
getRegression <- function(x, xLabel, y, yLabel){
correlation = cor(x, y, method="pearson");
determinationCoefficient = correlation^2;
linearRegression = lm(y~x);
linearRegressionStatus = summary(linearRegression);
evaluation = anova(linearRegression);
print("Nuevo análisis de caso.");
print(paste(yLabel, " = (", round(linearRegressionStatus$coefficients[2, 1], 3), ")*(", xLabel, ") + (", round(linearRegressionStatus$coefficients[1,1], 3), ')', sep = ''));
print(paste(round(determinationCoefficient, 4)*100, "% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal.", sep = ''));
if(linearRegressionStatus$coefficients[1,4] > ALPHA){
print("Ajuste debido a Prueba T");
linearRegression = lm(y~x-1);
linearRegressionStatus = summary(linearRegression);
determinationCoefficient = linearRegressionStatus$r.squared;
evaluation = anova(linearRegression);
print(paste(yLabel, " = (", round(linearRegressionStatus$coefficients[1, 1], 3), ")*(", xLabel, ')', sep = ''));
print(paste(round(determinationCoefficient, 4)*100, "% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal.", sep = ''));
}
plot(x, y, xlab=xLabel, ylab=yLabel);
abline(linearRegression);
plot(linearRegression);
return (list(X=x, XLabel=xLabel, Y=y, YLabel=yLabel, LinearRegresion=linearRegression, LinearRegresionStatus=linearRegressionStatus, EstimateCoefficients=linearRegressionStatus$coefficients, Correlation=correlation, DeterminationCoefficient=determinationCoefficient, Evaluation=evaluation));
}
ALPHA = 0.05;
cases = list(
getRegression(analyze2$Pressure, "Pressure", analyze2$PlasticPumpTemperature, "PlasticPumpTemperature"),
getRegression(analyze2$Pressure, "Pressure", analyze2$ScrewTemperature, "ScrewTemperature"),
getRegression(analyze2$Pressure, "Pressure", analyze2$ExtrusionVelocity, "ExtrusionVelocity"),
getRegression(analyze2$Pressure, "Pressure", analyze2$CoolerTemperature, "CoolerTemperature"),
getRegression(analyze2$Pressure, "Pressure", analyze2$ErrorPercentage, "ErrorPercentage"),
getRegression(analyze2$PlasticPumpTemperature, "PlasticPumpTemperature", analyze2$ScrewTemperature, "ScrewTemperature"),
getRegression(analyze2$PlasticPumpTemperature, "PlasticPumpTemperature", analyze2$ExtrusionVelocity, "ExtrusionVelocity"),
getRegression(analyze2$PlasticPumpTemperature, "PlasticPumpTemperature", analyze2$ErrorPercentage, "ErrorPercentage"),
getRegression(analyze2$PlasticMixerTemperature, "PlasticMixerTemperature", analyze2$ErrorPercentage, "ErrorPercentage"),
getRegression(analyze2$ScrewTemperature, "ScrewTemperature", analyze2$ExtrusionVelocity, "ExtrusionVelocity"),
getRegression(analyze2$ScrewTemperature, "ScrewTemperature", analyze2$ErrorPercentage, "ErrorPercentage"),
getRegression(analyze2$ScrewRPM, "ScrewRPM", analyze2$ExtrusionVelocity, "ExtrusionVelocity"),
getRegression(analyze2$ScrewRPM, "ScrewRPM", analyze2$ErrorPercentage, "ErrorPercentage"),
getRegression(analyze2$BarrelTemperature, "BarrelTemperature", analyze2$ErrorPercentage, "ErrorPercentage"),
getRegression(analyze2$ExtrusionVelocity, "ExtrusionVelocity", analyze2$CoolerTemperature, "CoolerTemperature"),
getRegression(analyze2$ExtrusionVelocity, "ExtrusionVelocity", analyze2$ErrorPercentage, "ErrorPercentage")
);
## [1] "Nuevo análisis de caso."
## [1] "PlasticPumpTemperature = (0.208)*(Pressure) + (213.974)"
## [1] "5.22% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ScrewTemperature = (0.176)*(Pressure) + (213.832)"
## [1] "3.23% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ExtrusionVelocity = (0.054)*(Pressure) + (-0.012)"
## [1] "73.78% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Ajuste debido a Prueba T"
## [1] "ExtrusionVelocity = (0.054)*(Pressure)"
## [1] "90.86% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "CoolerTemperature = (0.212)*(Pressure) + (77.445)"
## [1] "4.85% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ErrorPercentage = (-0.082)*(Pressure) + (45.314)"
## [1] "2.31% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ScrewTemperature = (0.251)*(PlasticPumpTemperature) + (164.654)"
## [1] "5.45% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ExtrusionVelocity = (0.017)*(PlasticPumpTemperature) + (-1.874)"
## [1] "6.38% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Ajuste debido a Prueba T"
## [1] "ExtrusionVelocity = (0.009)*(PlasticPumpTemperature)"
## [1] "66.83% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ErrorPercentage = (-0.249)*(PlasticPumpTemperature) + (97.495)"
## [1] "17.68% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ErrorPercentage = (-0.313)*(PlasticMixerTemperature) + (109.437)"
## [1] "25.35% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ExtrusionVelocity = (0.013)*(ScrewTemperature) + (-0.815)"
## [1] "3.92% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Ajuste debido a Prueba T"
## [1] "ExtrusionVelocity = (0.009)*(ScrewTemperature)"
## [1] "66.38% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ErrorPercentage = (0.082)*(ScrewTemperature) + (24.11)"
## [1] "2.24% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Ajuste debido a Prueba T"
## [1] "ErrorPercentage = (0.191)*(ScrewTemperature)"
## [1] "91.89% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ExtrusionVelocity = (0.028)*(ScrewRPM) + (-0.789)"
## [1] "14.08% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Ajuste debido a Prueba T"
## [1] "ExtrusionVelocity = (0.02)*(ScrewRPM)"
## [1] "69.65% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ErrorPercentage = (-0.229)*(ScrewRPM) + (64.842)"
## [1] "12.63% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ErrorPercentage = (-0.175)*(BarrelTemperature) + (67.984)"
## [1] "15.75% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "CoolerTemperature = (2.142)*(ExtrusionVelocity) + (81.058)"
