#上課程式碼:

#資料介紹:https://www.kaggle.com/hb20007/gender-classification?select=Transformed+Data+Set+-+Sheet1.csv
#檔名為"Transformed Data Set - Sheet1.csv"
#從電腦端上傳(upload)到rstudio cloud

#install.packages("readr")#第一次使用需安裝
library(readr)#用library呼叫套件
#讀取資料,命名為"x"
x <- read.csv("Transformed Data Set - Sheet1.csv", stringsAsFactors = TRUE)
x
##    Favorite.Color Favorite.Music.Genre Favorite.Beverage Favorite.Beverage.1
## 1            Cool                 Rock             Vodka               Vodka
## 2         Neutral              Hip hop             Vodka               Vodka
## 3            Warm                 Rock              Wine                Wine
## 4            Warm     Folk/Traditional           Whiskey             Whiskey
## 5            Cool                 Rock             Vodka               Vodka
## 6            Warm           Jazz/Blues     Doesn't drink       Doesn't drink
## 7            Cool                  Pop              Beer                Beer
## 8            Warm                  Pop           Whiskey             Whiskey
## 9            Warm                 Rock             Other               Other
## 10        Neutral                  Pop              Wine                Wine
## 11           Cool                  Pop             Other               Other
## 12           Warm                  Pop             Other               Other
## 13           Warm                  Pop              Wine                Wine
## 14           Warm           Electronic              Wine                Wine
## 15           Cool                 Rock              Beer                Beer
## 16           Warm           Jazz/Blues              Wine                Wine
## 17           Cool                  Pop              Wine                Wine
## 18           Cool                 Rock             Other               Other
## 19           Cool                 Rock             Other               Other
## 20           Cool                  Pop     Doesn't drink       Doesn't drink
## 21           Cool                  Pop              Beer                Beer
## 22           Warm           Jazz/Blues           Whiskey             Whiskey
## 23           Cool                 Rock             Vodka               Vodka
## 24           Warm                  Pop             Other               Other
## 25           Cool     Folk/Traditional           Whiskey             Whiskey
## 26           Warm         R&B and soul           Whiskey             Whiskey
## 27           Cool                  Pop              Beer                Beer
## 28           Cool                  Pop     Doesn't drink       Doesn't drink
## 29           Cool                  Pop     Doesn't drink       Doesn't drink
## 30           Cool           Electronic     Doesn't drink       Doesn't drink
## 31           Warm                 Rock             Other               Other
## 32        Neutral                 Rock              Beer                Beer
## 33           Cool         R&B and soul              Beer                Beer
## 34           Warm         R&B and soul              Wine                Wine
## 35        Neutral              Hip hop              Beer                Beer
## 36           Warm           Electronic             Other               Other
## 37        Neutral                 Rock     Doesn't drink       Doesn't drink
## 38           Cool                  Pop             Other               Other
## 39           Cool                  Pop           Whiskey             Whiskey
## 40           Warm                 Rock             Vodka               Vodka
## 41           Cool                 Rock             Vodka               Vodka
## 42        Neutral                  Pop     Doesn't drink       Doesn't drink
## 43           Warm         R&B and soul     Doesn't drink       Doesn't drink
## 44           Cool                 Rock              Wine                Wine
## 45           Cool     Folk/Traditional              Beer                Beer
## 46           Cool              Hip hop              Beer                Beer
## 47           Cool              Hip hop              Wine                Wine
## 48           Cool         R&B and soul           Whiskey             Whiskey
## 49           Cool                 Rock     Doesn't drink       Doesn't drink
## 50           Warm              Hip hop              Beer                Beer
## 51           Cool         R&B and soul     Doesn't drink       Doesn't drink
## 52           Cool                 Rock     Doesn't drink       Doesn't drink
## 53           Cool              Hip hop     Doesn't drink       Doesn't drink
## 54           Warm                 Rock              Beer                Beer
## 55           Cool           Electronic     Doesn't drink       Doesn't drink
## 56           Cool           Electronic             Other               Other
## 57           Warm     Folk/Traditional             Other               Other
## 58           Warm           Electronic             Vodka               Vodka
## 59           Warm           Jazz/Blues             Vodka               Vodka
## 60           Cool                  Pop           Whiskey             Whiskey
## 61           Cool           Electronic           Whiskey             Whiskey
## 62           Cool                 Rock             Vodka               Vodka
## 63           Cool              Hip hop              Beer                Beer
## 64        Neutral              Hip hop     Doesn't drink       Doesn't drink
## 65           Cool                 Rock              Wine                Wine
## 66           Cool           Electronic              Beer                Beer
##    Gender
## 1       F
## 2       F
## 3       F
## 4       F
## 5       F
## 6       F
## 7       F
## 8       F
## 9       F
## 10      F
## 11      F
## 12      F
## 13      F
## 14      F
## 15      F
## 16      F
## 17      F
## 18      F
## 19      F
## 20      F
## 21      F
## 22      F
## 23      F
## 24      F
## 25      F
## 26      F
## 27      F
## 28      F
## 29      F
## 30      F
## 31      F
## 32      F
## 33      F
## 34      M
## 35      M
## 36      M
## 37      M
## 38      M
## 39      M
## 40      M
## 41      M
## 42      M
## 43      M
## 44      M
## 45      M
## 46      M
## 47      M
## 48      M
## 49      M
## 50      M
## 51      M
## 52      M
## 53      M
## 54      M
## 55      M
## 56      M
## 57      M
## 58      M
## 59      M
## 60      M
## 61      M
## 62      M
## 63      M
## 64      M
## 65      M
## 66      M
#查看資料結構
summary(x)
##  Favorite.Color       Favorite.Music.Genre     Favorite.Beverage
##  Cool   :37     Electronic      : 8        Beer         :13     
##  Neutral: 7     Folk/Traditional: 4        Doesn't drink:14     
##  Warm   :22     Hip hop         : 8        Other        :11     
##                 Jazz/Blues      : 4        Vodka        : 9     
##                 Pop             :17        Whiskey      : 9     
##                 R&B and soul    : 6        Wine         :10     
##                 Rock            :19                             
##     Favorite.Beverage.1 Gender
##  Beer         :13       F:33  
##  Doesn't drink:14       M:33  
##  Other        :11             
##  Vodka        : 9             
##  Whiskey      : 9             
##  Wine         :10             
## 
#重新命名欄位名稱
colnames(x) #檢視欄位名稱
## [1] "Favorite.Color"       "Favorite.Music.Genre" "Favorite.Beverage"   
## [4] "Favorite.Beverage.1"  "Gender"
colnames(x) <- c("color", "music", "beverage", "drink", "gender")     

