Lembaga = Universitas Islam Negeri Maulana Malik Ibrahim Malang
Jurusan = Teknik Informatika
library(readxl)
datainflowKalimantan <- read_excel(path = "inflowkalimantan.xlsx")
datainflowKalimantan
## # A tibble: 6 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Kaliman~ 13272. 17575. 37698. 26379. 29427. 32847. 35119. 41157. 46158. 37200.
## 2 Kaliman~ 2831. 3386. 4029. 5943. 6675. 7440. 7775. 10249. 11848. 9294.
## 3 Kaliman~ 779. 1135. 19328. 1887. 3547. 3694. 3655. 4083. 4385. 4178.
## 4 Kaliman~ 5369. 7311. 4226. 9614. 9558. 10809. 12415. 13604. 14462. 11753.
## 5 Kaliman~ 4293. 5743. 10115. 8936. 9646. 10903. 10933. 12305. 13991. 10612.
## 6 Kaliman~ 0 0 0 0 0 0 341. 917. 1472. 1362.
## # ... with 1 more variable: `2021` <dbl>
library(tidyverse)
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.5 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Kalimantan1 <- select(datainflowKalimantan, '2017')
Kalimantan1
## # A tibble: 6 x 1
## `2017`
## <dbl>
## 1 35119.
## 2 7775.
## 3 3655.
## 4 12415.
## 5 10933.
## 6 341.
Kalimantan2 <- select(datainflowKalimantan, `2017`, `2019`, `2021`)
Kalimantan2
## # A tibble: 6 x 3
## `2017` `2019` `2021`
## <dbl> <dbl> <dbl>
## 1 35119. 46158. 31372.
## 2 7775. 11848. 7598.
## 3 3655. 4385. 3534.
## 4 12415. 14462. 9655.
## 5 10933. 13991. 8914.
## 6 341. 1472. 1671.
Kalimantan3 <- datainflowKalimantan %>%
select(tahun = `2015`, `2018`, `2021`)
Kalimantan3
## # A tibble: 6 x 3
## tahun `2018` `2021`
## <dbl> <dbl> <dbl>
## 1 29427. 41157. 31372.
## 2 6675. 10249. 7598.
## 3 3547. 4083. 3534.
## 4 9558. 13604. 9655.
## 5 9646. 12305. 8914.
## 6 0 917. 1671.
Kalimantan4 <- distinct(datainflowKalimantan, `2016`)
Kalimantan4
## # A tibble: 6 x 1
## `2016`
## <dbl>
## 1 32847.
## 2 7440.
## 3 3694.
## 4 10809.
## 5 10903.
## 6 0
Kalimantan5 <- distinct(datainflowKalimantan, `2019`, .keep_all = TRUE)
Kalimantan5
## # A tibble: 6 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Kaliman~ 13272. 17575. 37698. 26379. 29427. 32847. 35119. 41157. 46158. 37200.
## 2 Kaliman~ 2831. 3386. 4029. 5943. 6675. 7440. 7775. 10249. 11848. 9294.
## 3 Kaliman~ 779. 1135. 19328. 1887. 3547. 3694. 3655. 4083. 4385. 4178.
## 4 Kaliman~ 5369. 7311. 4226. 9614. 9558. 10809. 12415. 13604. 14462. 11753.
## 5 Kaliman~ 4293. 5743. 10115. 8936. 9646. 10903. 10933. 12305. 13991. 10612.
## 6 Kaliman~ 0 0 0 0 0 0 341. 917. 1472. 1362.
## # ... with 1 more variable: `2021` <dbl>
Kalimantan6 <- datainflowKalimantan %>%
filter(Provinsi <= 'Kalimantan Utara') %>%
select(`2020`,`2021`)
Kalimantan6
## # A tibble: 6 x 2
## `2020` `2021`
## <dbl> <dbl>
## 1 37200. 31372.
## 2 9294. 7598.
## 3 4178. 3534.
## 4 11753. 9655.
## 5 10612. 8914.
## 6 1362. 1671.
Kalimantan7 <- datainflowKalimantan %>%
filter(Provinsi == 'Kalimantan Tengah', Provinsi == 'Kalimantan Utara') %>%
select( -`2016`)
Kalimantan7
## # A tibble: 0 x 11
## # ... with 11 variables: Provinsi <chr>, 2011 <dbl>, 2012 <dbl>, 2013 <dbl>,
## # 2014 <dbl>, 2015 <dbl>, 2017 <dbl>, 2018 <dbl>, 2019 <dbl>, 2020 <dbl>,
## # 2021 <dbl>
str(datainflowKalimantan)