## [1] "1.94% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [1] "Nuevo análisis de caso."
## [1] "ErrorPercentage = (-2.322)*(ExtrusionVelocity) + (46.874)"
## [1] "7.27% de los datos especificados son explicados adecuadamente por el modelo de regresión lineal."
## [[1]]
## [[1]]$X
## [1] 71 24 22 68 22 20 67 68 18 17 23 23 21 16 23 22 24 23 67 20 19 21 73 21 19
## [26] 20 22 20 22 74 19 73 20 20 16 21 16 21 22 67 17 22 22 19 20 73 21 20 19 23
## [51] 24 69 74 25 19 21 23 23 71 71 73 69 19 67 20 20 21 67 67 21 67 21 67 75 75
## [76] 20 21 65 71 73 24 22 66 22 67 21 20 67 24 19 22 68 67 21 22 22 20 71 73 20
##
## [[1]]$XLabel
## [1] "Pressure"
##
## [[1]]$Y
## [1] 228 230 219 223 246 253 233 198 203 230 195 246 182 186 234 193 226 243
## [19] 256 241 225 188 251 233 200 233 187 235 242 250 227 221 183 237 194 227
## [37] 242 242 205 185 232 220 228 236 216 233 191 243 211 221 217 254 221 212
## [55] 195 221 192 245 237 229 212 223 194 227 239 176 204 239 230 221 184 243
## [73] 245 205 210 199 241 246 219 225 227 236 225 215 217 231 205 243 235 225
## [91] 232 226 253 167 227 241 185 254 233 181
##
## [[1]]$YLabel
## [1] "PlasticPumpTemperature"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 213.9740 0.2078
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -51.339 -14.433 2.661 16.927 34.869
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 213.97402 3.90074 54.855 <2e-16 ***
## x 0.20784 0.08946 2.323 0.0222 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 20.67 on 98 degrees of freedom
## Multiple R-squared: 0.0522, Adjusted R-squared: 0.04253
## F-statistic: 5.398 on 1 and 98 DF, p-value: 0.02223
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 213.9740240 3.90073734 54.854763 2.275542e-75
## x 0.2078414 0.08945939 2.323305 2.222970e-02
##
## [[1]]$Correlation
## [1] 0.2284813
##
## [[1]]$DeterminationCoefficient
## [1] 0.0522037
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 2306 2305.65 5.3977 0.02223 *
## Residuals 98 41861 427.15
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 71 24 22 68 22 20 67 68 18 17 23 23 21 16 23 22 24 23 67 20 19 21 73 21 19
## [26] 20 22 20 22 74 19 73 20 20 16 21 16 21 22 67 17 22 22 19 20 73 21 20 19 23
## [51] 24 69 74 25 19 21 23 23 71 71 73 69 19 67 20 20 21 67 67 21 67 21 67 75 75
## [76] 20 21 65 71 73 24 22 66 22 67 21 20 67 24 19 22 68 67 21 22 22 20 71 73 20
##
## [[1]]$XLabel
## [1] "Pressure"
##
## [[1]]$Y
## [1] 197 204 231 206 238 204 248 242 220 197 209 211 233 219 206 195 244 254
## [19] 210 202 243 221 261 203 227 226 243 206 204 187 218 186 192 230 194 203
## [37] 245 254 201 245 204 254 207 200 222 244 214 256 192 197 195 245 263 211
## [55] 199 206 197 254 198 260 189 243 226 248 243 213 211 203 204 247 244 201
## [73] 246 191 198 189 208 194 208 264 216 198 247 212 200 200 217 239 260 208
## [91] 241 195 251 200 239 240 200 258 248 218
##
## [[1]]$YLabel
## [1] "ScrewTemperature"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 213.832 0.176
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.679 -17.690 -5.028 20.607 41.944
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 213.83231 4.23985 50.43 <2e-16 ***
## x 0.17598 0.09724 1.81 0.0734 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.46 on 98 degrees of freedom
## Multiple R-squared: 0.03234, Adjusted R-squared: 0.02247
## F-statistic: 3.275 on 1 and 98 DF, p-value: 0.07339
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 213.8323077 4.23984937 50.433940 6.486283e-72
## x 0.1759787 0.09723658 1.809799 7.339207e-02
##
## [[1]]$Correlation
## [1] 0.1798368
##
## [[1]]$DeterminationCoefficient
## [1] 0.03234126
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 1653 1652.91 3.2754 0.07339 .