###類別資料分析###

#問題:男女生各有多少人?
table(x$gender)#算次數
## 
##  F  M 
## 33 33
prop.table(table(x$gender))#算百分比
## 
##   F   M 
## 0.5 0.5
#問題:最喜歡的color、music、beverage、 drink、gender?
table(x$color)
## 
##    Cool Neutral    Warm 
##      37       7      22
prop.table(table(x$color))
## 
##      Cool   Neutral      Warm 
## 0.5606061 0.1060606 0.3333333
#問題:男女對顏色的喜好的差異?

d <- table(x$gender,x$color)
d
##    
##     Cool Neutral Warm
##   F   17       3   13
##   M   20       4    9
#百分比次數分配表
p.d<- prop.table(d,2)
p.d
##    
##          Cool   Neutral      Warm
##   F 0.4594595 0.4285714 0.5909091
##   M 0.5405405 0.5714286 0.4090909
#將次數變成百分比(乘以100)
p.d <- p.d*100
p.d
##    
##         Cool  Neutral     Warm
##   F 45.94595 42.85714 59.09091
##   M 54.05405 57.14286 40.90909
#四捨五入至小數2位
p.d <- round(p.d,2)
p.d
##    
##      Cool Neutral  Warm
##   F 45.95   42.86 59.09
##   M 54.05   57.14 40.91
#畫分組長條圖
barplot(p.d)

barplot(p.d, beside =T)

#加上圖例與上色
rownames(p.d)
## [1] "F" "M"
label <- rownames(p.d)

#次數分配表
t <- table(x$gender,x$drink)
t
##    
##     Beer Doesn't drink Other Vodka Whiskey Wine
##   F    6             5     7     4       5    6
##   M    7             9     4     5       4    4
#百分比次數分配表
p.t <- prop.table(t,1)
p.t
##    
##          Beer Doesn't drink     Other     Vodka   Whiskey      Wine
##   F 0.1818182     0.1515152 0.2121212 0.1212121 0.1515152 0.1818182
##   M 0.2121212     0.2727273 0.1212121 0.1515152 0.1212121 0.1212121
#將次數變成百分比(乘以100)
p.t <- p.t*100
p.t
##    
##         Beer Doesn't drink    Other    Vodka  Whiskey     Wine
##   F 18.18182      15.15152 21.21212 12.12121 15.15152 18.18182
##   M 21.21212      27.27273 12.12121 15.15152 12.12121 12.12121
#四捨五入至小數2位
p.t <- round(p.t,2)
p.t
##    
##      Beer Doesn't drink Other Vodka Whiskey  Wine
##   F 18.18         15.15 21.21 12.12   15.15 18.18
##   M 21.21         27.27 12.12 15.15   12.12 12.12
#畫分組長條圖
barplot(p.t)

barplot(p.t, beside =T)

#加上圖例與上色
rownames(p.t)
## [1] "F" "M"
label <- rownames(p.t)
label
## [1] "F" "M"
barplot(p.t, 
        beside = T, 
        legend.text =label,
        col = c (12,16))

