1. Defining the Question
(a) Specifying the Question
To identify which individuals are most likely to click on the advertisements
(b) Metric of Success
The project will be considered a success if individuals most likely to click on the ads.can be identified
(c) Understanding the context
A Kenyan entrepreneur has created an online cryptography course and would want to advertise it on her blog. She currently targets audiences originating from various countries. In the past, she ran ads to advertise a related course on the same blog and collected data in the process. She would now like to employ your services as a Data Science Consultant to help her identify which individuals are most likely to click on her ads.
(d) Experimental Design
Load the dataset
Find and deal with outliers, anomalies, and missing data within the dataset.
Perform univariate and bivariate analysis.
Provide a conclusion and recommendation.
(e) Appropriateness of Data
The data is appropriate and reliable.
# Loading data set
url<-"http://bit.ly/IPAdvertisingData"
Advert_data<-read.csv(url)
head(Advert_data)
## Daily.Time.Spent.on.Site Age Area.Income Daily.Internet.Usage
## 1 68.95 35 61833.90 256.09
## 2 80.23 31 68441.85 193.77
## 3 69.47 26 59785.94 236.50
## 4 74.15 29 54806.18 245.89
## 5 68.37 35 73889.99 225.58
## 6 59.99 23 59761.56 226.74
## Ad.Topic.Line City Male Country
## 1 Cloned 5thgeneration orchestration Wrightburgh 0 Tunisia
## 2 Monitored national standardization West Jodi 1 Nauru
## 3 Organic bottom-line service-desk Davidton 0 San Marino
## 4 Triple-buffered reciprocal time-frame West Terrifurt 1 Italy
## 5 Robust logistical utilization South Manuel 0 Iceland
## 6 Sharable client-driven software Jamieberg 1 Norway
## Timestamp Clicked.on.Ad
## 1 2016-03-27 00:53:11 0
## 2 2016-04-04 01:39:02 0
## 3 2016-03-13 20:35:42 0
## 4 2016-01-10 02:31:19 0
## 5 2016-06-03 03:36:18 0
## 6 2016-05-19 14:30:17 0
# Checking the dimensions of dataset
dim(Advert_data)
## [1] 1000 10
-The dataset contains 1000 rows and 10 columns
# Checking for number of missing data
length(which(is.na(Advert_data)))
## [1] 0
-No Missing values in the dataset
# Checking class of columns in dataset
sapply(Advert_data, class)
## Daily.Time.Spent.on.Site Age Area.Income
## "numeric" "integer" "numeric"
## Daily.Internet.Usage Ad.Topic.Line City
## "numeric" "character" "character"
## Male Country Timestamp
## "integer" "character" "character"
## Clicked.on.Ad
## "integer"
# Selecting the Numerical columns
num_cols<-unlist(lapply(Advert_data,is.numeric))
data_num<-Advert_data[ , num_cols]
data_num
## Daily.Time.Spent.on.Site Age Area.Income Daily.Internet.Usage Male
## 1 68.95 35 61833.90 256.09 0
## 2 80.23 31 68441.85 193.77 1
## 3 69.47 26 59785.94 236.50 0
## 4 74.15 29 54806.18 245.89 1
## 5 68.37 35 73889.99 225.58 0
## 6 59.99 23 59761.56 226.74 1
## 7 88.91 33 53852.85 208.36 0
## 8 66.00 48 24593.33 131.76 1
## 9 74.53 30 68862.00 221.51 1
## 10 69.88 20 55642.32 183.82 1
## 11 47.64 49 45632.51 122.02 0
## 12 83.07 37 62491.01 230.87 1
## 13 69.57 48 51636.92 113.12 1
## 14 79.52 24 51739.63 214.23 0
## 15 42.95 33 30976.00 143.56 0
## 16 63.45 23 52182.23 140.64 1
## 17 55.39 37 23936.86 129.41 0
## 18 82.03 41 71511.08 187.53 0
## 19 54.70 36 31087.54 118.39 1
## 20 74.58 40 23821.72 135.51 1
## 21 77.22 30 64802.33 224.44 1
## 22 84.59 35 60015.57 226.54 1
## 23 41.49 52 32635.70 164.83 0
## 24 87.29 36 61628.72 209.93 1
## 25 41.39 41 68962.32 167.22 0
## 26 78.74 28 64828.00 204.79 1
## 27 48.53 28 38067.08 134.14 1
## 28 51.95 52 58295.82 129.23 0
## 29 70.20 34 32708.94 119.20 0
## 30 76.02 22 46179.97 209.82 0
## 31 67.64 35 51473.28 267.01 1
## 32 86.41 28 45593.93 207.48 1
## 33 59.05 57 25583.29 169.23 1
## 34 55.60 23 30227.98 212.58 0
## 35 57.64 57 45580.92 133.81 1
## 36 84.37 30 61389.50 201.58 0
## 37 62.26 53 56770.79 125.45 1
## 38 65.82 39 76435.30 221.94 0
## 39 50.43 46 57425.87 119.32 1
## 40 38.93 39 27508.41 162.08 0
## 41 84.98 29 57691.95 202.61 0
## 42 64.24 30 59784.18 252.36 0
## 43 82.52 32 66572.39 198.11 1
## 44 81.38 31 64929.61 212.30 0
## 45 80.47 25 57519.64 204.86 0
## 46 37.68 52 53575.48 172.83 1
## 47 69.62 20 50983.75 202.25 1
## 48 85.40 43 67058.72 198.72 0
## 49 44.33 37 52723.34 123.72 1
## 50 48.01 46 54286.10 119.93 0
## 51 73.18 23 61526.25 196.71 1
## 52 79.94 28 58526.04 225.29 0
## 53 33.33 45 53350.11 193.58 1
## 54 50.33 50 62657.53 133.20 1
## 55 62.31 47 62722.57 119.30 0
## 56 80.60 31 67479.62 177.55 0
## 57 65.19 36 75254.88 150.61 0
## 58 44.98 49 52336.64 129.31 0
## 59 77.63 29 56113.37 239.22 0
## 60 41.82 41 24852.90 156.36 0
## 61 85.61 27 47708.42 183.43 0
## 62 85.84 34 64654.66 192.93 1
## 63 72.08 29 71228.44 169.50 0
## 64 86.06 32 61601.05 178.92 1
## 65 45.96 45 66281.46 141.22 0
## 66 62.42 29 73910.90 198.50 1
## 67 63.89 40 51317.33 105.22 0
## 68 35.33 32 51510.18 200.22 0
## 69 75.74 25 61005.87 215.25 1
## 70 78.53 34 32536.98 131.72 0
## 71 46.13 31 60248.97 139.01 0
## 72 69.01 46 74543.81 222.63 0
## 73 55.35 39 75509.61 153.17 1
## 74 33.21 43 42650.32 167.07 1
## 75 38.46 42 58183.04 145.98 1
## 76 64.10 22 60465.72 215.93 0
## 77 49.81 35 57009.76 120.06 1
## 78 82.73 33 54541.56 238.99 1
## 79 56.14 38 32689.04 113.53 1
## 80 55.13 45 55605.92 111.71 0
## 81 78.11 27 63296.87 209.25 1
## 82 73.46 28 65653.47 222.75 1
## 83 56.64 38 61652.53 115.91 0
## 84 68.94 54 30726.26 138.71 0
## 85 70.79 31 74535.94 184.10 0
## 86 57.76 41 47861.93 105.15 0
## 87 77.51 36 73600.28 200.55 0
## 88 52.70 34 58543.94 118.60 1
## 89 57.70 34 42696.67 109.07 0
## 90 56.89 37 37334.78 109.29 1
## 91 69.90 43 71392.53 138.35 0
## 92 55.79 24 59550.05 149.67 0
## 93 70.03 26 64264.25 227.72 1
## 94 50.08 40 64147.86 125.85 1
## 95 43.67 31 25686.34 166.29 1
## 96 72.84 26 52968.22 238.63 0
## 97 45.72 36 22473.08 154.02 1
## 98 39.94 41 64927.19 156.30 0
## 99 35.61 46 51868.85 158.22 0
## 100 79.71 34 69456.83 211.65 1
## 101 41.49 53 31947.65 169.18 0
## 102 63.60 23 51864.77 235.28 1
## 103 89.91 40 59593.56 194.23 0
## 104 68.18 21 48376.14 218.17 1
## 105 66.49 20 56884.74 202.16 0
## 106 80.49 40 67186.54 229.12 1
## 107 72.23 25 46557.92 241.03 1
## 108 42.39 42 66541.05 150.99 0
## 109 47.53 30 33258.09 135.18 0
## 110 74.02 32 72272.90 210.54 0
## 111 66.63 60 60333.38 176.98 0
## 112 63.24 53 65229.13 235.78 1
## 113 71.00 22 56067.38 211.87 0
## 114 46.13 46 37838.72 123.64 1
## 115 69.00 32 72683.35 221.21 1
## 116 76.99 31 56729.78 244.34 1
## 117 