## Residuals 98 49456 504.65
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 71 24 22 68 22 20 67 68 18 17 23 23 21 16 23 22 24 23 67 20 19 21 73 21 19
## [26] 20 22 20 22 74 19 73 20 20 16 21 16 21 22 67 17 22 22 19 20 73 21 20 19 23
## [51] 24 69 74 25 19 21 23 23 71 71 73 69 19 67 20 20 21 67 67 21 67 21 67 75 75
## [76] 20 21 65 71 73 24 22 66 22 67 21 20 67 24 19 22 68 67 21 22 22 20 71 73 20
##
## [[1]]$XLabel
## [1] "Pressure"
##
## [[1]]$Y
## [1] 5.35665 2.19600 0.61320 2.87470 1.63930 1.67320 4.51030 3.60340 0.30420
## [10] 1.09755 0.82025 0.64735 0.54990 1.63850 2.47845 0.79060 1.57080 0.43700
## [19] 2.41345 1.63200 1.79305 1.65135 5.43000 0.55800 1.78825 1.41680 1.87250
## [28] 0.47000 0.77380 4.41440 0.64200 4.62825 0.35000 0.53100 0.23870 2.04375
## [37] 1.77500 1.79070 0.91960 2.45590 1.97780 1.64050 1.64710 0.53110 0.63190
## [46] 2.67415 2.11470 1.29560 1.66605 2.39120 1.59120 5.60625 3.63120 0.53625
## [55] 0.49385 0.83190 1.09375 1.71010 3.11125 5.34970 2.76615 2.33700 0.55675
## [64] 4.40130 0.40180 0.58220 1.30800 2.98775 5.48390 1.42140 3.38910 1.40625
## [73] 3.66600 4.57500 3.66795 0.44880 0.49995 2.67080 3.52755 4.02990 0.78720
## [82] 0.64640 3.56040 0.47380 4.52075 0.39750 0.71780 3.74650 0.69930 0.63130
## [91] 0.97750 2.61240 3.30095 0.76140 1.79140 0.69680 1.40060 2.42060 3.58810
## [100] 0.75480
##
## [[1]]$YLabel
## [1] "ExtrusionVelocity"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x - 1)
##
## Coefficients:
## x
## 0.05351
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3783 -0.5676 -0.2645 0.5619 1.9143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.053506 0.001706 31.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7438 on 99 degrees of freedom
## Multiple R-squared: 0.9086, Adjusted R-squared: 0.9077
## F-statistic: 983.9 on 1 and 99 DF, p-value: < 2.2e-16
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## x 0.05350592 0.001705784 31.36735 3.126218e-53
##
## [[1]]$Correlation
## [1] 0.8589815
##
## [[1]]$DeterminationCoefficient
## [1] 0.9085797
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 544.31 544.31 983.91 < 2.2e-16 ***
## Residuals 99 54.77 0.55
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 71 24 22 68 22 20 67 68 18 17 23 23 21 16 23 22 24 23 67 20 19 21 73 21 19
## [26] 20 22 20 22 74 19 73 20 20 16 21 16 21 22 67 17 22 22 19 20 73 21 20 19 23
## [51] 24 69 74 25 19 21 23 23 71 71 73 69 19 67 20 20 21 67 67 21 67 21 67 75 75
## [76] 20 21 65 71 73 24 22 66 22 67 21 20 67 24 19 22 68 67 21 22 22 20 71 73 20
##
## [[1]]$XLabel
## [1] "Pressure"
##
## [[1]]$Y
## [1] 125 45 110 77 56 54 110 104 111 62 79 50 85 109 74 52 89 101
## [19] 84 67 63 74 80 87 58 74 50 85 107 59 100 62 91 66 73 110
## [37] 89 76 99 113 57 105 54 92 83 116 72 78 67 86 52 49 54 60
## [55] 98 73 78 124 75 107 92 65 56 122 94 74 103 46 100 67 70 81
## [73] 107 114 76 84 84 125 111 72 120 104 91 49 113 114 101 111 119 102
## [91] 63 105 119 105 92 64 97 82 123 72
##
## [[1]]$YLabel
## [1] "CoolerTemperature"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 77.4452 0.2121
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -45.658 -17.658 0.433 18.835 41.676
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 77.44518 4.13706 18.720 <2e-16 ***
## x 0.21214 0.09488 2.236 0.0276 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 21.92 on 98 degrees of freedom
## Multiple R-squared: 0.04854, Adjusted R-squared: 0.03883
## F-statistic: 4.999 on 1 and 98 DF, p-value: 0.02763
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 77.4451819 4.13706097 18.719855 3.930586e-34
## x 0.2121368 0.09487923 2.235861 2.762950e-02
##
## [[1]]$Correlation
## [1] 0.2203069
##
## [[1]]$DeterminationCoefficient
## [1] 0.04853514
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 2402 2401.94 4.9991 0.02763 *
## Residuals 98 47087 480.48
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 71 24 22 68 22 20 67 68 18 17 23 23 21 16 23 22 24 23 67 20 19 21 73 21 19
