Dosen Pengampu : Prof. Dr. Suhartono, M.Kom
Lembaga : Universitas Islam Negeri Maulana Malik Ibrahim Malang
Fakultas : Sains dan Teknologi
Jurusan : Teknik Informatika
Kelas : (C) Linear Algebra
NIM : 210605110102
Program linear atau pemrograman linear adalah metode untuk memperoleh hasil optimal dari suatu model matematika yang disusun dari hubungan linear. Program linear adalah kasus khusus dalam pemrograman matematika (juga dikenal dengan optimisasi matematika).
Secara lebih formal, program linear adalah sebuah teknik optimisasi untuk fungsi objektif linear, dengan kendala (beberapa) persamaan linear dan pertidaksamaan linear. Daerah feasibel dari kendala berupa sebuah politop konveks, yakni sebuah himpunan yang didefinisikan dari perpotongan banyak (namun terhingga) half spaces. Sedangkan fungsi objektif berupa fungsi (linear) bernilai real yang terdefinisi pada politop tersebut. Sebuah algoritme program linear akan mencari sebuah titik pada politop, yang menyebabkan fungsi objektif akan menghasilkan nilai terkecil (atau terbesar); jika titik tersebut ada.
Masalah maksimasi merupakan upaya dalam menentukan cara untuk jumlah unit pada setiap jenis produk yang diproduksi setiap hariagar keuntungan yang diperoleh bisa maksimal. Maksimasi sendiri dapat berupa memaksimalkan keuntungan atau hasil.
Contoh: PT. HARAPAN TEKSTIL memiliki sebuah pabrik yang akan memproduksi 2 jenis produk, yaitu kain sutera dan kain wol. Untuk memproduksi kedua produk diperlukan bahan baku benang sutera, bahan baku benang wol dan tenaga kerja. Maksimum penyediaan benang sutera adalah 60 kg per hari, benang wol 30 kg per hari dan tenaga kerja 40 jam per hari. Kebutuhan setiap unit produk akan bahan baku dan jam tenaga kerja dapat dilihat dalam tabel berikut:
Kedua jenis produk memberikan keuntungan sebesar Rp.40.000.000,- untuk kain sutera dan Rp.30.000.000,- untuk kain wol. Masalahnya adalah bagaimana menentukan jumlah unit setiap jenis produk yang akan diproduksi setiap hari agar keuntungan yang diperoleh bisa maksimal.
X1 = kain sutera
X2 = kain wol
library (lpSolve)
# Memasukkan koefisien dari fungsi tujuan pada f.obj
f.obj <- c(40, 30)
1.2X1 + 3X2 ≤ 60 (benang sutera)
2.2X2 ≤ 30 (benang wol)
3.2X1 + X2 ≤ 40 (tenaga kerja)
# Memasukkan koefiesian fungsi kendala dalam bentuk matriks
# Dengan nrow menunjukkan banyaknya kendala yaitu 3 dan angka yang
# diinput disusun perbaris sehingga byrow = TRUE
f.con <- matrix(c(2, 3,
0, 2,
2, 1), nrow = 3, byrow = TRUE)
# Memasukkan tanda pertidaksamaan pada setiap kendala
f.dir <- c("<=",
"<=",
"<=")
# Memasukkan koefisien ruas kanan
f.rhs <- c(60,
30,
40)
# Keuntungan Maksimum
lp("max", f.obj, f.con, f.dir, f.rhs)
## Success: the objective function is 900
# Nilai Variabel agar mencapai keuntungan maksimum
lp("max", f.obj, f.con, f.dir, f.rhs)$solution
## [1] 15 10
# Koefisien sensitivitas
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$sens.coef.from
## [1] 20 20
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$sens.coef.to
## [1] 60 60
# Bayangan/harga ganda dari kendala dan variabel keputusan
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals
## [1] 5 0 15 0 0
# Batas bawah batasan harga bayangan/ganda dan masing masing variabel keputusan
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals.from
## [1] 4e+01 -1e+30 3e+01 -1e+30 -1e+30
# Batas atas batasan harga bayangan/ganda dan masing masing variabel keputusan
lp("max", f.obj, f.con, f.dir, f.rhs, compute.sens=TRUE)$duals.to
## [1] 7e+01 1e+30 6e+01 1e+30 1e+30
Nilai akhir maksimum yang diperoleh saat memenuhi kendala yang diberikan adalah 4500 di mana x = 37.5 dan y = 0. Koefisien sensitivitas berubah dari 7.5e+01 - 1.0e+30 menjadi 1.0e+30 1.2e+02. Harga ganda dari kendala adalah 60 dan -45. Sedangkan untuk masing-masing variabel keputusan adalah 0 dan 0. Batas bawah batasan harga ganda adalah -1.00e+30 dan 0.00e+00, sedangkan untuk variabel keputusan berturut-turut adalah -1.00e+30 dan -3.75e+00. Terakhir, batas atas batasan harga ganda adalah 1.00e+30 dan 8.00e+01, sedangkan untuk variabel keputusan masing-masing adalah 1.00e+30 dan 3.75e+01.