library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✔ ggplot2 3.3.6 ✔ purrr 0.3.4
## ✔ tibble 3.1.7 ✔ dplyr 1.0.9
## ✔ tidyr 1.2.0 ✔ stringr 1.4.0
## ✔ readr 2.1.2 ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
Tabel Data NIM dan Nama Mahasiswa
Mahasiswa <- data.frame(
NIM = c(210605220001, 210605220002, 210605220003, 210605220004, 210605220005, 210605220006, 210605220007, 210605220008, 210605220009), 'Nama Mahasiswa' = c("Ari", "Adul", "Andri", "Boman", "Danang", "Radit", "Ganes", "Isti", "hani"),
stringsAsFactors = FALSE)
Mahasiswa
## NIM Nama.Mahasiswa
## 1 210605220001 Ari
## 2 210605220002 Adul
## 3 210605220003 Andri
## 4 210605220004 Boman
## 5 210605220005 Danang
## 6 210605220006 Radit
## 7 210605220007 Ganes
## 8 210605220008 Isti
## 9 210605220009 hani
Tabel Data Jenis Kelamin Mahasiswa
Gender <- data.frame(
NIM = c(210605220001, 210605220002, 210605220003, 210605220004, 210605220005, 210605220006, 210605220007, 210605220008, 210605220009), 'Gender' = c("Pria", "Pria", "Wanita", "Pria", "Pria", "Pria", "Pria", "Wanita", "Wanita"),
stringsAsFactors = FALSE)
Gender
## NIM Gender
## 1 210605220001 Pria
## 2 210605220002 Pria
## 3 210605220003 Wanita
## 4 210605220004 Pria
## 5 210605220005 Pria
## 6 210605220006 Pria
## 7 210605220007 Pria
## 8 210605220008 Wanita
## 9 210605220009 Wanita
Menggabungkan Data NIM, Nama, dan Jenis Kelamin Mahasiswa
library(dplyr)
mahasiswa1 <- merge(
x = Mahasiswa,
y = Gender,
by = 'NIM',
all = TRUE
)
mahasiswa1
## NIM Nama.Mahasiswa Gender
## 1 210605220001 Ari Pria
## 2 210605220002 Adul Pria
## 3 210605220003 Andri Wanita
## 4 210605220004 Boman Pria
## 5 210605220005 Danang Pria
## 6 210605220006 Radit Pria
## 7 210605220007 Ganes Pria
## 8 210605220008 Isti Wanita
## 9 210605220009 hani Wanita
Tabel Data Asal Daerah Mahasiswa
AsalDaerah <- data.frame(
NIM = c(210605220001, 210605220002, 210605220003, 210605220004, 210605220005, 210605220006, 210605220007, 210605220008, 210605220009), 'AsalDaerah' = c("Malang", "Malang", "Surabaya", "Jombang", "Blitar", "Pasuruan", "Gresik", "Nganjuk", "Mojokerto"),
stringsAsFactors = FALSE)
AsalDaerah
## NIM AsalDaerah
## 1 210605220001 Malang
## 2 210605220002 Malang
## 3 210605220003 Surabaya
## 4 210605220004 Jombang
## 5 210605220005 Blitar
## 6 210605220006 Pasuruan
## 7 210605220007 Gresik
## 8 210605220008 Nganjuk
## 9 210605220009 Mojokerto
Menggabungkan Data NIM, Nama, Jenis Kelamin, dan Asal Daerah
library(dplyr)
mahasiswa2 <- merge(
x = mahasiswa1,
y = AsalDaerah,
by = 'NIM',
all = TRUE
)
mahasiswa2
## NIM Nama.Mahasiswa Gender AsalDaerah
## 1 210605220001 Ari Pria Malang
## 2 210605220002 Adul Pria Malang
## 3 210605220003 Andri Wanita Surabaya
## 4 210605220004 Boman Pria Jombang
## 5 210605220005 Danang Pria Blitar
## 6 210605220006 Radit Pria Pasuruan
## 7 210605220007 Ganes Pria Gresik
## 8 210605220008 Isti Wanita Nganjuk
## 9 210605220009 hani Wanita Mojokerto
Penerapan Data Set Mahasiswa pada Inner Join
innerjoin <- Mahasiswa %>%
inner_join(Gender, by = "NIM")
innerjoin
## NIM Nama.Mahasiswa Gender
## 1 210605220001 Ari Pria
## 2 210605220002 Adul Pria
## 3 210605220003 Andri Wanita
## 4 210605220004 Boman Pria
## 5 210605220005 Danang Pria
## 6 210605220006 Radit Pria
## 7 210605220007 Ganes Pria
## 8 210605220008 Isti Wanita
## 9 210605220009 hani Wanita
Penerapan Data Set Mahasiswa pada Outer Join
leftjoin <- left_join(Mahasiswa,Gender)
## Joining, by = "NIM"
rightjoin <- right_join(Mahasiswa,Gender)
## Joining, by = "NIM"
fulljoin <- full_join(Mahasiswa,Gender)
## Joining, by = "NIM"
summary(cars)
## speed dist
## Min. : 4.0 Min. : 2.00
## 1st Qu.:12.0 1st Qu.: 26.00
## Median :15.0 Median : 36.00
## Mean :15.4 Mean : 42.98
## 3rd Qu.:19.0 3rd Qu.: 56.00
## Max. :25.0 Max. :120.00
Sumber :