## [26] 20 22 20 22 74 19 73 20 20 16 21 16 21 22 67 17 22 22 19 20 73 21 20 19 23
## [51] 24 69 74 25 19 21 23 23 71 71 73 69 19 67 20 20 21 67 67 21 67 21 67 75 75
## [76] 20 21 65 71 73 24 22 66 22 67 21 20 67 24 19 22 68 67 21 22 22 20 71 73 20
##
## [[1]]$XLabel
## [1] "Pressure"
##
## [[1]]$Y
## [1] 29.32304 40.99191 45.87761 15.71330 39.83868 42.00513 21.76614 34.90026
## [9] 49.97632 32.85096 60.02558 35.15783 56.51168 39.64570 36.65512 49.09259
## [17] 26.44861 59.94457 26.15434 27.91344 23.94013 46.53838 46.84046 52.78790
## [25] 45.52684 40.67353 56.22552 35.06948 20.02194 41.28101 43.09747 36.00788
## [33] 51.81429 43.56376 68.44437 31.94832 49.12143 34.29501 60.11521 65.15244
## [41] 28.48329 35.58565 35.55663 41.51600 38.85076 68.07452 49.06527 52.12547
## [49] 33.98180 40.98185 28.59500 32.56293 55.37170 41.21173 68.12488 23.42013
## [57] 45.61783 37.89023 36.38409 43.94748 41.78477 43.50728 40.84012 46.52753
## [65] 60.22892 47.93798 46.01500 16.57245 25.44702 48.24823 43.50871 25.09920
## [73] 43.03068 39.50498 47.35085 57.08497 33.09095 33.69824 35.11669 57.36873
## [81] 44.58517 38.53610 18.82613 51.61156 26.45527 34.58269 50.16591 54.46714
## [89] 48.46619 32.46905 72.45548 46.97908 40.92331 70.81549 25.11976 44.18690
## [97] 61.57475 29.36324 54.13783 50.42630
##
## [[1]]$YLabel
## [1] "ErrorPercentage"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 45.31402 -0.08185
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.0348 -8.7087 0.1083 6.8697 28.9422
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.31402 2.34575 19.317 <2e-16 ***
## x -0.08185 0.05380 -1.521 0.131
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.43 on 98 degrees of freedom
## Multiple R-squared: 0.02308, Adjusted R-squared: 0.01311
## F-statistic: 2.315 on 1 and 98 DF, p-value: 0.1314
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 45.31402257 2.34575340 19.317471 3.462074e-35
## x -0.08185131 0.05379744 -1.521472 1.313615e-01
##
## [[1]]$Correlation
## [1] -0.1519083
##
## [[1]]$DeterminationCoefficient
## [1] 0.02307612
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 357.6 357.59 2.3149 0.1314
## Residuals 98 15138.4 154.47
## [[1]]
## [[1]]$X
## [1] 228 230 219 223 246 253 233 198 203 230 195 246 182 186 234 193 226 243
## [19] 256 241 225 188 251 233 200 233 187 235 242 250 227 221 183 237 194 227
## [37] 242 242 205 185 232 220 228 236 216 233 191 243 211 221 217 254 221 212
## [55] 195 221 192 245 237 229 212 223 194 227 239 176 204 239 230 221 184 243
## [73] 245 205 210 199 241 246 219 225 227 236 225 215 217 231 205 243 235 225
## [91] 232 226 253 167 227 241 185 254 233 181
##
## [[1]]$XLabel
## [1] "PlasticPumpTemperature"
##
## [[1]]$Y
## [1] 197 204 231 206 238 204 248 242 220 197 209 211 233 219 206 195 244 254
## [19] 210 202 243 221 261 203 227 226 243 206 204 187 218 186 192 230 194 203
## [37] 245 254 201 245 204 254 207 200 222 244 214 256 192 197 195 245 263 211
## [55] 199 206 197 254 198 260 189 243 226 248 243 213 211 203 204 247 244 201
## [73] 246 191 198 189 208 194 208 264 216 198 247 212 200 200 217 239 260 208
## [91] 241 195 251 200 239 240 200 258 248 218
##
## [[1]]$YLabel
## [1] "ScrewTemperature"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 164.6542 0.2512
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -40.460 -19.018 -4.773 21.064 42.826
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 164.6542 23.5255 6.999 3.23e-10 ***
## x 0.2512 0.1057 2.378 0.0194 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 22.21 on 98 degrees of freedom
## Multiple R-squared: 0.05454, Adjusted R-squared: 0.04489
## F-statistic: 5.653 on 1 and 98 DF, p-value: 0.01936
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 164.6542388 23.5255226 6.998962 3.229647e-10
## x 0.2512215 0.1056595 2.377651 1.936399e-02
##
## [[1]]$Correlation
## [1] 0.2335375
##
## [[1]]$DeterminationCoefficient
## [1] 0.05453979
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 2787 2787.44 5.6532 0.01936 *