72.60 55 66815.54 162.95 0
## 118 61.88 42 60223.52 112.19 1
## 119 84.45 50 29727.79 207.18 0
## 120 88.97 45 49269.98 152.49 0
## 121 86.19 31 57669.41 210.26 1
## 122 49.58 26 56791.75 231.94 0
## 123 77.65 27 63274.88 212.79 0
## 124 37.75 36 35466.80 225.24 0
## 125 62.33 43 68787.09 127.11 0
## 126 79.57 31 61227.59 230.93 0
## 127 80.31 44 56366.88 127.07 0
## 128 89.05 45 57868.44 206.98 0
## 129 70.41 27 66618.21 223.03 0
## 130 67.36 37 73104.47 233.56 0
## 131 46.98 50 21644.91 175.37 0
## 132 41.67 36 53817.02 132.55 0
## 133 51.24 36 76368.31 176.73 0
## 134 75.70 29 67633.44 215.44 0
## 135 43.49 47 50335.46 127.83 0
## 136 49.89 39 17709.98 160.03 1
## 137 38.37 36 41229.16 140.46 0
## 138 38.52 38 42581.23 137.28 1
## 139 71.89 23 61617.98 172.81 1
## 140 75.80 38 70575.60 146.19 1
## 141 83.86 31 64122.36 190.25 0
## 142 37.51 30 52097.32 163.00 1
## 143 55.60 44 65953.76 124.38 1
## 144 83.67 44 60192.72 234.26 1
## 145 69.08 41 77460.07 210.60 0
## 146 37.47 44 45716.48 141.89 1
## 147 56.04 49 65120.86 128.95 1
## 148 70.92 41 49995.63 108.16 1
## 149 49.78 46 71718.51 152.24 0
## 150 68.61 57 61770.34 150.29 0
## 151 58.18 25 69112.84 176.28 1
## 152 78.54 35 72524.86 172.10 0
## 153 37.00 48 36782.38 158.22 1
## 154 65.40 33 66699.12 247.31 0
## 155 79.52 27 64287.78 183.48 1
## 156 87.98 38 56637.59 222.11 1
## 157 44.64 36 55787.58 127.01 0
## 158 41.73 28 61142.33 202.18 1
## 159 80.46 27 61625.87 207.96 1
## 160 75.55 36 73234.87 159.24 0
## 161 76.32 35 74166.24 195.31 1
## 162 82.68 33 62669.59 222.77 1
## 163 72.01 31 57756.89 251.00 0
## 164 75.83 24 58019.64 162.44 0
## 165 41.28 50 50960.08 140.39 0
## 166 34.66 32 48246.60 194.83 0
## 167 66.18 55 28271.84 143.42 0
## 168 86.06 31 53767.12 219.72 1
## 169 59.59 42 43662.10 104.78 1
## 170 86.69 34 62238.58 198.56 0
## 171 43.77 52 49030.03 138.55 1
## 172 71.84 47 76003.47 199.79 1
## 173 80.23 31 68094.85 196.23 0
## 174 74.41 26 64395.85 163.05 0
## 175 63.36 48 70053.27 137.43 0
## 176 71.74 35 72423.97 227.56 0
## 177 60.72 44 42995.80 105.69 0
## 178 72.04 22 60309.58 199.43 0
## 179 44.57 31 38349.78 133.17 1
## 180 85.86 34 63115.34 208.23 0
## 181 39.85 38 31343.39 145.96 0
## 182 84.53 27 40763.13 168.34 0
## 183 62.95 60 36752.24 157.04 0
## 184 67.58 41 65044.59 255.61 1
## 185 85.56 29 53673.08 210.46 0
## 186 46.88 54 43444.86 136.64 0
## 187 46.31 57 44248.52 153.98 1
## 188 77.95 31 62572.88 233.65 1
## 189 84.73 30 39840.55 153.76 0
## 190 39.86 36 32593.59 145.85 0
## 191 50.08 30 41629.86 123.91 0
## 192 60.23 35 43313.73 106.86 0
## 193 60.70 49 42993.48 110.57 1
## 194 43.67 53 46004.31 143.79 1
## 195 77.20 33 49325.48 254.05 1
## 196 71.86 32 51633.34 116.53 0
## 197 44.78 45 63363.04 137.24 1
## 198 78.57 36 64045.93 239.32 1
## 199 73.41 31 73049.30 201.26 1
## 200 77.05 27 66624.60 191.14 0
## 201 66.40 40 77567.85 214.42 0
## 202 69.35 29 53431.35 252.77 1
## 203 35.65 40 31265.75 172.58 1
## 204 70.04 31 74780.74 183.85 1
## 205 69.78 29 70410.11 218.79 0
## 206 58.22 29 37345.24 120.90 0
## 207 76.90 28 66107.84 212.67 0
## 208 84.08 30 62336.39 187.36 1
## 209 59.51 58 39132.64 140.83 0
## 210 40.15 38 38745.29 134.88 1
## 211 76.81 28 65172.22 217.85 1
## 212 41.89 38 68519.96 163.38 0
## 213 76.87 27 54774.77 235.35 1
## 214 67.28 43 76246.96 155.80 1
## 215 81.98 40 65461.92 229.22 0
## 216 66.01 23 34127.21 151.95 0
## 217 61.57 53 35253.98 125.94 1
## 218 53.30 34 44893.71 111.94 0
## 219 34.87 40 59621.02 200.23 0
## 220 43.60 38 20856.54 170.49 0
## 221 77.88 37 55353.41 254.57 0
## 222 75.83 27 67516.07 200.59 0
## 223 49.95 39 68737.75 136.59 0
## 224 60.94 41 76893.84 154.97 0
## 225 89.15 42 59886.58 171.07 0
## 226 78.70 30 53441.69 133.99 0
## 227 57.35 29 41356.31 119.84 0
## 228 34.86 38 49942.66 154.75 0
## 229 70.68 31 74430.08 199.08 0
## 230 76.06 23 58633.63 201.04 0
## 231 66.67 33 72707.87 228.03 1
## 232 46.77 32 31092.93 136.40 1
## 233 62.42 38 74445.18 143.94 0
## 234 78.32 28 49309.14 239.52 0
## 235 37.32 50 56735.14 199.25 1
## 236 40.42 45 40183.75 133.90 1
## 237 76.77 36 58348.41 123.51 0
## 238 65.65 30 72209.99 158.05 0
## 239 74.32 33 62060.11 128.17 0
## 240 73.27 32 67113.46 234.75 1
## 241 80.03 44 24030.06 150.84 0
## 242 53.68 47 56180.93 115.26 1
## 243 85.84 32 62204.93 192.85 1
## 244 85.03 30 60372.64 204.52 0
## 245 70.44 24 65280.16 178.75 1
## 246 81.22 53 34309.24 223.09 1
## 247 39.96 45 59610.81 146.13 1
## 248 57.05 41 50278.89 269.96 1
## 249 42.44 56 43450.11 168.27 0
## 250 62.20 25 25408.21 161.16 0
## 251 76.70 36 71136.49 222.25 0
## 252 61.22 45 63883.81 119.03 1
## 253 84.54 33 64902.47 204.02 1
## 254 46.08 30 66784.81 164.63 1
## 255 56.70 48 62784.85 123.13 0
## 256 81.03 28 63727.50 201.15 0
## 257 80.91 32 61608.23 231.42 0
## 258 40.06 38 56782.18 138.68 1
## 259 83.47 39 64447.77 226.11 0
## 260 73.84 31 42042.95 121.05 0
## 261 74.65 28 67669.06 212.56 0
## 262 60.25 35 54875.95 109.77 0
## 263 59.21 35 73347.67 144.62 1
## 264 43.02 44 50199.77 125.22 0
## 265 84.04 38 50723.67 244.55 0
## 266 70.66 43 63450.96 120.95 1
## 267 70.58 26 56694.12 136.94 0
## 268 72.44 34 70547.16 230.14 0
## 269 40.17 26 47391.95 171.31 1
## 270 79.15 26 62312.23 203.23 0
## 271 44.49 53 63100.13 168.00 1
## 272 73.04 37 73687.50 221.79 1
## 273 76.28 33 52686.47 254.34 0
## 274 68.88 37 78119.50 179.58 0
## 275 73.10 28 57014.84 242.37 0
## 276 47.66 29 27086.40 156.54 0
## 277 87.30 35 58337.18 216.87 0
## 278 89.34 32 50216.01 177.78 1
## 279 81.37 26 53049.44 156.48 1
## 280 81.67 28 62927.96 196.76 1
## 281 46.37 52 32847.53 144.27 0
## 282 54.88 24 32006.82 148.61 0
## 283 40.67 35 48913.07 133.18 0
## 284 71.76 35 69285.69 237.39 0
## 285 47.51 51 53700.57 130.41 1
## 286 75.15 22 52011.00 212.87 1
## 287 56.01 26 46339.25 127.26 0
## 288 82.87 37 67938.77 213.36 0
## 289 45.05 42 66348.95 141.36 0
## 290 60.53 24 66873.90 167.22 0
## 291 50.52 31 72270.88 171.62 0
## 292 84.71 32 61610.05 210.23 0
## 293 55.20 39 76560.59 159.46 1
## 294 81.61 33 62667.51 228.76 0
## 295 71.55 36 75687.46 163.99 1
## 296 82.40 36 66744.65 218.97 1
## 297 73.95 35 67714.82 238.58 0
## 298 72.07 31 69710.51 226.45 0
## 299 80.39 31 66269.49 214.74 0
## 300 65.80 25 60843.32 231.49 1
## 301 69.97 28 55041.60 250.00 0
## 302 52.62 50 73863.25 176.52 0
## 303 39.25 39 62378.05 152.36 0
## 304 77.56 38 63336.85 130.83 1
## 305 33.52 43 42191.61 165.56 0
## 306 79.81 24 56194.56 178.85 1
## 307 84.79 33 61771.90 214.53 0
## 308 82.70 35 61383.79 