Kết nối dữ liệu

setwd("d:/1.MoHinh/2022.MH.FDI.QuangNinh/data.caulenh")
library(readxl)
dulieu <-read_excel("data.fdi.qn.edited4.6.xlsx")
head(dulieu)
## # A tibble: 6 × 42
##   Time    FDIH  FDIS   IGH   IGS   IPH   IPS  GDPH    GDPS   LAB  WORK INVEST
##   <chr>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl> <dbl> <dbl>  <dbl>
## 1 2000q1  90.7  162.  699. 1114.  299. 1084. 3405. 7565904  519.  460.   78.7
## 2 2000q2  90.7  162.  691. 1065.  299. 1040. 2310. 5132327  504.  460.   77.8
## 3 2000q3  90.7  164.  713. 1076.  305. 1029. 1667. 3657358  538.  464.   79.5
## 4 2000q4  91.6  162.  699. 1114.  316. 1029. 1123. 2490688  519.  455.   79.5
## 5 2001q1  84.8  276.  898. 1532.  465. 1026. 3749. 8194138  539   475.  139. 
## 6 2001q2  84.0  276.  844. 1564.  456. 1070. 2596. 5674291  528.  479.  143. 
## # … with 30 more variables: TECH <dbl>, INF <dbl>, READ <dbl>, STUDENT <dbl>,
## #   DOCTOR <dbl>, BED <dbl>, GINI <dbl>, LnGDP <dbl>, LnFDI <dbl>, LnIG <dbl>,
## #   LnIP <dbl>, LnTECH <dbl>, LnINVEST <dbl>, LnWORK <dbl>, LnLAB <dbl>,
## #   LnSTUDENT <dbl>, LnREAD <dbl>, gGDP <dbl>, gFDI <dbl>, gIG <dbl>,
## #   gIP <dbl>, gTECH <dbl>, gINVEST <dbl>, gWORK <dbl>, gLAB <dbl>,
## #   gSTUDENT <dbl>, gREAD <dbl>, LnGINI <dbl>, gGINI <dbl>, gEDU <dbl>
dulieu <-na.omit(dulieu)

Chạy Long-run

dulieu <-data.frame(dulieu)
attach(dulieu)
Y1 <- cbind(LnGDP)
Y2 <- cbind(LnWORK)
Y3 <- cbind(LnTECH)
Y4 <- cbind(LnGINI)
X <- cbind(LnFDI, LnIP, INF, LnLAB, LnINVEST, LnSTUDENT)
library(cointReg)
## cointReg (v0.2.0): Parameter Estimation and Inference in a Cointegrating Regression.
cointRegFM(x=X,y=Y1,kernel = "qs", bandwidth =  "nw")
## 
## ### FM-OLS model ###
## 
## Model:       Y1 ~ X
## 
## Parameters:  Kernel = "qs"  //  Bandwidth = 26.08361 ("Newey-West")
## 
## Coefficients:
##             Estimate    Std.Err t value Pr(|t|>0)    
## LnFDI      0.0637681  0.0037976  16.792 < 2.2e-16 ***
## LnIP       0.3012554  0.0066219  45.493 < 2.2e-16 ***
## INF       -0.1108045  0.0019765 -56.060 < 2.2e-16 ***
## LnLAB      1.8991815  0.0075308 252.190 < 2.2e-16 ***
## LnINVEST   0.1425292  0.0036613  38.928 < 2.2e-16 ***
## LnSTUDENT  0.5037344  0.0285055  17.672 < 2.2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cointRegFM(x=X,y=Y2,kernel = "pa", bandwidth =  "nw")
## 
## ### FM-OLS model ###
## 
## Model:       Y2 ~ X
## 
## Parameters:  Kernel = "pa"  //  Bandwidth = 28.23357 ("Newey-West")
## 
## Coefficients:
##             Estimate    Std.Err  t value Pr(|t|>0)    
## LnFDI      0.0155448  0.0024473   6.3519 1.164e-08 ***
## LnIP       0.0089292  0.0042674   2.0924 0.0395305 *  
## INF        0.0058945  0.0012737   4.6277 1.387e-05 ***
## LnLAB      0.9426621  0.0048531 194.2407 < 2.2e-16 ***
## LnINVEST   0.0281253  0.0023595  11.9202 < 2.2e-16 ***
## LnSTUDENT -0.0706868  0.0183699  -3.8480 0.0002365 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cointRegFM(x=X,y=Y3,kernel = "pa", bandwidth =  "and")
## 
## ### FM-OLS model ###
## 
## Model:       Y3 ~ X
## 
## Parameters:  Kernel = "pa"  //  Bandwidth = 33.81662 ("Andrews")
## 
## Coefficients:
##            Estimate   Std.Err  t value Pr(|t|>0)    
## LnFDI      0.300286  0.083603   3.5918 0.0005618 ***
## LnIP       0.355160  0.145782   2.4362 0.0170341 *  
## INF        0.024261  0.043514   0.5576 0.5786848    
## LnLAB     -1.676965  0.165789 -10.1150 5.049e-16 ***
## LnINVEST   1.053100  0.080604  13.0652 < 2.2e-16 ***
## LnSTUDENT  0.618277  0.627548   0.9852 0.3274466    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
cointRegFM(x=X,y=Y4,kernel = "ba", bandwidth = "nw")