## Residuals 98 48321 493.07
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 228 230 219 223 246 253 233 198 203 230 195 246 182 186 234 193 226 243
## [19] 256 241 225 188 251 233 200 233 187 235 242 250 227 221 183 237 194 227
## [37] 242 242 205 185 232 220 228 236 216 233 191 243 211 221 217 254 221 212
## [55] 195 221 192 245 237 229 212 223 194 227 239 176 204 239 230 221 184 243
## [73] 245 205 210 199 241 246 219 225 227 236 225 215 217 231 205 243 235 225
## [91] 232 226 253 167 227 241 185 254 233 181
##
## [[1]]$XLabel
## [1] "PlasticPumpTemperature"
##
## [[1]]$Y
## [1] 5.35665 2.19600 0.61320 2.87470 1.63930 1.67320 4.51030 3.60340 0.30420
## [10] 1.09755 0.82025 0.64735 0.54990 1.63850 2.47845 0.79060 1.57080 0.43700
## [19] 2.41345 1.63200 1.79305 1.65135 5.43000 0.55800 1.78825 1.41680 1.87250
## [28] 0.47000 0.77380 4.41440 0.64200 4.62825 0.35000 0.53100 0.23870 2.04375
## [37] 1.77500 1.79070 0.91960 2.45590 1.97780 1.64050 1.64710 0.53110 0.63190
## [46] 2.67415 2.11470 1.29560 1.66605 2.39120 1.59120 5.60625 3.63120 0.53625
## [55] 0.49385 0.83190 1.09375 1.71010 3.11125 5.34970 2.76615 2.33700 0.55675
## [64] 4.40130 0.40180 0.58220 1.30800 2.98775 5.48390 1.42140 3.38910 1.40625
## [73] 3.66600 4.57500 3.66795 0.44880 0.49995 2.67080 3.52755 4.02990 0.78720
## [82] 0.64640 3.56040 0.47380 4.52075 0.39750 0.71780 3.74650 0.69930 0.63130
## [91] 0.97750 2.61240 3.30095 0.76140 1.79140 0.69680 1.40060 2.42060 3.58810
## [100] 0.75480
##
## [[1]]$YLabel
## [1] "ExtrusionVelocity"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x - 1)
##
## Coefficients:
## x
## 0.008987
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7468 -1.2032 -0.3919 0.8452 3.4170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.0089866 0.0006363 14.12 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.417 on 99 degrees of freedom
## Multiple R-squared: 0.6683, Adjusted R-squared: 0.665
## F-statistic: 199.5 on 1 and 99 DF, p-value: < 2.2e-16
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## x 0.008986646 0.0006363013 14.12326 1.840984e-25
##
## [[1]]$Correlation
## [1] 0.2525035
##
## [[1]]$DeterminationCoefficient
## [1] 0.6683043
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 400.37 400.37 199.47 < 2.2e-16 ***
## Residuals 99 198.71 2.01
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 228 230 219 223 246 253 233 198 203 230 195 246 182 186 234 193 226 243
## [19] 256 241 225 188 251 233 200 233 187 235 242 250 227 221 183 237 194 227
## [37] 242 242 205 185 232 220 228 236 216 233 191 243 211 221 217 254 221 212
## [55] 195 221 192 245 237 229 212 223 194 227 239 176 204 239 230 221 184 243
## [73] 245 205 210 199 241 246 219 225 227 236 225 215 217 231 205 243 235 225
## [91] 232 226 253 167 227 241 185 254 233 181
##
## [[1]]$XLabel
## [1] "PlasticPumpTemperature"
##
## [[1]]$Y
## [1] 29.32304 40.99191 45.87761 15.71330 39.83868 42.00513 21.76614 34.90026
## [9] 49.97632 32.85096 60.02558 35.15783 56.51168 39.64570 36.65512 49.09259
## [17] 26.44861 59.94457 26.15434 27.91344 23.94013 46.53838 46.84046 52.78790
## [25] 45.52684 40.67353 56.22552 35.06948 20.02194 41.28101 43.09747 36.00788
## [33] 51.81429 43.56376 68.44437 31.94832 49.12143 34.29501 60.11521 65.15244
## [41] 28.48329 35.58565 35.55663 41.51600 38.85076 68.07452 49.06527 52.12547
## [49] 33.98180 40.98185 28.59500 32.56293 55.37170 41.21173 68.12488 23.42013
## [57] 45.61783 37.89023 36.38409 43.94748 41.78477 43.50728 40.84012 46.52753
## [65] 60.22892 47.93798 46.01500 16.57245 25.44702 48.24823 43.50871 25.09920
## [73] 43.03068 39.50498 47.35085 57.08497 33.09095 33.69824 35.11669 57.36873
## [81] 44.58517 38.53610 18.82613 51.61156 26.45527 34.58269 50.16591 54.46714
## [89] 48.46619 32.46905 72.45548 46.97908 40.92331 70.81549 25.11976 44.18690
## [97] 61.57475 29.36324 54.13783 50.42630
##
## [[1]]$YLabel
## [1] "ErrorPercentage"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x)
##
## Coefficients:
## (Intercept) x
## 97.4946 -0.2491
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -26.240 -7.414 -0.764 6.471 32.744