231.07 0
## 309 84.88 32 63924.82 186.48 0
## 310 54.92 54 23975.35 161.16 0
## 311 76.56 34 70179.11 221.53 1
## 312 69.74 49 66524.80 243.37 0
## 313 75.55 22 41851.38 169.40 0
## 314 72.19 33 61275.18 250.35 1
## 315 84.29 41 60638.38 232.54 0
## 316 73.89 39 47160.53 110.68 0
## 317 75.84 21 48537.18 186.98 0
## 318 73.38 25 53058.91 236.19 1
## 319 80.72 31 68614.98 186.37 0
## 320 62.06 44 44174.25 105.00 0
## 321 51.50 34 67050.16 135.31 0
## 322 90.97 37 54520.14 180.77 0
## 323 86.78 30 54952.42 170.13 1
## 324 66.18 35 69476.42 243.61 0
## 325 84.33 41 54989.93 240.95 0
## 326 36.87 36 29398.61 195.91 0
## 327 34.78 48 42861.42 208.21 1
## 328 76.84 32 65883.39 231.59 0
## 329 67.05 25 65421.39 220.92 0
## 330 41.47 31 60953.93 219.79 0
## 331 80.71 26 58476.57 200.58 0
## 332 80.09 31 66636.84 214.08 0
## 333 56.30 49 67430.96 135.24 1
## 334 79.36 34 57260.41 245.78 1
## 335 86.38 40 66359.32 188.27 1
## 336 38.94 41 57587.00 142.67 1
## 337 87.26 35 63060.55 184.03 0
## 338 75.32 28 59998.50 233.60 1
## 339 74.38 40 74024.61 220.05 1
## 340 65.90 22 60550.66 211.39 0
## 341 36.31 47 57983.30 168.92 0
## 342 72.23 48 52736.33 115.35 0
## 343 88.12 38 46653.75 230.91 0
## 344 83.97 28 56986.73 205.50 1
## 345 61.09 26 55336.18 131.68 1
## 346 65.77 21 42162.90 218.61 1
## 347 81.58 25 39699.13 199.39 0
## 348 37.87 52 56394.82 188.56 1
## 349 76.20 37 75044.35 178.51 0
## 350 60.91 19 53309.61 184.94 0
## 351 74.49 28 58996.12 237.34 0
## 352 73.71 23 56605.12 211.38 1
## 353 78.19 30 62475.99 228.81 0
## 354 79.54 44 70492.60 217.68 1
## 355 74.87 52 43698.53 126.97 0
## 356 87.09 36 57737.51 221.98 1
## 357 37.45 47 31281.01 167.86 0
## 358 49.84 39 45800.48 111.59 0
## 359 51.38 59 42362.49 158.56 0
## 360 83.40 34 66691.23 207.87 0
## 361 38.91 33 56369.74 150.80 1
## 362 62.14 41 59397.89 110.93 1
## 363 79.72 28 66025.11 193.80 1
## 364 73.30 36 68211.35 135.72 1
## 365 69.11 42 73608.99 231.48 1
## 366 71.90 54 61228.96 140.15 1
## 367 72.45 29 72325.91 195.36 1
## 368 77.07 40 44559.43 261.02 0
## 369 74.62 36 73207.15 217.79 0
## 370 82.07 25 46722.07 205.38 1
## 371 58.60 50 45400.50 113.70 0
## 372 36.08 45 41417.27 151.47 1
## 373 79.44 26 60845.55 206.79 0
## 374 41.73 47 60812.77 144.71 0
## 375 73.19 25 64267.88 203.74 1
## 376 77.60 24 58151.87 197.33 1
## 377 89.00 37 52079.18 222.26 1
## 378 69.20 42 26023.99 123.80 0
## 379 67.56 31 62318.38 125.45 0
## 380 81.11 39 56216.57 248.19 1
## 381 80.22 30 61806.31 224.58 0
## 382 43.63 41 51662.24 123.25 1
## 383 77.66 29 67080.94 168.15 0
## 384 74.63 26 51975.41 235.99 1
## 385 49.67 27 28019.09 153.69 0
## 386 80.59 37 67744.56 224.23 0
## 387 83.49 33 66574.00 190.75 1
## 388 44.46 42 30487.48 132.66 1
## 389 68.10 40 74903.41 227.73 1
## 390 63.88 38 19991.72 136.85 0
## 391 78.83 36 66050.63 234.64 1
## 392 79.97 44 70449.04 216.00 0
## 393 80.51 28 64008.55 200.28 1
## 394 62.26 26 70203.74 202.77 0
## 395 66.99 47 27262.51 124.44 1
## 396 71.05 20 49544.41 204.22 1
## 397 42.05 51 28357.27 174.55 1
## 398 50.52 28 66929.03 219.69 0
## 399 76.24 40 75524.78 198.32 1
## 400 77.29 27 66265.34 201.24 1
## 401 35.98 47 55993.68 165.52 1
## 402 84.95 34 56379.30 230.36 0
## 403 39.34 43 31215.88 148.93 0
## 404 87.23 29 51015.11 202.12 0
## 405 57.24 52 46473.14 117.35 1
## 406 81.58 41 55479.62 248.16 0
## 407 56.34 50 68713.70 139.02 1
## 408 48.73 27 34191.23 142.04 0
## 409 51.68 49 51067.54 258.62 0
## 410 35.34 45 46693.76 152.86 0
## 411 48.09 33 19345.36 180.42 0
## 412 78.68 29 66225.72 208.05 0
## 413 68.82 20 38609.20 205.64 1
## 414 56.99 40 37713.23 108.15 0
## 415 86.63 39 63764.28 209.64 1
## 416 41.18 43 41866.55 129.25 1
## 417 71.03 32 57846.68 120.85 0
## 418 72.92 29 69428.73 217.10 1
## 419 77.14 24 60283.98 184.88 1
## 420 60.70 43 79332.33 192.60 1
## 421 34.30 41 53167.68 160.74 1
## 422 83.71 45 64564.07 220.48 1
## 423 53.38 35 60803.37 120.06 1
## 424 58.03 31 28387.42 129.33 0
## 425 43.59 36 58849.77 132.31 1
## 426 60.07 42 65963.37 120.75 1
## 427 54.43 37 75180.20 154.74 1
## 428 81.99 33 61270.14 230.90 0
## 429 60.53 29 56759.48 123.28 0
## 430 84.69 31 46160.63 231.85 1
## 431 88.72 32 43870.51 211.87 1
## 432 88.89 35 50439.49 218.80 1
## 433 69.58 43 28028.74 255.07 0
## 434 85.23 36 64238.71 212.92 1
## 435 83.55 39 65816.38 221.18 1
## 436 56.66 42 72684.44 139.42 0
## 437 56.39 27 38817.40 248.12 1
## 438 76.24 27 63976.44 214.42 0
## 439 57.64 36 37212.54 110.25 1
## 440 78.18 23 52691.79 167.67 0
## 441 46.04 32 65499.93 147.92 0
## 442 79.40 35 63966.72 236.87 0
## 443 36.44 39 52400.88 147.64 1
## 444 53.14 38 49111.47 109.00 1
## 445 32.84 40 41232.89 171.72 0
## 446 73.72 32 52140.04 256.40 1
## 447 38.10 34 60641.09 214.38 1
## 448 73.93 44 74180.05 218.22 0
## 449 51.87 50 51869.87 119.65 0
## 450 77.69 22 48852.58 169.88 1
## 451 43.41 28 59144.02 160.73 0
## 452 55.92 24 33951.63 145.08 0
## 453 80.67 34 58909.36 239.76 0
## 454 83.42 25 49850.52 183.42 1
## 455 82.12 52 28679.93 201.15 1
## 456 66.17 33 69869.66 238.45 0
## 457 43.01 35 48347.64 127.37 0
## 458 80.05 25 45959.86 219.94 1
## 459 64.88 42 70005.51 129.80 1
## 460 79.82 26 51512.66 223.28 1
## 461 48.03 40 25598.75 134.60 1
## 462 32.99 45 49282.87 177.46 0
## 463 74.88 27 67240.25 175.17 1
## 464 36.49 52 42136.33 196.61 1
## 465 88.04 45 62589.84 191.17 1
## 466 45.70 33 67384.31 151.12 1
## 467 82.38 35 25603.93 159.60 0
## 468 52.68 23 39616.00 149.20 1
## 469 65.59 47 28265.81 121.81 0
## 470 65.65 25 63879.72 224.92 1
## 471 43.84 36 70592.81 167.42 0
## 472 67.69 37 76408.19 216.57 0
## 473 78.37 24 55015.08 207.27 0
## 474 81.46 29 51636.12 231.54 0
## 475 47.48 31 29359.20 141.34 0
## 476 75.15 33 71296.67 219.49 1
## 477 78.76 24 46422.76 219.98 1
## 478 44.96 50 52802.00 132.71 1
## 479 39.56 41 59243.46 143.13 1
## 480 39.76 28 35350.55 196.83 1
## 481 57.11 22 59677.64 207.17 1
## 482 83.26 40 70225.60 187.76 1
## 483 69.42 25 65791.17 213.38 0
## 484 50.60 30 34191.13 129.88 1
## 485 46.20 37 51315.38 119.30 0
## 486 66.88 35 62790.96 119.47 1
## 487 83.97 40 66291.67 158.42 1
## 488 76.56 30 68030.18 213.75 0
## 489 35.49 48 43974.49 159.77 0
## 490 80.29 31 49457.48 244.87 1
## 491 50.19 40 33987.27 117.30 0
## 492 59.12 33 28210.03 124.54 0
## 493 59.88 30 75535.14 193.63 1
## 494 59.70 28 49158.50 120.25 0
## 495 67.80 30 39809.69 117.75 1
## 496 81.59 35 65826.53 223.16 0
## 497 81.10 29 61172.07 216.49 1
## 498 41.70 39 42898.21 126.95 0
## 499 73.94 27 68333.01 173.49 0
## 