## 
## ### FM-OLS model ###
## 
## Model:       Y4 ~ X
## 
## Parameters:  Kernel = "ba"  //  Bandwidth = 29.61635 ("Newey-West")
## 
## Coefficients:
##             Estimate    Std.Err t value Pr(|t|>0)    
## LnFDI     -0.0654230  0.0066565 -9.8284 1.844e-15 ***
## LnIP       0.0223268  0.0116073  1.9235 0.0579278 .  
## INF       -0.0120036  0.0034646 -3.4647 0.0008515 ***
## LnLAB     -0.0872469  0.0132003 -6.6095 3.785e-09 ***
## LnINVEST   0.0119918  0.0064177  1.8685 0.0653017 .  
## LnSTUDENT -0.3306350  0.0499658 -6.6172 3.658e-09 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

chay short-run

library(aTSA)
## 
## Attaching package: 'aTSA'
## The following object is masked from 'package:graphics':
## 
##     identify
ecm(Y1,X)
## 
## Call:
## lm(formula = dy ~ dX + ECM - 1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.46549 -0.09137 -0.00978  0.07980  0.44940 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## dXLnFDI      0.15582    0.08591   1.814 0.073508 .  
## dXLnIP       0.71440    0.14895   4.796 7.49e-06 ***
## dXINF       -0.16997    0.02462  -6.903 1.14e-09 ***
## dXLnLAB      0.88703    0.67362   1.317 0.191709    
## dXLnINVEST   0.51330    0.14501   3.540 0.000675 ***
## dXLnSTUDENT -0.17735    0.59424  -0.298 0.766142    
## ECM         -0.67548    0.10730   6.295 1.61e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.1763 on 79 degrees of freedom
## Multiple R-squared:  0.796,  Adjusted R-squared:  0.7779 
## F-statistic: 44.02 on 7 and 79 DF,  p-value: < 2.2e-16
ecm(Y2,X)
## 
## Call:
## lm(formula = dy ~ dX + ECM - 1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.087140 -0.012079  0.003017  0.014741  0.068405 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## dXLnFDI      0.039660   0.012795   3.100  0.00269 ** 
## dXLnIP       0.020915   0.022051   0.949  0.34576    
## dXINF        0.004834   0.003555   1.360  0.17776    
## dXLnLAB      0.460253   0.110656   4.159 8.05e-05 ***
## dXLnINVEST  -0.002650   0.021345  -0.124  0.90152    
## dXLnSTUDENT  0.146213   0.088357   1.655  0.10193    
## ECM         -0.689323   0.109616   6.289 1.65e-08 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.02621 on 79 degrees of freedom
## Multiple R-squared:  0.4165, Adjusted R-squared:  0.3648 
## F-statistic: 8.057 on 7 and 79 DF,  p-value: 2.297e-07
ecm(Y3,X)
## 
## Call:
## lm(formula = dy ~ dX + ECM - 1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.23535 -0.05802  0.02733  0.09651  1.68439 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)   
## dXLnFDI      0.38367    0.14357   2.672  0.00915 **
## dXLnIP       0.28205    0.24586   1.147  0.25475   
## dXINF       -0.02726    0.03947  -0.691  0.49188   
## dXLnLAB      1.46754    1.10653   1.326  0.18858   
## dXLnINVEST   0.18685    0.24274   0.770  0.44374   
## dXLnSTUDENT  1.42049    0.95361   1.490  0.14031   
## ECM         -0.14274    0.05946   2.401  0.01872 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2918 on 79 degrees of freedom
## Multiple R-squared:  0.2338, Adjusted R-squared:  0.1659 
## F-statistic: 3.444 on 7 and 79 DF,  p-value: 0.002881
ecm(Y4,X)
