Ecuaciones - Fórmulas - Sintaxis y comandos LATEX

Superíndice - Potencia

\[ e=mc^2 \]


\[ a^2 + b^2 = c^2 \]


Subíndice

\[ H_2O \]


\[ NH_3 \]

fracciones - casos - ejemplos

\[ \frac{1}{2} \]

\[ \frac{5}{6} + \frac{1}{2} \]

\[ \frac{5}{6} \times \frac{1}{2} \]

\[ \frac{5}{6} \cdot \frac{1}{2} \]

\[ \frac{5}{6} \div \frac{1}{2} \]

\[ (\frac{5}{6}) \]

\[ \left(\frac{5}{6}\right)^2 \]

Dada la fracción \(\frac{1}{2}\) podemos determinar el valor de la variable

Dada la fracción \(\tfrac{1}{2}\), podemos determinar el valor de la variable

Dada la fracción \(\dfrac{1}{2}\), podemos determinar el valor de la variable

Raíces

\[ \sqrt{2} = 1.41213562 \]

\[ \sqrt{3} = 1.7320508 \]

\[ \sqrt{4} = 2 \]

Sumatoria

\[ \sum_{i=1}^5 2i \]

Ahora hacemos lo siguiente:

Logaritmos

\[ \log_7{49} = 2 \]

\[ \log_6{216} = 3 \]

\[ \log_3{81} = 4 \]

matrices

\[ \begin{matrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \\ \end{matrix} \]

\[ \begin{pmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \\ \end{pmatrix} \]

\[ \begin{bmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \\ \end{bmatrix} \]

\[ \begin{Bmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \\ \end{Bmatrix} \]

\[ \begin{vmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \\ \end{vmatrix} \]

\[ \begin{Vmatrix} 1 & 8 & 19 \\ 8 & 9 & 10 \\ 9 & 8 & 10 \\ \end{Vmatrix} \]

Ecuaciones

Dada la función

\[ \begin{equation} f(x)=y \end{equation} \]

podemos determinar el valor de la variable

\[ \text{Fórmula Ecuación 2° grado} \quad x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

Símbolos Matemáticos Básicos

\[ (900) \]

\[ [900] \]

\[ |900| \]