500 58.35 37 70232.95 132.63 0
## 501 51.56 46 63102.19 124.85 0
## 502 79.81 37 51847.26 253.17 0
## 503 66.17 26 63580.22 228.70 0
## 504 58.21 37 47575.44 105.94 0
## 505 66.12 49 39031.89 113.80 0
## 506 80.47 42 70505.06 215.18 1
## 507 77.05 31 62161.26 236.64 0
## 508 49.99 41 61068.26 121.07 0
## 509 80.30 58 49090.51 173.43 0
## 510 79.36 33 62330.75 234.72 1
## 511 57.86 30 18819.34 166.86 0
## 512 70.29 26 62053.37 231.37 1
## 513 84.53 33 61922.06 215.18 1
## 514 59.13 44 49525.37 106.04 1
## 515 81.51 41 53412.32 250.03 0
## 516 42.94 37 56681.65 130.40 1
## 517 84.81 32 43299.63 233.93 1
## 518 82.79 34 47997.75 132.08 0
## 519 59.22 55 39131.53 126.39 1
## 520 35.00 40 46033.73 151.25 1
## 521 46.61 42 65856.74 136.18 0
## 522 63.26 29 54787.37 120.46 1
## 523 79.16 32 69562.46 202.90 1
## 524 67.94 43 68447.17 128.16 0
## 525 79.91 32 62772.42 230.18 1
## 526 66.14 41 78092.95 165.27 0
## 527 43.65 39 63649.04 138.87 0
## 528 59.61 21 60637.62 198.45 1
## 529 46.61 52 27241.11 156.99 0
## 530 89.37 34 42760.22 162.03 1
## 531 65.10 49 59457.52 118.10 1
## 532 53.44 42 42907.89 108.17 1
## 533 79.53 51 46132.18 244.91 0
## 534 91.43 39 46964.11 209.91 1
## 535 73.57 30 70377.23 212.38 0
## 536 78.76 32 70012.83 208.02 1
## 537 76.49 23 56457.01 181.11 0
## 538 61.72 26 67279.06 218.49 0
## 539 84.53 35 54773.99 236.29 0
## 540 72.03 34 70783.94 230.95 1
## 541 77.47 36 70510.59 222.91 1
## 542 75.65 39 64021.55 247.90 1
## 543 78.15 33 72042.85 194.37 0
## 544 63.80 38 36037.33 108.70 1
## 545 76.59 29 67526.92 211.64 0
## 546 42.60 55 55121.65 168.29 0
## 547 78.77 28 63497.62 211.83 0
## 548 83.40 39 60879.48 235.01 0
## 549 79.53 33 61467.33 236.72 0
## 550 73.89 35 70495.64 229.99 1
## 551 75.80 36 71222.40 224.90 0
## 552 81.95 31 64698.58 208.76 1
## 553 56.39 58 32252.38 154.23 0
## 554 44.73 35 55316.97 127.56 1
## 555 38.35 33 47447.89 145.48 1
## 556 72.53 37 73474.82 223.93 0
## 557 56.20 49 53549.94 114.85 1
## 558 79.67 28 58576.12 226.79 0
## 559 75.42 26 63373.70 164.25 1
## 560 78.64 31 60283.47 235.28 1
## 561 67.69 44 37345.34 109.22 0
## 562 38.35 41 34886.01 144.69 1
## 563 59.52 44 67511.86 251.08 1
## 564 62.26 37 77988.71 166.19 0
## 565 64.75 36 63001.03 117.66 0
## 566 79.97 26 61747.98 185.45 1
## 567 47.90 42 48467.68 114.53 0
## 568 80.38 30 55130.96 238.06 0
## 569 64.51 42 79484.80 190.71 1
## 570 71.28 37 67307.43 246.72 1
## 571 50.32 40 27964.60 125.65 0
## 572 72.76 33 66431.87 240.63 1
## 573 72.80 35 63551.67 249.54 0
## 574 74.59 23 40135.06 158.35 1
## 575 46.66 45 49101.67 118.16 0
## 576 48.86 54 53188.69 134.46 0
## 577 37.05 39 49742.83 142.81 1
## 578 81.21 36 63394.41 233.04 0
## 579 66.89 23 64433.99 208.24 1
## 580 68.11 38 73884.48 231.21 0
## 581 69.15 46 36424.94 112.72 0
## 582 65.72 36 28275.48 120.12 0
## 583 40.04 27 48098.86 161.58 0
## 584 68.60 33 68448.94 135.08 0
## 585 56.16 25 66429.84 164.25 1
## 586 78.60 46 41768.13 254.59 1
## 587 78.29 38 57844.96 252.07 0
## 588 43.83 45 35684.82 129.01 0
## 589 77.31 32 62792.43 238.10 0
## 590 39.86 28 51171.23 161.24 0
## 591 66.77 25 58847.07 141.13 0
## 592 57.20 42 57739.03 110.66 0
## 593 73.15 25 64631.22 211.12 1
## 594 82.07 24 50337.93 193.97 0
## 595 49.84 38 67781.31 135.24 1
## 596 43.97 36 68863.95 156.97 1
## 597 77.25 27 55901.12 231.38 1
## 598 74.84 37 64775.10 246.44 1
## 599 83.53 36 67686.16 204.56 0
## 600 38.63 48 57777.11 222.11 0
## 601 84.00 48 46868.53 136.21 1
## 602 52.13 50 40926.93 118.27 1
## 603 71.83 40 22205.74 135.48 1
## 604 78.36 24 58920.44 196.77 1
## 605 50.18 35 63006.14 127.82 1
## 606 64.67 51 24316.61 138.35 1
## 607 69.50 26 68348.99 203.84 0
## 608 65.22 30 66263.37 240.09 1
## 609 62.06 40 63493.60 116.27 1
## 610 84.29 30 56984.09 160.33 1
## 611 32.91 37 51691.55 181.02 0
## 612 39.50 31 49911.25 148.19 1
## 613 75.19 31 33502.57 245.76 1
## 614 76.21 31 65834.97 228.94 1
## 615 67.76 31 66176.97 242.59 0
## 616 40.01 53 51463.17 161.77 0
## 617 52.70 41 41059.64 109.34 1
## 618 68.41 38 61428.18 259.76 0
## 619 35.55 39 51593.46 151.18 0
## 620 74.54 24 57518.73 219.75 0
## 621 81.75 24 52656.13 190.08 1
## 622 87.85 31 52178.98 210.27 1
## 623 60.23 60 46239.14 151.54 1
## 624 87.97 35 48918.55 149.25 1
## 625 78.17 27 65227.79 192.27 1
## 626 67.91 23 55002.05 146.80 1
## 627 85.77 27 52261.73 191.78 1
## 628 41.16 49 59448.44 150.83 1
## 629 53.54 39 47314.45 108.03 0
## 630 73.94 26 55411.06 236.15 1
## 631 63.43 29 66504.16 236.75 1
## 632 84.59 36 47169.14 241.80 1
## 633 70.13 31 70889.68 224.98 0
## 634 40.19 37 55358.88 136.99 0
## 635 58.95 55 56242.70 131.29 1
## 636 35.76 51 45522.44 195.07 0
## 637 59.36 49 46931.03 110.84 0
## 638 91.10 40 55499.69 198.13 1
## 639 61.04 41 75805.12 149.21 0
## 640 74.06 23 40345.49 225.99 0
## 641 64.63 45 15598.29 158.80 1
## 642 81.29 28 33239.20 219.72 0
## 643 76.07 36 68033.54 235.56 0
## 644 75.92 22 38427.66 182.65 0
## 645 78.35 46 53185.34 253.48 0
## 646 46.14 28 39723.97 137.97 1
## 647 44.33 41 43386.07 120.63 0
## 648 46.43 28 53922.43 137.20 1
## 649 66.04 27 71881.84 199.76 0
## 650 84.31 29 47139.21 225.87 0
## 651 83.66 38 68877.02 175.14 0
## 652 81.25 33 65186.58 222.35 1
## 653 85.26 32 55424.24 224.07 1
## 654 86.53 46 46500.11 233.36 0
## 655 76.44 26 58820.16 224.20 1
## 656 52.84 43 28495.21 122.31 0
## 657 85.24 31 61840.26 182.84 1
## 658 74.71 46 37908.29 258.06 1
## 659 82.95 39 69805.70 201.29 0
## 660 76.42 26 60315.19 223.16 1
## 661 42.04 49 67323.00 182.11 0
## 662 46.28 26 50055.33 228.78 1
## 663 48.26 50 43573.66 122.45 1
## 664 71.03 55 28186.65 150.77 0
## 665 81.37 33 66412.04 215.04 0
## 666 58.05 32 15879.10 195.54 1
## 667 75.00 29 63965.16 230.36 1
## 668 79.61 31 58342.63 235.97 0
## 669 52.56 31 33147.19 250.36 1
## 670 62.18 33 65899.68 126.44 0
## 671 77.89 26 64188.50 201.54 0
## 672 66.08 61 58966.22 184.23 1
## 673 89.21 33 44078.24 210.53 0
## 674 49.96 55 60968.62 151.94 1
## 675 77.44 28 65620.25 210.39 0
## 676 82.58 38 65496.78 225.23 1
## 677 39.36 29 52462.04 161.79 1
## 678 47.23 38 70582.55 149.80 1
## 679 87.85 34 51816.27 153.01 0
## 680 65.57 46 23410.75 130.86 0
## 681 78.01 26 62729.40 200.71 1
## 682 44.15 28 48867.67 141.96 1
## 683 43.57 36 50971.73 125.20 1
## 684 76.83 28 67990.84 192.81 0
## 685 42.06 34 43241.19 131.55 0
## 686 76.27 27 60082.66 226.69 1
## 687 74.27 37 65180.97 247.05 1
## 688 73.27 28 67301.39 216.24 1
## 689 74.58 36 70701.31 230.52 0
## 690 77.50 28 60997.84 225.34 1
## 691 87.16 33 