## 
## Call:
## lm(formula = dy ~ dX + ECM - 1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.158518 -0.012004  0.000608  0.025193  0.181886 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## dXLnFDI     -0.086064   0.026048  -3.304  0.00143 ** 
## dXLnIP      -0.040960   0.044675  -0.917  0.36202    
## dXINF       -0.011380   0.007122  -1.598  0.11405    
## dXLnLAB      0.016690   0.198067   0.084  0.93306    
## dXLnINVEST  -0.099619   0.043581  -2.286  0.02494 *  
## dXLnSTUDENT -0.179832   0.171467  -1.049  0.29748    
## ECM         -0.502097   0.106688   4.706 1.06e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.05229 on 79 degrees of freedom
## Multiple R-squared:  0.4144, Adjusted R-squared:  0.3625 
## F-statistic: 7.987 on 7 and 79 DF,  p-value: 2.617e-07

Kiểm tra đồng liên kết

coint.test(Y1,X, d=1)
## Response: diff(Y1,1) 
## Input: diff(X,1) 
## Number of inputs: 6 
## Model: y ~ X - 1 
## ------------------------------- 
## Engle-Granger Cointegration Test 
## alternative: cointegrated 
## 
## Type 1: no trend 
##     lag      EG p.value 
##    3.00   -6.30    0.01 
## ----- 
##  Type 2: linear trend 
##     lag      EG p.value 
##    3.00   -1.08    0.10 
## ----- 
##  Type 3: quadratic trend 
##     lag      EG p.value 
##    3.00   -2.02    0.10 
## ----------- 
## Note: p.value = 0.01 means p.value <= 0.01 
##     : p.value = 0.10 means p.value >= 0.10
coint.test(Y2,X, d=1)
## Response: diff(Y2,1) 
## Input: diff(X,1) 
## Number of inputs: 6 
## Model: y ~ X - 1 
## ------------------------------- 
## Engle-Granger Cointegration Test 
## alternative: cointegrated 
## 
## Type 1: no trend 
##     lag      EG p.value 
##    3.00   -6.24    0.01 
## ----- 
##  Type 2: linear trend 
##     lag      EG p.value 
##    3.00   -0.46    0.10 
## ----- 
##  Type 3: quadratic trend 
##     lag      EG p.value 
##    3.00    3.69    0.10 
## ----------- 
## Note: p.value = 0.01 means p.value <= 0.01 
##     : p.value = 0.10 means p.value >= 0.10
coint.test(Y3,X, d=1)
## Response: diff(Y3,1) 
## Input: diff(X,1) 
## Number of inputs: 6 
## Model: y ~ X - 1 
## ------------------------------- 
## Engle-Granger Cointegration Test 
## alternative: cointegrated 
## 
## Type 1: no trend 
##     lag      EG p.value 
##  3.0000 -5.1253  0.0362 
## ----- 
##  Type 2: linear trend 
##     lag      EG p.value 
##   3.000   0.258   0.100 
## ----- 
##  Type 3: quadratic trend 
##     lag      EG p.value 
##     3.0     1.2     0.1 
## ----------- 
## Note: p.value = 0.01 means p.value <= 0.01 
##     : p.value = 0.10 means p.value >= 0.10
coint.test(Y4,X, d=1)
## Response: diff(Y4,1) 
## Input: diff(X,1) 
## Number of inputs: 6 
## Model: y ~ X - 1 
## ------------------------------- 
## Engle-Granger Cointegration Test 
## alternative: cointegrated 
## 
## Type 1: no trend 
##     lag      EG p.value 
##  3.0000 -5.2917  0.0259 
## ----- 
##  Type 2: linear trend 
##     lag      EG p.value 
##    3.00    1.63    0.10 
## ----- 
##  Type 3: quadratic trend 
##     lag      EG p.value 
##    3.00    2.21    0.10 
## ----------- 
## Note: p.value = 0.01 means p.value <= 0.01 
##     : p.value = 0.10 means p.value >= 0.10

Chay kiểm tra tính dừng - Unit root test

LnGDP <- cbind(LnGDP)
adf.test(LnGDP)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag    ADF p.value
## [1,]   0  0.485   0.781
## [2,]   1  0.886   0.895
## [3,]   2  1.675   0.976
## [4,]   3 30.969   0.990
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -2.60  0.0982
## [2,]   1 -1.93  0.3552
## [3,]   2 -1.61  0.4799
## [4,]   3 -2.20  0.2516
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -10.92   0.010
## [2,]   1 -12.37   0.010
## [3,]   2 -14.57   0.010
## [4,]   3  -1.02   0.929
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnGDP))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag     ADF p.value