## tibble [6 x 12] (S3: tbl_df/tbl/data.frame)
## $ Provinsi: chr [1:6] "Kalimantan" "Kalimantan Barat" "Kalimantan Tengah" "Kalimantan Selatan" ...
## $ 2011 : num [1:6] 13272 2831 779 5369 4293 ...
## $ 2012 : num [1:6] 17575 3386 1135 7311 5743 ...
## $ 2013 : num [1:6] 37698 4029 19328 4226 10115 ...
## $ 2014 : num [1:6] 26379 5943 1887 9614 8936 ...
## $ 2015 : num [1:6] 29427 6675 3547 9558 9646 ...
## $ 2016 : num [1:6] 32847 7440 3694 10809 10903 ...
## $ 2017 : num [1:6] 35119 7775 3655 12415 10933 ...
## $ 2018 : num [1:6] 41157 10249 4083 13604 12305 ...
## $ 2019 : num [1:6] 46158 11848 4385 14462 13991 ...
## $ 2020 : num [1:6] 37200 9294 4178 11753 10612 ...
## $ 2021 : num [1:6] 31372 7598 3534 9655 8914 ...
str(datainflowKalimantan %>% group_by(Provinsi))
## grouped_df [6 x 12] (S3: grouped_df/tbl_df/tbl/data.frame)
## $ Provinsi: chr [1:6] "Kalimantan" "Kalimantan Barat" "Kalimantan Tengah" "Kalimantan Selatan" ...
## $ 2011 : num [1:6] 13272 2831 779 5369 4293 ...
## $ 2012 : num [1:6] 17575 3386 1135 7311 5743 ...
## $ 2013 : num [1:6] 37698 4029 19328 4226 10115 ...
## $ 2014 : num [1:6] 26379 5943 1887 9614 8936 ...
## $ 2015 : num [1:6] 29427 6675 3547 9558 9646 ...
## $ 2016 : num [1:6] 32847 7440 3694 10809 10903 ...
## $ 2017 : num [1:6] 35119 7775 3655 12415 10933 ...
## $ 2018 : num [1:6] 41157 10249 4083 13604 12305 ...
## $ 2019 : num [1:6] 46158 11848 4385 14462 13991 ...
## $ 2020 : num [1:6] 37200 9294 4178 11753 10612 ...
## $ 2021 : num [1:6] 31372 7598 3534 9655 8914 ...
## - attr(*, "groups")= tibble [6 x 2] (S3: tbl_df/tbl/data.frame)
## ..$ Provinsi: chr [1:6] "Kalimantan" "Kalimantan Barat" "Kalimantan Selatan" "Kalimantan Tengah" ...
## ..$ .rows : list<int> [1:6]
## .. ..$ : int 1
## .. ..$ : int 2
## .. ..$ : int 4
## .. ..$ : int 3
## .. ..$ : int 5
## .. ..$ : int 6
## .. ..@ ptype: int(0)
## ..- attr(*, ".drop")= logi TRUE
Kalimantanup <- datainflowKalimantan %>%
group_by(Provinsi)
Kalimantanup
## # A tibble: 6 x 12
## # Groups: Provinsi [6]
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Kaliman~ 13272. 17575. 37698. 26379. 29427. 32847. 35119. 41157. 46158. 37200.
## 2 Kaliman~ 2831. 3386. 4029. 5943. 6675. 7440. 7775. 10249. 11848. 9294.
## 3 Kaliman~ 779. 1135. 19328. 1887. 3547. 3694. 3655. 4083. 4385. 4178.
## 4 Kaliman~ 5369. 7311. 4226. 9614. 9558. 10809. 12415. 13604. 14462. 11753.
## 5 Kaliman~ 4293. 5743. 10115. 8936. 9646. 10903. 10933. 12305. 13991. 10612.
## 6 Kaliman~ 0 0 0 0 0 0 341. 917. 1472. 1362.
## # ... with 1 more variable: `2021` <dbl>
Baliup1 <- datainflowKalimantan %>%
mutate(`2020` = datainflowKalimantan$`2021`/2)
Baliup1
## # A tibble: 6 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Kaliman~ 13272. 17575. 37698. 26379. 29427. 32847. 35119. 41157. 46158. 15686.
## 2 Kaliman~ 2831. 3386. 4029. 5943. 6675. 7440. 7775. 10249. 11848. 3799.
## 3 Kaliman~ 779. 1135. 19328. 1887. 3547. 3694. 3655. 4083. 4385. 1767.
## 4 Kaliman~ 5369. 7311. 4226. 9614. 9558. 10809. 12415. 13604. 14462. 4828.
## 5 Kaliman~ 4293. 5743. 10115. 8936. 9646. 10903. 10933. 12305. 13991. 4457.
## 6 Kaliman~ 0 0 0 0 0 0 341. 917. 1472. 835.
## # ... with 1 more variable: `2021` <dbl>
Kalimantanubah <- arrange(datainflowKalimantan, `2015`)
Kalimantanubah
## # A tibble: 6 x 12
## Provinsi `2011` `2012` `2013` `2014` `2015` `2016` `2017` `2018` `2019` `2020`
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 Kaliman~ 0 0 0 0 0 0 341. 917. 1472. 1362.
## 2 Kaliman~ 779. 1135. 19328. 1887. 3547. 3694. 3655. 4083. 4385. 4178.
## 3 Kaliman~ 2831. 3386. 4029. 5943. 6675. 7440. 7775. 10249. 11848. 9294.
## 4 Kaliman~ 5369. 7311. 4226. 9614. 9558. 10809. 12415. 13604. 14462. 11753.
## 5 Kaliman~ 4293. 5743. 10115. 8936. 9646. 10903. 10933. 12305. 13991. 10612.
## 6 Kaliman~ 13272. 17575. 37698. 26379. 29427. 32847. 35119. 41157. 46158. 37200.
## # ... with 1 more variable: `2021` <dbl>
ggplot(data = datainflowKalimantan, mapping = aes(x = Provinsi, y = `2015`)) +
geom_point()
ggplot(data = datainflowKalimantan, mapping = aes(x = Provinsi, y = `2015`)) +
geom_bar(stat = "identity")
ggplot(datainflowKalimantan, aes(Provinsi,`2021`, color=`Provinsi`))+
geom_point()