LS0tDQp0aXRsZTogIlNpbnRheGlzIC0gQ29tYW5kb3MgTEFURVgiDQpzdWJ0aXRsZTogIkxhdGV4IC0gTWFya2Rvd24iDQphdXRob3I6ICJFcmljayBCYXV0aXN0YSINCmRhdGU6ICIyMDIyLzA0LzIzIg0Kb3V0cHV0Og0KICBodG1sX2RvY3VtZW50Og0KICAgIGNvZGVfZG93bmxvYWQ6IFRSVUUNCi0tLQ0KDQo8IS0tQcODwrFhZGlyIGVjdWFjaW9uZXMgeSBmw4PCs3JtdWxhcyBlbiBNYXJrZG93biBoYWNpZW5kbyB1c28gZGUgTGF0ZXgtLT4NCg0KDQojIEVjdWFjaW9uZXMgLSBGw7NybXVsYXMgLSBTaW50YXhpcyB5IGNvbWFuZG9zIExBVEVYDQoNCiMjIFN1cGVyw61uZGljZSAtIFBvdGVuY2lhDQoNCiQkDQplPW1jXjINCiQkDQoNCioqKg0KDQokJA0KYV4yICsgYl4yID0gY14yDQokJA0KDQoqKioNCg0KIyMgU3Viw61uZGljZQ0KDQokJA0KSF8yTw0KJCQNCg0KKioqDQoNCiQkDQpOSF8zDQokJA0KDQojIyBmcmFjY2lvbmVzIC0gY2Fzb3MgLSBlamVtcGxvcw0KDQokJA0KXGZyYWN7MX17Mn0NCiQkDQoNCiQkDQpcZnJhY3s1fXs2fSArIFxmcmFjezF9ezJ9DQokJA0KDQokJA0KXGZyYWN7NX17Nn0gXHRpbWVzIFxmcmFjezF9ezJ9DQokJA0KDQokJA0KXGZyYWN7NX17Nn0gXGNkb3QgXGZyYWN7MX17Mn0NCiQkDQoNCiQkDQpcZnJhY3s1fXs2fSBcZGl2IFxmcmFjezF9ezJ9DQokJA0KDQokJA0KKFxmcmFjezV9ezZ9KQ0KJCQNCg0KJCQNClxsZWZ0KFxmcmFjezV9ezZ9XHJpZ2h0KV4yDQokJA0KDQpEYWRhIGxhIGZyYWNjacOzbiAkXGZyYWN7MX17Mn0kIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZQ0KDQpEYWRhIGxhIGZyYWNjacOzbiAkXHRmcmFjezF9ezJ9JCwgcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlDQoNCkRhZGEgbGEgZnJhY2Npw7NuICRcZGZyYWN7MX17Mn0kLCBwb2RlbW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUNCg0KIyMgUmHDrWNlcw0KDQokJA0KXHNxcnR7Mn0gPSAxLjQxMjEzNTYyDQokJA0KDQokJA0KXHNxcnR7M30gPSAxLjczMjA1MDgNCiQkDQoNCiQkDQpcc3FydHs0fSA9IDINCiQkDQoNCiMjIFN1bWF0b3JpYQ0KDQokJA0KXHN1bV97aT0xfV41IDJpDQokJA0KDQpBaG9yYSBoYWNlbW9zIGxvIHNpZ3VpZW50ZToNCg0KIyMgTG9nYXJpdG1vcw0KDQokJA0KXGxvZ183ezQ5fSA9IDINCiQkDQoNCiQkDQpcbG9nXzZ7MjE2fSA9IDMNCiQkDQoNCiQkDQpcbG9nXzN7ODF9ID0gNA0KJCQNCg0KIyMgbWF0cmljZXMNCg0KJCQNClxiZWdpbnttYXRyaXh9DQoxICYgOCAmIDE5IFxcDQo4ICYgOSAmIDEwIFxcDQo5ICYgOCAmIDEwIFxcDQpcZW5ke21hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57cG1hdHJpeH0NCjEgJiA4ICYgMTkgXFwNCjggJiA5ICYgMTAgXFwNCjkgJiA4ICYgMTAgXFwNClxlbmR7cG1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Ym1hdHJpeH0NCjEgJiA4ICYgMTkgXFwNCjggJiA5ICYgMTAgXFwNCjkgJiA4ICYgMTAgXFwNClxlbmR7Ym1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Qm1hdHJpeH0NCjEgJiA4ICYgMTkgXFwNCjggJiA5ICYgMTAgXFwNCjkgJiA4ICYgMTAgXFwNClxlbmR7Qm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57dm1hdHJpeH0NCjEgJiA4ICYgMTkgXFwNCjggJiA5ICYgMTAgXFwNCjkgJiA4ICYgMTAgXFwNClxlbmR7dm1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Vm1hdHJpeH0NCjEgJiA4ICYgMTkgXFwNCjggJiA5ICYgMTAgXFwNCjkgJiA4ICYgMTAgXFwNClxlbmR7Vm1hdHJpeH0NCiQkDQoNCiMjIEVjdWFjaW9uZXMNCg0KRGFkYSBsYSBmdW5jacOzbiANCg0KJCQNClxiZWdpbntlcXVhdGlvbn0NCmYoeCk9eQ0KXGVuZHtlcXVhdGlvbn0NCiQkDQoNCnBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZQ0KDQokJA0KXHRleHR7RsOzcm11bGEgRWN1YWNpw7NuIDLCsCBncmFkb30gXHF1YWQgeCA9IFxmcmFjey1iIFxwbSBcc3FydHtiXjIgLSA0YWN9fXsyYX0NCiQkDQoNCiMjIFPDrW1ib2xvcyBNYXRlbcOhdGljb3MgQsOhc2ljb3MNCg0KJCQNCig5MDApDQokJA0KDQokJA0KWzkwMF0NCiQkDQoNCiQkDQp8OTAwfA0KJCQNCg0K