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 97.49464 12.08736 8.066 1.84e-12 ***
## x -0.24906 0.05429 -4.588 1.33e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.41 on 98 degrees of freedom
## Multiple R-squared: 0.1768, Adjusted R-squared: 0.1684
## F-statistic: 21.05 on 1 and 98 DF, p-value: 1.327e-05
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 97.4946380 12.08736334 8.065832 1.835628e-12
## x -0.2490638 0.05428765 -4.587854 1.326726e-05
##
## [[1]]$Correlation
## [1] -0.4204824
##
## [[1]]$DeterminationCoefficient
## [1] 0.1768054
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 2739.8 2739.77 21.048 1.327e-05 ***
## Residuals 98 12756.2 130.17
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 71 24 22 68 22 20 67 68 18 17 23 23 21 16 23 22 24 23 67 20 19 21 73 21 19
## [26] 20 22 20 22 74 19 73 20 20 16 21 16 21 22 67 17 22 22 19 20 73 21 20 19 23
## [51] 24 69 74 25 19 21 23 23 71 71 73 69 19 67 20 20 21 67 67 21 67 21 67 75 75
## [76] 20 21 65 71 73 24 22 66 22 67 21 20 67 24 19 22 68 67 21 22 22 20 71 73 20
##
## [[1]]$XLabel
## [1] "Pressure"
##
## [[1]]$Y
## [1] 5.35665 2.19600 0.61320 2.87470 1.63930 1.67320 4.51030 3.60340 0.30420
## [10] 1.09755 0.82025 0.64735 0.54990 1.63850 2.47845 0.79060 1.57080 0.43700
## [19] 2.41345 1.63200 1.79305 1.65135 5.43000 0.55800 1.78825 1.41680 1.87250
## [28] 0.47000 0.77380 4.41440 0.64200 4.62825 0.35000 0.53100 0.23870 2.04375
## [37] 1.77500 1.79070 0.91960 2.45590 1.97780 1.64050 1.64710 0.53110 0.63190
## [46] 2.67415 2.11470 1.29560 1.66605 2.39120 1.59120 5.60625 3.63120 0.53625
## [55] 0.49385 0.83190 1.09375 1.71010 3.11125 5.34970 2.76615 2.33700 0.55675
## [64] 4.40130 0.40180 0.58220 1.30800 2.98775 5.48390 1.42140 3.38910 1.40625
## [73] 3.66600 4.57500 3.66795 0.44880 0.49995 2.67080 3.52755 4.02990 0.78720
## [82] 0.64640 3.56040 0.47380 4.52075 0.39750 0.71780 3.74650 0.69930 0.63130
## [91] 0.97750 2.61240 3.30095 0.76140 1.79140 0.69680 1.40060 2.42060 3.58810
## [100] 0.75480
##
## [[1]]$YLabel
## [1] "ExtrusionVelocity"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x - 1)
##
## Coefficients:
## x
## 0.05351
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3783 -0.5676 -0.2645 0.5619 1.9143
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.053506 0.001706 31.37 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7438 on 99 degrees of freedom
## Multiple R-squared: 0.9086, Adjusted R-squared: 0.9077
## F-statistic: 983.9 on 1 and 99 DF, p-value: < 2.2e-16
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## x 0.05350592 0.001705784 31.36735 3.126218e-53
##
## [[1]]$Correlation
## [1] 0.8589815
##
## [[1]]$DeterminationCoefficient
## [1] 0.9085797
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 544.31 544.31 983.91 < 2.2e-16 ***
## Residuals 99 54.77 0.55
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 197 204 231 206 238 204 248 242 220 197 209 211 233 219 206 195 244 254
## [19] 210 202 243 221 261 203 227 226 243 206 204 187 218 186 192 230 194 203
## [37] 245 254 201 245 204 254 207 200 222 244 214 256 192 197 195 245 263 211
## [55] 199 206 197 254 198 260 189 243 226 248 243 213 211 203 204 247 244 201
## [73] 246 191 198 189 208 194 208 264 216 198 247 212 200 200 217 239 260 208
## [91] 241 195 251 200 239 240 200 258 248 218
##
## [[1]]$XLabel
## [1] "ScrewTemperature"
##
## [[1]]$Y
## [1] 5.35665 2.19600 0.61320 2.87470 1.63930 1.67320 4.51030 3.60340 0.30420
## [10] 1.09755 0.82025 0.64735 0.54990 1.63850 2.47845 0.79060 1.57080 0.43700
## [19] 2.41345 1.63200 1.79305 1.65135 5.43000 0.55800 1.78825 1.41680 1.87250
## [28] 0.47000 0.77380 4.41440 0.64200 4.62825 0.35000 0.53100 0.23870 2.04375
## [37] 1.77500 1.79070 0.91960 2.45590 1.97780 1.64050 