60805.93 197.15 0
## 692 87.16 37 50711.68 231.95 1
## 693 66.26 47 14548.06 179.04 1
## 694 65.15 29 41335.84 117.30 0
## 695 68.25 33 76480.16 198.86 1
## 696 73.49 38 67132.46 244.23 0
## 697 39.19 54 52581.16 173.05 0
## 698 80.15 25 55195.61 214.49 0
## 699 86.76 28 48679.54 189.91 0
## 700 73.88 29 63109.74 233.61 0
## 701 58.60 19 44490.09 197.93 1
## 702 69.77 54 57667.99 132.27 0
## 703 87.27 30 51824.01 204.27 1
## 704 77.65 28 66198.66 208.01 0
## 705 76.02 40 73174.19 219.55 0
## 706 78.84 26 56593.80 217.66 1
## 707 71.33 23 31072.44 169.40 0
## 708 81.90 41 66773.83 225.47 0
## 709 46.89 48 72553.94 176.78 1
## 710 77.80 57 43708.88 152.94 0
## 711 45.44 43 48453.55 119.27 0
## 712 69.96 31 73413.87 214.06 1
## 713 87.35 35 58114.30 158.29 1
## 714 49.42 53 45465.25 128.00 1
## 715 71.27 21 50147.72 216.03 1
## 716 49.19 38 61004.51 123.08 0
## 717 39.96 35 53898.89 138.52 1
## 718 85.01 29 59797.64 192.50 0
## 719 68.95 51 74623.27 185.85 1
## 720 67.59 45 58677.69 113.69 0
## 721 75.71 34 62109.80 246.06 0
## 722 43.07 36 60583.02 137.63 1
## 723 39.47 43 65576.05 163.48 1
## 724 48.22 40 73882.91 214.33 0
## 725 76.76 25 50468.36 230.77 1
## 726 78.74 27 51409.45 234.75 0
## 727 67.47 24 60514.05 225.05 1
## 728 81.17 30 57195.96 231.91 1
## 729 89.66 34 52802.58 171.23 1
## 730 79.60 28 56570.06 227.37 1
## 731 65.53 19 51049.47 190.17 1
## 732 61.87 35 66629.61 250.20 1
## 733 83.16 41 70185.06 194.95 0
## 734 44.11 41 43111.41 121.24 1
## 735 56.57 26 56435.60 131.98 0
## 736 83.91 29 53223.58 222.87 0
## 737 79.80 28 57179.91 229.88 1
## 738 71.23 52 41521.28 122.59 0
## 739 47.23 43 73538.09 210.87 1
## 740 82.37 30 63664.32 207.44 0
## 741 43.63 38 61757.12 135.25 1
## 742 70.90 28 71727.51 190.95 0
## 743 71.90 29 72203.96 193.29 1
## 744 62.12 37 50671.60 105.86 1
## 745 67.35 29 47510.42 118.69 0
## 746 57.99 50 62466.10 124.58 0
## 747 66.80 29 59683.16 248.51 0
## 748 49.13 32 41097.17 120.49 0
## 749 45.11 58 39799.73 195.69 0
## 750 54.35 42 76984.21 164.02 0
## 751 61.82 59 57877.15 151.93 1
## 752 77.75 31 59047.91 240.64 1
## 753 70.61 28 72154.68 190.12 0
## 754 82.72 31 65704.79 179.82 0
## 755 76.87 36 72948.76 212.59 0
## 756 65.07 34 73941.91 227.53 1
## 757 56.93 37 57887.64 111.80 0
## 758 48.86 35 62463.70 128.37 1
## 759 36.56 29 42838.29 195.89 0
## 760 85.73 32 43778.88 147.75 1
## 761 75.81 40 71157.05 229.19 0
## 762 72.94 31 74159.69 190.84 0
## 763 53.63 54 50333.72 126.29 1
## 764 52.35 25 33293.78 147.61 1
## 765 52.84 51 38641.20 121.57 1
## 766 51.58 33 49822.78 115.91 0
## 767 42.32 29 63891.29 187.09 1
## 768 55.04 42 43881.73 106.96 1
## 769 68.58 41 13996.50 171.54 1
## 770 85.54 27 48761.14 175.43 1
## 771 71.14 30 69758.31 224.82 0
## 772 64.38 19 52530.10 180.47 1
## 773 88.85 40 58363.12 213.96 0
## 774 66.79 60 60575.99 198.30 1
## 775 32.60 45 48206.04 185.47 0
## 776 43.88 54 31523.09 166.85 1
## 777 56.46 26 66187.58 151.63 0
## 778 72.18 30 69438.04 225.02 0
## 779 52.67 44 14775.50 191.26 0
## 780 80.55 35 68016.90 219.91 0
## 781 67.85 41 78520.99 202.70 1
## 782 75.55 36 31998.72 123.71 1
## 783 80.46 29 56909.30 230.78 0
## 784 82.69 29 61161.29 167.41 1
## 785 35.21 39 52340.10 154.00 1
## 786 36.37 40 47338.94 144.53 1
## 787 74.07 22 50950.24 165.43 1
## 788 59.96 33 77143.61 197.66 0
## 789 85.62 29 57032.36 195.68 0
## 790 40.88 33 48554.45 136.18 1
## 791 36.98 31 39552.49 167.87 1
## 792 35.49 47 36884.23 170.04 0
## 793 56.56 26 68783.45 204.47 1
## 794 36.62 32 51119.93 162.44 1
## 795 49.35 49 44304.13 119.86 0
## 796 75.64 29 69718.19 204.82 1
## 797 79.22 27 63429.18 198.79 1
## 798 77.05 34 65756.36 236.08 0
## 799 66.83 46 77871.75 196.17 1
## 800 76.20 24 47258.59 228.81 1
## 801 56.64 29 55984.89 123.24 1
## 802 53.33 34 44275.13 111.63 1
## 803 50.63 50 25767.16 142.23 0
## 804 41.84 49 37605.11 139.32 0
## 805 53.92 41 25739.09 125.46 1
## 806 83.89 28 60188.38 180.88 1
## 807 55.32 43 67682.32 127.65 0
## 808 53.22 44 44307.18 108.85 0
## 809 43.16 35 25371.52 156.11 1
## 810 67.51 43 23942.61 127.20 0
## 811 43.16 29 50666.50 143.04 1
## 812 79.89 30 50356.06 241.38 1
## 813 84.25 32 63936.50 170.90 1
## 814 74.18 28 69874.18 203.87 0
## 815 85.78 34 50038.65 232.78 0
## 816 80.96 39 67866.95 225.00 1
## 817 36.91 48 54645.20 159.69 0
## 818 54.47 23 46780.09 141.52 0
## 819 81.98 34 67432.49 212.88 0
## 820 79.60 39 73392.28 194.23 0
## 821 57.51 38 47682.28 105.71 0
## 822 82.30 31 56735.83 232.21 0
## 823 73.21 30 51013.37 252.60 1
## 824 79.09 32 69481.85 209.72 1
## 825 68.47 28 67033.34 226.64 0
## 826 83.69 36 68717.00 192.57 0
## 827 83.48 31 59340.99 222.72 1
## 828 43.49 45 47968.32 124.67 0
## 829 66.69 35 48758.92 108.27 0
## 830 48.46 49 61230.03 132.38 1
## 831 42.51 30 54755.71 144.77 1
## 832 42.83 34 54324.73 132.38 1
## 833 41.46 42 52177.40 128.98 1
## 834 45.99 33 51163.14 124.61 1
## 835 68.72 27 66861.67 225.97 0
## 836 63.11 34 63107.88 254.94 1
## 837 49.21 46 49206.40 115.60 0
## 838 55.77 49 55942.04 117.33 1
## 839 44.13 40 33601.84 128.48 1
## 840 57.82 46 48867.36 107.56 1
## 841 72.46 40 56683.32 113.53 0
## 842 61.88 45 38260.89 108.18 0
## 843 78.24 23 54106.21 199.29 0
## 844 74.61 38 71055.22 231.28 1
## 845 89.18 37 46403.18 224.01 1
## 846 44.16 42 61690.93 133.42 1
## 847 55.74 37 26130.93 124.34 1
## 848 88.82 36 58638.75 169.10 0
## 849 70.39 32 47357.39 261.52 1
## 850 59.05 52 50086.17 118.45 1
## 851 78.58 33 51772.58 250.11 1
## 852 35.11 35 47638.30 158.03 1
## 853 60.39 45 38987.42 108.25 1
## 854 81.56 26 51363.16 213.70 1
## 855 75.03 34 35764.49 255.57 0
## 856 50.87 24 62939.50 190.41 0
## 857 82.80 30 58776.67 223.20 1
## 858 78.51 25 59106.12 205.71 1
## 859 37.65 51 50457.01 161.29 1
## 860 83.17 43 54251.78 244.40 1
## 861 91.37 45 51920.49 182.65 1
## 862 68.25 29 70324.80 220.08 0
## 863 81.32 25 52416.18 165.65 0
## 864 76.64 39 66217.31 241.50 1
## 865 74.06 50 60938.73 246.29 1
## 866 39.53 33 40243.82 142.21 1
## 867 86.58 32 60151.77 195.93 1
## 868 90.75 40 45945.88 216.50 0
## 869 67.71 25 63430.33 225.76 1
## 870 82.41 36 65882.81 222.08 0
## 871 45.82 27 64410.80 171.24 1
## 872 76.79 27 55677.12 235.94 0
## 873 70.05 33 75560.65 203.44 0
## 874 72.19 32 61067.58 250.32 1
## 875 77.35 34 72330.57 167.26 0
## 876 40.34 29 32549.95 173.75 0
## 877 67.39 44 51257.26 107.19 0
## 878 68.68 34 77220.42 187.03 1
## 879 81.75 43 52520.75 249.45 0
## 880 66.03 22 59422.47 217.37 0
## 881 47.74 33 22456.04 154.93 1
## 882 79.18 31 58443.99 236.96 