## [1,]   0 -13.492   0.010
## [2,]   1 -12.493   0.010
## [3,]   2 -42.317   0.010
## [4,]   3  -0.892   0.358
## Type 2: with drift no trend 
##      lag     ADF p.value
## [1,]   0  -13.52    0.01
## [2,]   1  -12.76    0.01
## [3,]   2 -161.87    0.01
## [4,]   3   -4.19    0.01
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0  -13.4    0.01
## [2,]   1  -12.7    0.01
## [3,]   2 -165.3    0.01
## [4,]   3   -4.2    0.01
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
LnWORK <- cbind(LnWORK)
adf.test(LnWORK)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag  ADF p.value
## [1,]   0 1.12   0.927
## [2,]   1 1.57   0.970
## [3,]   2 2.10   0.990
## [4,]   3 2.14   0.990
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -1.89   0.370
## [2,]   1 -1.93   0.354
## [3,]   2 -2.39   0.179
## [4,]   3 -2.36   0.192
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -1.757   0.672
## [2,]   1 -0.743   0.963
## [3,]   2  0.130   0.990
## [4,]   3  0.779   0.990
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnWORK))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag    ADF p.value
## [1,]   0 -12.83    0.01
## [2,]   1  -9.37    0.01
## [3,]   2  -6.83    0.01
## [4,]   3  -5.09    0.01
## Type 2: with drift no trend 
##      lag    ADF p.value
## [1,]   0 -13.05    0.01
## [2,]   1  -9.82    0.01
## [3,]   2  -7.33    0.01
## [4,]   3  -5.59    0.01
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -13.34    0.01
## [2,]   1 -10.53    0.01
## [3,]   2  -8.21    0.01
## [4,]   3  -6.59    0.01
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
LnTECH <- cbind(LnTECH)
adf.test(LnTECH)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag     ADF p.value
## [1,]   0 -0.0918   0.616
## [2,]   1 -0.0833   0.618
## [3,]   2 -0.0960   0.615
## [4,]   3  0.0513   0.657
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -1.79   0.411
## [2,]   1 -1.85   0.386
## [3,]   2 -1.92   0.359
## [4,]   3 -1.43   0.543
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -2.46   0.382
## [2,]   1 -2.49   0.368
## [3,]   2 -2.62   0.319
## [4,]   3 -2.43   0.396
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnTECH))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag   ADF p.value
## [1,]   0 -9.26    0.01
## [2,]   1 -6.38    0.01
## [3,]   2 -5.35    0.01
## [4,]   3 -3.72    0.01
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -9.43    0.01
## [2,]   1 -6.58    0.01
## [3,]   2 -5.50    0.01
## [4,]   3 -3.82    0.01
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -9.51  0.0100
## [2,]   1 -6.70  0.0100
## [3,]   2 -5.53  0.0100
## [4,]   3 -3.88  0.0194
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
LnGINI <- cbind(LnGINI)
adf.test(LnGINI)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag    ADF p.value
## [1,]   0 0.0781   0.664
## [2,]   1 0.5991   0.813
## [3,]   2 0.5787   0.807
## [4,]   3 0.4129   0.760
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -6.02    0.01
## [2,]   1 -4.41    0.01
## [3,]   2 -5.07    0.01
## [4,]   3 -3.54    0.01
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -5.96  0.0100
## [2,]   1 -4.39  0.0100
## [3,]   2 -5.19  0.0100
## [4,]   3 -3.71  0.0288
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnGINI))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag    ADF p.value
## [1,]   0 -19.00    0.01
## [2,]   1  -7.99    0.01
## [3,]   2  -7.28    0.01
## [4,]   3  -6.04    0.01
## Type 2: with drift no trend 
##      lag    ADF p.value
## [1,]   0 -18.98    0.01
## [2,]   1  -8.01    0.01
## [3,]   2  -7.26    0.01
## [4,]   3  -5.99    0.01
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -19.06    0.01