#畫圓餅圖
p.d
##    
##      Cool Neutral  Warm
##   F 45.95   42.86 59.09
##   M 54.05   57.14 40.91
f <- p.d[1,] # 女性資料
m <- p.d[2,] # 男性資料
f
##    Cool Neutral    Warm 
##   45.95   42.86   59.09
m
##    Cool Neutral    Warm 
##   54.05   57.14   40.91
# par()是圖形控制函數,mfrow = c(1,2)表示建立一個1x2的空間,用來呈現後續的圖
par( mfrow = c(1,2))
pie(f, main ="女生")
pie(m, main ="男生")

dev.off()  #離開par()
## null device 
##           1
#畫圓餅圖並加上資料標籤
pie_category <- colnames(p.d)
pie_category
## [1] "Cool"    "Neutral" "Warm"
f_label <- paste(pie_category, f,"%", sep = "")
f_label
## [1] "Cool45.95%"    "Neutral42.86%" "Warm59.09%"
m_label <- paste(pie_category, m,"%", sep = "")
m_label
## [1] "Cool54.05%"    "Neutral57.14%" "Warm40.91%"
par(mfrow = c(1,2))# c(1,2),表示建立一個1x2的空間,用來呈現後續的圖
pie(f, labels =  f_label, main = "Female")
pie(m, labels =  m_label, main = "Male" )
dev.off()  #離開par()
## null device 
##           1
p.t
##    
##      Beer Doesn't drink Other Vodka Whiskey  Wine
##   F 18.18         15.15 21.21 12.12   15.15 18.18
##   M 21.21         27.27 12.12 15.15   12.12 12.12
f <- p.t[1,] # 女性資料
m <- p.t[2,] # 男性資料
f
##          Beer Doesn't drink         Other         Vodka       Whiskey 
##         18.18         15.15         21.21         12.12         15.15 
##          Wine 
##         18.18
m
##          Beer Doesn't drink         Other         Vodka       Whiskey 
##         21.21         27.27         12.12         15.15         12.12 
##          Wine 
##         12.12
# par()是圖形控制函數,mfrow = c(1,2)表示建立一個1x2的空間,用來呈現後續的圖
par( mfrow = c(1,2))
pie(f, main ="女生")
## Warning in title(main = main, ...): conversion failure on '女生' in
## 'mbcsToSbcs': dot substituted for <e5>
## Warning in title(main = main, ...): conversion failure on '女生' in
## 'mbcsToSbcs': dot substituted for <a5>
## Warning in title(main = main, ...): conversion failure on '女生' in
## 'mbcsToSbcs': dot substituted for <b3>
## Warning in title(main = main, ...): conversion failure on '女生' in
## 'mbcsToSbcs': dot substituted for <e7>
## Warning in title(main = main, ...): conversion failure on '女生' in
## 'mbcsToSbcs': dot substituted for <94>
## Warning in title(main = main, ...): conversion failure on '女生' in
## 'mbcsToSbcs': dot substituted for <9f>
pie(m, main ="男生")
## Warning in title(main = main, ...): conversion failure on '男生' in
## 'mbcsToSbcs': dot substituted for <e7>
## Warning in title(main = main, ...): conversion failure on '男生' in
## 'mbcsToSbcs': dot substituted for <94>
## Warning in title(main = main, ...): conversion failure on '男生' in
## 'mbcsToSbcs': dot substituted for <b7>
## Warning in title(main = main, ...): conversion failure on '男生' in
## 'mbcsToSbcs': dot substituted for <e7>
## Warning in title(main = main, ...): conversion failure on '男生' in
## 'mbcsToSbcs': dot substituted for <94>
## Warning in title(main = main, ...): conversion failure on '男生' in
## 'mbcsToSbcs': dot substituted for <9f>
dev.off()  #離開par()
## null device 
##           1
#畫圓餅圖並加上資料標籤
pie_category <- colnames(p.t)
pie_category
## [1] "Beer"          "Doesn't drink" "Other"         "Vodka"        
## [5] "Whiskey"       "Wine"
f_label <- paste(pie_category, f,"%", sep = "")
f_label
## [1] "Beer18.18%"          "Doesn't drink15.15%" "Other21.21%"        
## [4] "Vodka12.12%"         "Whiskey15.15%"       "Wine18.18%"
m_label <- paste(pie_category, m,"%", sep = "")
m_label
## [1] "Beer21.21%"          "Doesn't drink27.27%" "Other12.12%"        
## [4] "Vodka15.15%"         "Whiskey12.12%"       "Wine12.12%"
par(mfrow = c(1,2))# c(1,2),表示建立一個1x2的空間,用來呈現後續的圖
pie(f, labels =  f_label, main = "Female")
pie(m, labels =  m_label, main = "Male" )
dev.off()  #離開par()
## null device 
##           1