0
## 883 86.81 29 50820.74 199.62 1
## 884 41.53 42 67575.12 158.81 0
## 885 70.92 39 66522.79 249.81 1
## 886 46.84 45 34903.67 123.22 0
## 887 44.40 53 43073.78 140.95 1
## 888 52.17 44 57594.70 115.37 1
## 889 81.45 31 66027.31 205.84 1
## 890 54.08 36 53012.94 111.02 1
## 891 76.65 31 61117.50 238.43 0
## 892 54.39 20 52563.22 171.90 1
## 893 37.74 40 65773.49 190.95 0
## 894 69.86 25 50506.44 241.36 0
## 895 85.37 36 66262.59 194.56 1
## 896 80.99 26 35521.88 207.53 1
## 897 78.84 32 62430.55 235.29 1
## 898 77.36 41 49597.08 115.79 0
## 899 55.46 37 42078.89 108.10 0
## 900 35.66 45 46197.59 151.72 0
## 901 50.78 51 49957.00 122.04 0
## 902 40.47 38 24078.93 203.90 0
## 903 45.62 43 53647.81 121.28 0
## 904 84.76 30 61039.13 178.69 0
## 905 80.64 26 46974.15 221.59 0
## 906 75.94 27 53042.51 236.96 1
## 907 37.01 50 48826.14 216.01 0
## 908 87.18 31 58287.86 193.60 0
## 909 56.91 50 21773.22 146.44 0
## 910 75.24 24 52252.91 226.49 0
## 911 42.84 52 27073.27 182.20 1
## 912 67.56 47 50628.31 109.98 0
## 913 34.96 42 36913.51 160.49 1
## 914 87.46 37 61009.10 211.56 1
## 915 41.86 39 53041.77 128.62 1
## 916 34.04 34 40182.84 174.88 1
## 917 54.96 42 59419.78 113.75 1
## 918 87.14 31 58235.21 199.40 1
## 919 78.79 32 68324.48 215.29 1
## 920 65.56 25 69646.35 181.25 1
## 921 81.05 34 54045.39 245.50 0
## 922 55.71 37 57806.03 112.52 1
## 923 45.48 49 53336.76 129.16 1
## 924 47.00 56 50491.45 149.53 0
## 925 59.64 51 71455.62 153.12 1
## 926 35.98 45 43241.88 150.79 0
## 927 72.55 22 58953.01 202.34 0
## 928 91.15 38 36834.04 184.98 0
## 929 80.53 29 66345.10 187.64 0
## 930 82.49 45 38645.40 130.84 0
## 931 80.94 36 60803.00 239.94 0
## 932 61.76 34 33553.90 114.69 0
## 933 63.30 38 63071.34 116.19 0
## 934 36.73 34 46737.34 149.79 1
## 935 78.41 33 55368.67 248.23 1
## 936 83.98 36 68305.91 194.62 0
## 937 63.18 45 39211.49 107.92 0
## 938 50.60 48 65956.71 135.67 0
## 939 32.60 38 40159.20 190.05 0
## 940 60.83 19 40478.83 185.46 1
## 941 44.72 46 40468.53 123.86 1
## 942 78.76 51 66980.27 162.05 0
## 943 79.51 39 34942.26 125.11 1
## 944 39.30 32 48335.20 145.73 0
## 945 64.79 30 42251.59 116.07 0
## 946 89.80 36 57330.43 198.24 0
## 947 72.82 34 75769.82 191.82 1
## 948 38.65 31 51812.71 154.77 1
## 949 59.01 30 75265.96 178.75 1
## 950 78.96 50 69868.48 193.15 0
## 951 63.99 43 72802.42 138.46 0
## 952 41.35 27 39193.45 162.46 1
## 953 62.79 36 18368.57 231.87 1
## 954 45.53 29 56129.89 141.58 0
## 955 51.65 31 58996.56 249.99 0
## 956 54.55 44 41547.62 109.04 0
## 957 35.66 36 59240.24 172.57 0
## 958 69.95 28 56725.47 247.01 0
## 959 79.83 29 55764.43 234.23 1
## 960 85.35 37 64235.51 161.42 1
## 961 56.78 28 39939.39 124.32 0
## 962 78.67 26 63319.99 195.56 0
## 963 70.09 21 54725.87 211.17 0
## 964 60.75 42 69775.75 247.05 1
## 965 65.07 24 57545.56 233.85 0
## 966 35.25 50 47051.02 194.44 0
## 967 37.58 52 51600.47 176.70 1
## 968 68.01 25 68357.96 188.32 1
## 969 45.08 38 35349.26 125.27 0
## 970 63.04 27 69784.85 159.05 0
## 971 40.18 29 50760.23 151.96 0
## 972 45.17 48 34418.09 132.07 1
## 973 50.48 50 20592.99 162.43 0
## 974 80.87 28 63528.80 203.30 0
## 975 41.88 40 44217.68 126.11 1
## 976 39.87 48 47929.83 139.34 1
## 977 61.84 45 46024.29 105.63 1
## 978 54.97 31 51900.03 116.38 1
## 979 71.40 30 72188.90 166.31 0
## 980 70.29 31 56974.51 254.65 1
## 981 67.26 57 25682.65 168.41 1
## 982 76.58 46 41884.64 258.26 0
## 983 54.37 38 72196.29 140.77 0
## 984 82.79 32 54429.17 234.81 1
## 985 66.47 31 58037.66 256.39 1
## 986 72.88 44 64011.26 125.12 0
## 987 76.44 28 59967.19 232.68 1
## 988 63.37 43 43155.19 105.04 1
## 989 89.71 48 51501.38 204.40 1
## 990 70.96 31 55187.85 256.40 0
## 991 35.79 44 33813.08 165.62 1
## 992 38.96 38 36497.22 140.67 1
## 993 69.17 40 66193.81 123.62 0
## 994 64.20 27 66200.96 227.63 1
## 995 43.70 28 63126.96 173.01 0
## 996 72.97 30 71384.57 208.58 1
## 997 51.30 45 67782.17 134.42 1
## 998 51.63 51 42415.72 120.37 1
## 999 55.55 19 41920.79 187.95 0
## 1000 45.01 26 29875.80 178.35 0
## Clicked.on.Ad
## 1 0
## 2 0
## 3 0
## 4 0
## 5 0
## 6 0
## 7 0
## 8 1
## 9 0
## 10 0
## 11 1
## 12 0
## 13 1
## 14 0
## 15 1
## 16 1
## 17 1
## 18 0
## 19 1
## 20 1
## 21 0
## 22 0
## 23 1
## 24 0
## 25 1
## 26 0
## 27 1
## 28 1
## 29 1
## 30 0
## 31 0
## 32 0
## 33 1
## 34 1
## 35 1
## 36 0
## 37 1
## 38 0
## 39 1
## 40 1
## 41 0
## 42 0
## 43 0
## 44 0
## 45 0
## 46 1
## 47 0
## 48 0
## 49 1
## 50 1
## 51 0
## 52 0
## 53 1
## 54 1
## 55 1
## 56 0
## 57 1
## 58 1
## 59 0
## 60 1
## 61 0
## 62 0
## 63 0
## 64 0
## 65 1
## 66 0
## 67 1
## 68 1
## 69 0
## 70 1
## 71 1
## 72 0
## 73 1
## 74 1
## 75 1
## 76 0
## 77 1
## 78 0
## 79 1
## 80 1
## 81 0
## 82 0
## 83 1
## 84 1
## 85 0
## 86 1
## 87 0
## 88 1
## 89 1
## 90 1
## 91 1
## 92 1
## 93 0
## 94 1
## 95 1
## 96 0
## 97 1
## 98 1
## 99 1
## 100 0
## 101 1
## 102 0
## 103 0
## 104 0
## 105 0
## 106 0
## 107 0
## 108 1
## 109 1
## 110 0
## 111 1
## 112 1
## 113 0
## 114 1
## 115 0
## 116 0
## 117 1
## 118 1
## 119 1
## 120 1
## 121 0
## 122 0
## 123 0
## 124 1
## 125 1
## 126 0
## 127 1
## 128 0
## 129 0
## 130 0
## 131 1
## 132 1
## 133 1
## 134 0
## 135 1
## 136 1
## 137 1
## 138 1
## 139 0
## 140 0
## 141 0
## 142 1
## 143 1
## 144 0
## 145 0
## 146 1
## 147 1
## 148 1
## 149 1
## 150 1
## 151 0
## 152 0
## 153 1
## 154 0
## 155 0
## 156 0
## 157 1
## 158 1
## 159 0
## 160 1
## 161 0
## 162 0
## 163 0
## 164 0
## 165 1
## 166 1
## 167 1
## 168 0
## 169 1
## 170 0
## 171 1
## 172 0
## 173 0
## 174 0
## 175 1
## 176 0
## 177 1
## 178 0
## 179 1
## 180 0
## 181 1
## 182 1
## 183 1
## 184 0
## 185 0
## 186 1
## 187 1
## 188 0
## 189 1
## 190 1
## 191 1
## 192 1
## 193 1
## 194 1
## 195 0
## 196 1
## 197 1
## 198 0
## 199 0
## 200 0
## 201 0
## 202 0
## 203 1
## 204 0
## 205 0
## 206 1
## 207 0
## 208 0
## 209 1
## 210 1
## 211 0
## 212 1
## 213 0
## 214 1
## 215 0
## 216 1
## 217 1
## 218 1
## 219 1
## 220 1
## 221 0
## 222 0
## 223 1
## 224 1
## 225 0
## 226 1
## 227 1
## 228 1
## 229 0
## 230 0
## 231 0
## 232 1
## 233 1
## 234 1
## 235 1
## 236 1
## 237 1
## 238 0
## 239 1
## 240 0
## 241 1
## 242 1
## 243 0
## 244 0
## 245 0
## 246 0
## 247 1
## 248 1
## 249 1
## 250 1
## 251 0
## 252 1
## 253 0
## 254 1
## 255 1
## 256 0
## 257 0
## 258 1
## 259 0
## 260 1
## 261 0
## 262 1
## 263 1
## 264 1
## 265 0
## 266 1
## 267 1
## 268 0
## 269 1
## 270 0
## 271 1
## 272 0
## 273 0
## 274 0
## 275 0
## 276 1
## 277 0
## 278 0
## 279 0
## 280 0
## 281 1
## 282 1
## 283 1
## 284 0
## 285 1
## 286 0
## 287 1