1.64710 0.53110 0.63190
## [46] 2.67415 2.11470 1.29560 1.66605 2.39120 1.59120 5.60625 3.63120 0.53625
## [55] 0.49385 0.83190 1.09375 1.71010 3.11125 5.34970 2.76615 2.33700 0.55675
## [64] 4.40130 0.40180 0.58220 1.30800 2.98775 5.48390 1.42140 3.38910 1.40625
## [73] 3.66600 4.57500 3.66795 0.44880 0.49995 2.67080 3.52755 4.02990 0.78720
## [82] 0.64640 3.56040 0.47380 4.52075 0.39750 0.71780 3.74650 0.69930 0.63130
## [91] 0.97750 2.61240 3.30095 0.76140 1.79140 0.69680 1.40060 2.42060 3.58810
## [100] 0.75480
##
## [[1]]$YLabel
## [1] "ExtrusionVelocity"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x - 1)
##
## Coefficients:
## x
## 0.009003
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8498 -1.2373 -0.3974 1.0253 3.6472
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.0090032 0.0006439 13.98 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.426 on 99 degrees of freedom
## Multiple R-squared: 0.6638, Adjusted R-squared: 0.6604
## F-statistic: 195.5 on 1 and 99 DF, p-value: < 2.2e-16
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## x 0.009003241 0.0006439353 13.98159 3.590639e-25
##
## [[1]]$Correlation
## [1] 0.1980713
##
## [[1]]$DeterminationCoefficient
## [1] 0.6638198
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 397.68 397.68 195.48 < 2.2e-16 ***
## Residuals 99 201.40 2.03
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## [[1]]
## [[1]]$X
## [1] 197 204 231 206 238 204 248 242 220 197 209 211 233 219 206 195 244 254
## [19] 210 202 243 221 261 203 227 226 243 206 204 187 218 186 192 230 194 203
## [37] 245 254 201 245 204 254 207 200 222 244 214 256 192 197 195 245 263 211
## [55] 199 206 197 254 198 260 189 243 226 248 243 213 211 203 204 247 244 201
## [73] 246 191 198 189 208 194 208 264 216 198 247 212 200 200 217 239 260 208
## [91] 241 195 251 200 239 240 200 258 248 218
##
## [[1]]$XLabel
## [1] "ScrewTemperature"
##
## [[1]]$Y
## [1] 29.32304 40.99191 45.87761 15.71330 39.83868 42.00513 21.76614 34.90026
## [9] 49.97632 32.85096 60.02558 35.15783 56.51168 39.64570 36.65512 49.09259
## [17] 26.44861 59.94457 26.15434 27.91344 23.94013 46.53838 46.84046 52.78790
## [25] 45.52684 40.67353 56.22552 35.06948 20.02194 41.28101 43.09747 36.00788
## [33] 51.81429 43.56376 68.44437 31.94832 49.12143 34.29501 60.11521 65.15244
## [41] 28.48329 35.58565 35.55663 41.51600 38.85076 68.07452 49.06527 52.12547
## [49] 33.98180 40.98185 28.59500 32.56293 55.37170 41.21173 68.12488 23.42013
## [57] 45.61783 37.89023 36.38409 43.94748 41.78477 43.50728 40.84012 46.52753
## [65] 60.22892 47.93798 46.01500 16.57245 25.44702 48.24823 43.50871 25.09920
## [73] 43.03068 39.50498 47.35085 57.08497 33.09095 33.69824 35.11669 57.36873
## [81] 44.58517 38.53610 18.82613 51.61156 26.45527 34.58269 50.16591 54.46714
## [89] 48.46619 32.46905 72.45548 46.97908 40.92331 70.81549 25.11976 44.18690
## [97] 61.57475 29.36324 54.13783 50.42630
##
## [[1]]$YLabel
## [1] "ErrorPercentage"
##
## [[1]]$LinearRegresion
##
## Call:
## lm(formula = y ~ x - 1)
##
## Coefficients:
## x
## 0.1908
##
##
## [[1]]$LinearRegresionStatus
##
## Call:
## lm(formula = y ~ x - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -28.296 -6.825 -0.550 8.013 32.660
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## x 0.190778 0.005695 33.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.61 on 99 degrees of freedom
## Multiple R-squared: 0.9189, Adjusted R-squared: 0.9181
## F-statistic: 1122 on 1 and 99 DF, p-value: < 2.2e-16
##
##
## [[1]]$EstimateCoefficients
## Estimate Std. Error t value Pr(>|t|)
## x 0.1907779 0.005695158 33.49826 8.131611e-56
##
## [[1]]$Correlation
## [1] 0.1498213
##
## [[1]]$DeterminationCoefficient
## [1] 0.9189278
##
## [[1]]$Evaluation
## Analysis of Variance Table
##
## Response: y
## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 178563 178563 1122.1 < 2.2e-16 ***
## Residuals 99 15754 159
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