## [2,]   1  -8.12    0.01
## [3,]   2  -7.25    0.01
## [4,]   3  -5.89    0.01
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
LnFDI <- cbind(LnFDI)
adf.test(LnFDI)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag   ADF p.value
## [1,]   0 0.577   0.807
## [2,]   1 0.546   0.798
## [3,]   2 0.542   0.797
## [4,]   3 0.390   0.753
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -2.87  0.0553
## [2,]   1 -3.02  0.0396
## [3,]   2 -3.22  0.0236
## [4,]   3 -2.62  0.0952
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -2.51   0.360
## [2,]   1 -2.68   0.293
## [3,]   2 -2.86   0.219
## [4,]   3 -2.39   0.411
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnFDI))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag   ADF p.value
## [1,]   0 -8.90    0.01
## [2,]   1 -6.27    0.01
## [3,]   2 -5.33    0.01
## [4,]   3 -3.67    0.01
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -8.92    0.01
## [2,]   1 -6.31    0.01
## [3,]   2 -5.33    0.01
## [4,]   3 -3.67    0.01
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -9.06  0.0100
## [2,]   1 -6.50  0.0100
## [3,]   2 -5.42  0.0100
## [4,]   3 -3.76  0.0244
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
LnIP <- cbind(LnIP)
adf.test(LnIP)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag  ADF p.value
## [1,]   0 1.73   0.978
## [2,]   1 1.86   0.983
## [3,]   2 1.77   0.980
## [4,]   3 1.77   0.979
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -1.06   0.676
## [2,]   1 -1.05   0.677
## [3,]   2 -1.12   0.653
## [4,]   3 -1.16   0.639
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -1.90   0.614
## [2,]   1 -1.77   0.667
## [3,]   2 -1.83   0.643
## [4,]   3 -1.82   0.646
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnIP))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag   ADF p.value
## [1,]   0 -9.60    0.01
## [2,]   1 -6.17    0.01
## [3,]   2 -4.94    0.01
## [4,]   3 -3.14    0.01
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -9.95   0.010
## [2,]   1 -6.53   0.010
## [3,]   2 -5.36   0.010
## [4,]   3 -3.46   0.013
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -9.90  0.0100
## [2,]   1 -6.50  0.0100
## [3,]   2 -5.33  0.0100
## [4,]   3 -3.44  0.0534
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
INF <- cbind(INF)
adf.test(INF)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag    ADF p.value
## [1,]   0 -2.268  0.0240
## [2,]   1 -1.720  0.0839
## [3,]   2 -1.370  0.1863
## [4,]   3 -0.823  0.3828
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -3.97  0.0100
## [2,]   1 -3.07  0.0357
## [3,]   2 -2.38  0.1829
## [4,]   3 -1.35  0.5729
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -4.64  0.0100
## [2,]   1 -3.75  0.0248
## [3,]   2 -3.05  0.1422
## [4,]   3 -2.22  0.4778
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(INF))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag    ADF p.value
## [1,]   0 -12.30    0.01
## [2,]   1  -9.41    0.01
## [3,]   2 -10.85    0.01
## [4,]   3  -4.40    0.01
## Type 2: with drift no trend 
##      lag    ADF p.value
## [1,]   0 -12.23    0.01
## [2,]   1  -9.35    0.01
## [3,]   2 -10.78    0.01
## [4,]   3  -4.37    0.01
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -12.18    0.01
## [2,]   1  -9.32    0.01
## [3,]   2 -10.84    0.01
## [4,]   3  -4.40    0.01
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