## 288 0
## 289 1
## 290 1
## 291 1
## 292 0
## 293 1
## 294 0
## 295 0
## 296 0
## 297 0
## 298 0
## 299 0
## 300 0
## 301 0
## 302 1
## 303 1
## 304 1
## 305 1
## 306 1
## 307 0
## 308 0
## 309 0
## 310 1
## 311 0
## 312 0
## 313 1
## 314 0
## 315 0
## 316 1
## 317 0
## 318 0
## 319 0
## 320 1
## 321 1
## 322 0
## 323 0
## 324 0
## 325 0
## 326 1
## 327 1
## 328 0
## 329 0
## 330 1
## 331 0
## 332 0
## 333 1
## 334 0
## 335 0
## 336 1
## 337 0
## 338 0
## 339 0
## 340 0
## 341 1
## 342 1
## 343 0
## 344 0
## 345 1
## 346 0
## 347 0
## 348 1
## 349 0
## 350 1
## 351 0
## 352 0
## 353 0
## 354 0
## 355 1
## 356 0
## 357 1
## 358 1
## 359 1
## 360 0
## 361 1
## 362 1
## 363 0
## 364 1
## 365 0
## 366 1
## 367 0
## 368 0
## 369 0
## 370 0
## 371 1
## 372 1
## 373 0
## 374 1
## 375 0
## 376 0
## 377 0
## 378 1
## 379 1
## 380 0
## 381 0
## 382 1
## 383 0
## 384 0
## 385 1
## 386 0
## 387 0
## 388 1
## 389 0
## 390 1
## 391 0
## 392 0
## 393 0
## 394 0
## 395 1
## 396 0
## 397 1
## 398 1
## 399 0
## 400 0
## 401 1
## 402 0
## 403 1
## 404 0
## 405 1
## 406 0
## 407 1
## 408 1
## 409 1
## 410 1
## 411 1
## 412 0
## 413 0
## 414 1
## 415 0
## 416 1
## 417 1
## 418 0
## 419 0
## 420 0
## 421 1
## 422 0
## 423 1
## 424 1
## 425 1
## 426 1
## 427 1
## 428 0
## 429 1
## 430 0
## 431 0
## 432 0
## 433 1
## 434 0
## 435 0
## 436 1
## 437 0
## 438 0
## 439 1
## 440 0
## 441 1
## 442 0
## 443 1
## 444 1
## 445 1
## 446 0
## 447 1
## 448 0
## 449 1
## 450 0
## 451 1
## 452 1
## 453 0
## 454 0
## 455 1
## 456 0
## 457 1
## 458 0
## 459 1
## 460 0
## 461 1
## 462 1
## 463 0
## 464 1
## 465 0
## 466 1
## 467 1
## 468 1
## 469 1
## 470 0
## 471 1
## 472 0
## 473 0
## 474 0
## 475 1
## 476 0
## 477 0
## 478 1
## 479 1
## 480 1
## 481 0
## 482 0
## 483 0
## 484 1
## 485 1
## 486 1
## 487 0
## 488 0
## 489 1
## 490 0
## 491 1
## 492 1
## 493 0
## 494 1
## 495 1
## 496 0
## 497 0
## 498 1
## 499 0
## 500 1
## 501 1
## 502 0
## 503 0
## 504 1
## 505 1
## 506 0
## 507 0
## 508 1
## 509 1
## 510 0
## 511 1
## 512 0
## 513 0
## 514 1
## 515 0
## 516 1
## 517 0
## 518 1
## 519 1
## 520 1
## 521 1
## 522 1
## 523 0
## 524 1
## 525 0
## 526 0
## 527 1
## 528 0
## 529 1
## 530 0
## 531 1
## 532 1
## 533 0
## 534 0
## 535 0
## 536 0
## 537 0
## 538 0
## 539 0
## 540 0
## 541 0
## 542 0
## 543 0
## 544 1
## 545 0
## 546 1
## 547 0
## 548 0
## 549 0
## 550 0
## 551 0
## 552 0
## 553 1
## 554 1
## 555 1
## 556 0
## 557 1
## 558 0
## 559 0
## 560 0
## 561 1
## 562 1
## 563 0
## 564 0
## 565 1
## 566 0
## 567 1
## 568 0
## 569 0
## 570 0
## 571 1
## 572 0
## 573 0
## 574 1
## 575 1
## 576 1
## 577 1
## 578 0
## 579 0
## 580 0
## 581 1
## 582 1
## 583 1
## 584 1
## 585 1
## 586 0
## 587 0
## 588 1
## 589 0
## 590 1
## 591 1
## 592 1
## 593 0
## 594 0
## 595 1
## 596 1
## 597 0
## 598 0
## 599 0
## 600 1
## 601 1
## 602 1
## 603 1
## 604 0
## 605 1
## 606 1
## 607 0
## 608 0
## 609 1
## 610 1
## 611 1
## 612 1
## 613 0
## 614 0
## 615 0
## 616 1
## 617 1
## 618 0
## 619 1
## 620 0
## 621 0
## 622 0
## 623 1
## 624 0
## 625 0
## 626 1
## 627 0
## 628 1
## 629 1
## 630 0
## 631 0
## 632 0
## 633 0
## 634 1
## 635 1
## 636 1
## 637 1
## 638 0
## 639 1
## 640 0
## 641 1
## 642 0
## 643 0
## 644 0
## 645 0
## 646 1
## 647 1
## 648 1
## 649 0
## 650 0
## 651 0
## 652 0
## 653 0
## 654 0
## 655 0
## 656 1
## 657 0
## 658 0
## 659 0
## 660 0
## 661 1
## 662 1
## 663 1
## 664 1
## 665 0
## 666 1
## 667 0
## 668 0
## 669 1
## 670 1
## 671 0
## 672 1
## 673 0
## 674 1
## 675 0
## 676 0
## 677 1
## 678 1
## 679 0
## 680 1
## 681 0
## 682 1
## 683 1
## 684 0
## 685 1
## 686 0
## 687 0
## 688 0
## 689 0
## 690 0
## 691 0
## 692 0
## 693 1
## 694 1
## 695 0
## 696 0
## 697 1
## 698 0
## 699 0
## 700 0
## 701 0
## 702 1
## 703 1
## 704 0
## 705 0
## 706 0
## 707 1
## 708 0
## 709 1
## 710 1
## 711 1
## 712 0
## 713 0
## 714 1
## 715 0
## 716 1
## 717 1
## 718 0
## 719 0
## 720 1
## 721 0
## 722 1
## 723 1
## 724 0
## 725 0
## 726 0
## 727 0
## 728 0
## 729 0
## 730 0
## 731 0
## 732 0
## 733 0
## 734 1
## 735 1
## 736 0
## 737 0
## 738 1
## 739 1
## 740 0
## 741 1
## 742 0
## 743 0
## 744 1
## 745 1
## 746 1
## 747 1
## 748 1
## 749 1
## 750 0
## 751 1
## 752 0
## 753 0
## 754 0
## 755 0
## 756 0
## 757 1
## 758 1
## 759 1
## 760 1
## 761 0
## 762 0
## 763 1
## 764 1
## 765 1
## 766 1
## 767 1
## 768 1
## 769 1
## 770 0
## 771 0
## 772 0
## 773 0
## 774 1
## 775 1
## 776 1
## 777 1
## 778 0
## 779 1
## 780 0
## 781 1
## 782 1
## 783 0
## 784 0
## 785 1
## 786 1
## 787 0
## 788 1
## 789 0
## 790 1
## 791 1
## 792 1
## 793 0
## 794 1
## 795 1
## 796 0
## 797 0
## 798 0
## 799 0
## 800 0
## 801 1
## 802 1
## 803 1
## 804 1
## 805 1
## 806 0
## 807 1
## 808 1
## 809 1
## 810 1
## 811 1
## 812 0
## 813 0
## 814 0
## 815 0
## 816 0
## 817 1
## 818 1
## 819 0
## 820 0
## 821 1
## 822 0
## 823 1
## 824 0
## 825 0
## 826 0
## 827 0
## 828 1
## 829 1
## 830 1
## 831 1
## 832 1
## 833 1
## 834 1
## 835 0
## 836 0
## 837 1
## 838 1
## 839 1
## 840 1
## 841 1
## 842 1
## 843 0
## 844 0
## 845 0
## 846 1
## 847 1
## 848 0
## 849 0
## 850 1
## 851 0
## 852 1
## 853 1
## 854 0
## 855 1
## 856 1
## 857 0
## 858 0
## 859 1
## 860 0
## 861 1
## 862 0
## 863 0
## 864 0
## 865 0
## 866 1
## 867 0
## 868 0
## 869 0
## 870 0
## 871 1
## 872 0
## 873 0
## 874 0
## 875 0
## 876 1
## 877 1
## 878 0
## 879 0
## 880 0
## 881 1
## 882 0
## 883 0
## 884 1
## 885 0
## 886 1
## 887 1
## 888 1
## 889 0
## 890 1
## 891 0
## 892 1
## 893 1
## 894 0
## 895 0
## 896 0
## 897 0
## 898 1
## 899 1
## 900 1
## 901 1
## 902 1
## 903 1
## 904 0
## 905 0
## 906 0
## 907 1
## 908 0
## 909 1
## 910 0
## 911 1
## 912 1
## 913 1
## 914 0
## 915 1
## 916 1
## 917 1
## 918 0
## 919 0
## 920 0
## 921 0
## 922 1
## 923 1
## 924 1
## 925 1
## 926 1
## 927 0
## 928 0
## 929 0
## 930 1
## 931 0
## 932 1
## 933 1
## 934 1
## 935 0
## 936 0
## 937 1
## 938 1
## 939 1
## 940 0
## 941 1
## 942 1
## 943 1
## 944 1
## 945 1
## 946 0
## 947 0
## 948 1
## 949 1
## 950 1
## 951 1
## 952 1
## 953 1
## 954 1
## 955 0
## 956 1
## 957 1
## 958 0
## 959 0
## 960 0
## 961 1
## 962 0
## 963 0
## 964 0
## 965 0
## 966 1
## 967 1
## 968 0
## 969 1
## 970 1
## 971 1
## 972 1
## 973 1
## 974 0
## 975 1
## 976 1
## 977 1
## 978 1
## 979 0
## 980 0
## 981 1
## 982 0
## 983 1
## 984 0
## 985 0
## 986 1
## 987 0
## 988 1
## 989 0
## 990 0
## 991 1
## 992 1
## 993 1
## 994 0
## 995 1
## 996 1
## 997 1
## 998 1
## 999 0
## 1000 1
# Checking for outliers
boxplot(data_num)
-Outliers are present in the Area.Income column.