| Point Forecast | Lo 0.95 | Hi 0.95 | |
|---|---|---|---|
| Jan 2022 | 102400.0 | -55593.92 | 260393.9 |
| Feb 2022 | 132766.7 | -33773.55 | 299306.9 |
| Mar 2022 | 125622.2 | -55116.33 | 306360.8 |
| Point Forecast | Lo 0.95 | Hi 0.95 | |
|---|---|---|---|
| Jan 2022 | 14533.33 | 10276.162 | 18790.50 |
| Feb 2022 | 14811.11 | 10323.659 | 19298.56 |
| Mar 2022 | 14448.15 | 9578.119 | 19318.18 |
| Point Forecast | Lo 0.95 | Hi 0.95 | |
|---|---|---|---|
| Jan 2022 | 59850.00 | 28253.95 | 91446.05 |
| Feb 2022 | 56933.33 | 23628.17 | 90238.50 |
| Mar 2022 | 56544.44 | 20399.86 | 92689.03 |
X izquierda representa $pred, X derecha representa $se
## $pred
## Jan Feb Mar Apr May
## 2022 111055.35 56498.48 63292.28 89502.85 89502.85
##
## $se
## Jan Feb Mar Apr May
## 2022 53215.16 53948.30 55221.08 61796.99 61796.99
|
|
## $pred
## Jan Feb Mar Apr May
## 2022 12190.243 9177.619 6823.038 6283.275 6283.275
##
## $se
## Jan Feb Mar Apr May
## 2022 1967.729 2523.858 3287.772 3430.701 3430.701
|
|
## $pred
## Jan Feb Mar Apr May
## 2022 72230.40 69318.39 68923.80 74039.03 74039.03
##
## $se
## Jan Feb Mar Apr May
## 2022 10255.51 10782.88 11988.46 14339.70 14339.70
|
|
##
## ARIMA(2,0,2) with non-zero mean : Inf
## ARIMA(0,0,0) with non-zero mean : 601.1741
## ARIMA(1,0,0) with non-zero mean : 603.5883
## ARIMA(0,0,1) with non-zero mean : 603.5594
## ARIMA(0,0,0) with zero mean : 627.1432
## ARIMA(1,0,1) with non-zero mean : 606.4575
##
## Best model: ARIMA(0,0,0) with non-zero mean
## Series: productA.ts
## ARIMA(0,0,0) with non-zero mean
##
## Coefficients:
## mean
## 90933.33
## s.e. 12348.23
##
## sigma^2 = 3.819e+09: log likelihood = -298.3
## AIC=600.6 AICc=601.17 BIC=602.96
## $pred
## Jan Feb Mar Apr May
## 2022 90933.33 90933.33 90933.33 90933.33 90933.33
##
## $se
## Jan Feb Mar Apr May
## 2022 60493.1 60493.1 60493.1 60493.1 60493.1
##
## ARIMA(2,1,2) with drift : Inf
## ARIMA(0,1,0) with drift : 419.1688
## ARIMA(1,1,0) with drift : 410.2179
## ARIMA(0,1,1) with drift : 414.171
## ARIMA(0,1,0) : 418.5257
## ARIMA(2,1,0) with drift : 413.127
## ARIMA(1,1,1) with drift : 413.1542
## ARIMA(2,1,1) with drift : 416.3143
## ARIMA(1,1,0) : 414.5579
##
## Best model: ARIMA(1,1,0) with drift
## Series: productB.ts
## ARIMA(1,1,0) with drift
##
## Coefficients:
## ar1 drift
## -0.6355 596.2183
## s.e. 0.1581 197.8724
##
## sigma^2 = 2546880: log likelihood = -201.48
## AIC=408.95 AICc=410.22 BIC=412.36
## $pred
## Jan Feb Mar Apr May
## 2022 14934.38 14474.87 14700.85 14589.72 14644.37
##
## $se
## Jan Feb Mar Apr May
## 2022 1784.994 2002.289 2408.677 2659.112 2930.216
##
## ARIMA(2,0,2) with non-zero mean : Inf
## ARIMA(0,0,0) with non-zero mean : 532.2195
## ARIMA(1,0,0) with non-zero mean : 526.4324
## ARIMA(0,0,1) with non-zero mean : 529.174
## ARIMA(0,0,0) with zero mean : 609.1537
## ARIMA(2,0,0) with non-zero mean : 529.2105
## ARIMA(1,0,1) with non-zero mean : 529.2842
## ARIMA(2,0,1) with non-zero mean : 532.1736
## ARIMA(1,0,0) with zero mean : 532.4383
##
## Best model: ARIMA(1,0,0) with non-zero mean
## Series: productC.ts
## ARIMA(1,0,0) with non-zero mean
##
## Coefficients:
## ar1 mean
## 0.5562 72910.486
## s.e. 0.1711 5264.889
##
## sigma^2 = 156472987: log likelihood = -259.62
## AIC=525.23 AICc=526.43 BIC=528.77
## $pred
## Jan Feb Mar Apr May
## 2022 61751.86 66703.51 69457.86 70989.97 71842.20
##
## $se
## Jan Feb Mar Apr May
## 2022 11976.38 13704.52 14196.68 14345.54 14391.28
## $pred
## Jan Feb Mar Apr May
## 2022 90933.33 90933.33 90933.33 90933.33 90933.33
##
## $se
## Jan Feb Mar Apr May
## 2022 60493.1 60493.1 60493.1 60493.1 60493.1
## $pred
## Jan Feb Mar Apr May
## 2022 14934.38 14474.87 14700.85 14589.72 14644.37
##
## $se
## Jan Feb Mar Apr May
## 2022 1784.994 2002.289 2408.677 2659.112 2930.216
## $pred
## Jan Feb Mar Apr May
## 2022 61751.86 66703.51 69457.86 70989.97 71842.20
##
## $se
## Jan Feb Mar Apr May
## 2022 11976.38 13704.52 14196.68 14345.54 14391.28