LnLAB <- cbind(LnLAB)
adf.test(LnLAB)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag   ADF p.value
## [1,]   0 0.922   0.902
## [2,]   1 1.024   0.915
## [3,]   2 1.554   0.968
## [4,]   3 1.643   0.975
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -2.23   0.242
## [2,]   1 -1.78   0.414
## [3,]   2 -2.12   0.282
## [4,]   3 -2.00   0.330
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -2.204   0.485
## [2,]   1 -0.988   0.935
## [3,]   2 -0.141   0.990
## [4,]   3  0.789   0.990
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnLAB))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag    ADF p.value
## [1,]   0 -12.31    0.01
## [2,]   1  -9.55    0.01
## [3,]   2  -7.48    0.01
## [4,]   3  -5.33    0.01
## Type 2: with drift no trend 
##      lag    ADF p.value
## [1,]   0 -12.36    0.01
## [2,]   1  -9.77    0.01
## [3,]   2  -7.74    0.01
## [4,]   3  -5.63    0.01
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -12.54    0.01
## [2,]   1 -10.25    0.01
## [3,]   2  -8.37    0.01
## [4,]   3  -6.43    0.01
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
LnINVEST <- cbind(LnINVEST)
adf.test(LnINVEST)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag  ADF p.value
## [1,]   0 2.57    0.99
## [2,]   1 2.84    0.99
## [3,]   2 2.97    0.99
## [4,]   3 2.96    0.99
## Type 2: with drift no trend 
##      lag   ADF p.value
## [1,]   0 -1.54   0.507
## [2,]   1 -1.68   0.452
## [3,]   2 -1.88   0.375
## [4,]   3 -1.25   0.609
## Type 3: with drift and trend 
##      lag   ADF p.value
## [1,]   0 -2.87   0.215
## [2,]   1 -2.58   0.335
## [3,]   2 -2.45   0.384
## [4,]   3 -1.68   0.702
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnINVEST))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag   ADF p.value
## [1,]   0 -9.68    0.01
## [2,]   1 -6.55    0.01
## [3,]   2 -5.53    0.01
## [4,]   3 -3.82    0.01
## Type 2: with drift no trend 
##      lag    ADF p.value
## [1,]   0 -10.70    0.01
## [2,]   1  -7.76    0.01
## [3,]   2  -6.70    0.01
## [4,]   3  -4.73    0.01
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -10.80    0.01
## [2,]   1  -7.94    0.01
## [3,]   2  -6.75    0.01
## [4,]   3  -4.75    0.01
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
LnSTUDENT <- cbind(LnSTUDENT)
adf.test(LnSTUDENT)
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag   ADF p.value
## [1,]   0 0.713   0.846
## [2,]   1 1.120   0.928
## [3,]   2 1.265   0.946
## [4,]   3 1.243   0.943
## Type 2: with drift no trend 
##      lag    ADF p.value
## [1,]   0 -0.762   0.779
## [2,]   1  0.349   0.978
## [3,]   2  0.795   0.990
## [4,]   3  0.951   0.990
## Type 3: with drift and trend 
##      lag     ADF p.value
## [1,]   0 -1.4702   0.792
## [2,]   1 -0.4735   0.981
## [3,]   2 -0.0923   0.990
## [4,]   3  0.1264   0.990
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01
adf.test(diff(LnSTUDENT))
## Augmented Dickey-Fuller Test 
## alternative: stationary 
##  
## Type 1: no drift no trend 
##      lag    ADF p.value
## [1,]   0 -13.29    0.01
## [2,]   1  -8.51    0.01
## [3,]   2  -6.22    0.01
## [4,]   3  -5.19    0.01
## Type 2: with drift no trend 
##      lag    ADF p.value
## [1,]   0 -13.35    0.01
## [2,]   1  -8.62    0.01
## [3,]   2  -6.34    0.01
## [4,]   3  -5.34    0.01
## Type 3: with drift and trend 
##      lag    ADF p.value
## [1,]   0 -13.72    0.01
## [2,]   1  -9.16    0.01
## [3,]   2  -7.09    0.01
## [4,]   3  -6.31    0.01
## ---- 
## Note: in fact, p.value = 0.01 means p.value <= 0.01