# Listing the outliers
boxplot.stats(data_num$Area.Income)$out
## [1] 17709.98 18819.34 15598.29 15879.10 14548.06 13996.50 14775.50 18368.57
# Statistical description of the numerical columns
summary(data_num)
## Daily.Time.Spent.on.Site Age Area.Income Daily.Internet.Usage
## Min. :32.60 Min. :19.00 Min. :13996 Min. :104.8
## 1st Qu.:51.36 1st Qu.:29.00 1st Qu.:47032 1st Qu.:138.8
## Median :68.22 Median :35.00 Median :57012 Median :183.1
## Mean :65.00 Mean :36.01 Mean :55000 Mean :180.0
## 3rd Qu.:78.55 3rd Qu.:42.00 3rd Qu.:65471 3rd Qu.:218.8
## Max. :91.43 Max. :61.00 Max. :79485 Max. :270.0
## Male Clicked.on.Ad
## Min. :0.000 Min. :0.0
## 1st Qu.:0.000 1st Qu.:0.0
## Median :0.000 Median :0.5
## Mean :0.481 Mean :0.5
## 3rd Qu.:1.000 3rd Qu.:1.0
## Max. :1.000 Max. :1.0
# Calculating Range in the numerical columns
# Daily.Time.Spent.on.Site
range_DTS<-91.43-32.60
range_DTS
## [1] 58.83
# Age
range_age<-61.00-19.00
range_age
## [1] 42
# Area.Income
range_Income<-79485-13996
range_Income
## [1] 65489
# Daily.Internet.Usage
range_DIU<-270.0-104.8
range_DIU
## [1] 165.2
# Univariate Analysis
# Measures of Central Tendency:Mode
getmode <- function(d) {
uniqd <- unique(d)
uniqd[which.max(tabulate(match(d, uniqd)))]
}
getmode(data_num$Daily.Time.Spent.on.Site)
## [1] 62.26
getmode(data_num$Area.Income)
## [1] 61833.9
-The most popular area income is 61833.9
getmode(data_num$Age)
## [1] 31
-Majority of people that visit the site are aged 31
getmode(data_num$Daily.Internet.Usage)
## [1] 167.22
-Most people had a daily internet usage of 167.22
getmode(data_num$Male)
## [1] 0
-Majority of the site visitors were Female
getmode(data_num$Clicked.on.Ad)
## [1] 0
-Majority of those that visted the site did not click on the Ad.
# Measures of Dispresion : Variance
var(data_num$Age)
## [1] 77.18611
# Frequency distribution for sex
sex_col<-data_num$Male
sex_freq<-table(sex_col)
sex_freq
## sex_col
## 0 1
## 519 481
# Frequency distribution for age
age_col<-data_num$Age
age_freq<-table(age_col)
age_freq
## age_col
## 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
## 6 6 6 13 19 21 27 37 33 48 48 39 60 38 43 39 39 50 36 37 30 36 32 26 23 21
## 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
## 30 18 13 16 18 20 12 15 10 9 7 2 6 4 2 4 1
# Frequency distribution on clicks on te ad.
clicks<-data_num$Clicked.on.Ad
clicks_freq<-table(clicks)
clicks_freq
## clicks
## 0 1
## 500 500
# Histogram visualization of age
hist(data_num$Age)
# Bivariate Analysis
# correlation between the age and Male columns
age<-data_num$Age
sex<-data_num$Male
cor(age,sex)
## [1] -0.02104406
# Relationship between sex and Daily.Time.Spent.on.Site
DTSS<-data_num$Daily.Time.Spent.on.Site
cor(sex,DTSS)
## [1] -0.01895085
# Relationship between sex and Clicks
cor(sex,clicks)
## [1] -0.03802747
# Relationship between age and clicks
cor(age,clicks)
## [1] 0.4925313
# Correlation matrix
corr_matrix <- cor(data_num, method = c("pearson"))
round(corr_matrix, 2)
## Daily.Time.Spent.on.Site Age Area.Income
## Daily.Time.Spent.on.Site 1.00 -0.33 0.31
## Age -0.33 1.00 -0.18
## Area.Income 0.31 -0.18 1.00
## Daily.Internet.Usage 0.52 -0.37 0.34
## Male -0.02 -0.02 0.00
## Clicked.on.Ad -0.75 0.49 -0.48
## Daily.Internet.Usage Male Clicked.on.Ad
## Daily.Time.Spent.on.Site 0.52 -0.02 -0.75
## Age -0.37 -0.02 0.49
## Area.Income 0.34 0.00 -0.48
## Daily.Internet.Usage 1.00 0.03 -0.79
## Male 0.03 1.00 -0.04
## Clicked.on.Ad -0.79 -0.04 1.00
# Graphical Visualization
# Scatterplot showing relationship of age and Clicked on Ad.
plot(data_num$Age, data_num$Clicked.on.Ad, xlab = 'Age', ylab = 'Clicks')
# Scatter plot showing relationship of sex and Clicked on Ad.
plot(data_num$Male, data_num$Clicked.on.Ad, xlab = 'Sex', ylab = 'Clicks')
Conclusion:
Recommendation:
2. Modelling (i) Linear Regression
library(caTools)
# Splitting data into train and test
split <- sample.split(data_num$Clicked.on.Ad, SplitRatio = 0.7)
train_set <- subset(data_num, split == "TRUE")
test_set <- subset(data_num, split == "FALSE")
# Feature Scaling
train_scale<-scale(train_set)
test_scale<-scale(test_set)
# Fitting Linear Regression Algorithm
regressor = lm(formula = Clicked.on.Ad ~ Daily.Time.Spent.on.Site + Daily.Internet.Usage + Age + Male, data = train_set)
# Making Prediction
y_pred<-predict(regressor, data = test_set)
y_pred
## 1 2 3 4 5 6
## 0.024263396 0.141398734 0.045669836 -0.078733968 0.200987492 0.173185561
## 7 8 9 10 11 13
## -0.010387763 0.834311228 0.059456871 0.244734341 1.188365369 0.887093808
## 14 15 21 22 23 24
## 0.009712411 0.993948981 0.005440249 -0.065628105 1.064830251 -0.002991737
## 25 26 27 28 29 30
## 0.955845790 0.074961214 0.890133419 1.114425609 0.754167519 0.065626557
## 32 35 36 37 38 40
## -0.047761107 1.020064021 0.064410643 0.965943514 0.292298455 1.001168094
## 41 44 46 47 49 50
## 0.041306624 0.056064861 1.040992327 0.146564838 1.086282604 1.168204200
## 51 54 55 56 58 59
## 0.153615788 1.064386191 0.979424998 0.259027481 1.185494599 -0.057603641
## 61 62 64 65 68 69
## 0.120746544 0.093653868 0.150295192 1.070570142 0.779224249 0.032852206
## 70 71 72 74 75 76
## 0.567853123 0.956698524 0.305472156 1.056160323 1.090018916 0.199494875
## 77 78 79 81 82 83
## 1.011770939 -0.125928131 0.985338266 0.050344052 0.049982665 0.998373849
## 85 88 90 91 93 94
## 0.360792733 0.970361467 0.989382241 0.732098309 0.053087917 1.020159721
## 97 98 100 102 103 105
## 0.890492972 1.036569562 0.076429519 0.075236097 0.115463533 0.224294378
## 106 107 109 113 114 115
## 0.021949451 -0.060222639 0.949336566 0.124894507 1.140927733 0.156550671
## 117 118 119 121 122 123
## 0.664235334 0.947362851 0.209047386 -0.033521578 0.350568764 0.070470720
## 125 126 128 130 131 132
## 0.900653134 -0.021412628 0.101289031 0.188771373 0.911722940 1.099284626
## 133 138 139 140 141 142
## 0.720611073 1.101902322 0.303804065 0.528421193 0.143015919 0.903321798
## 143 145 146 147 148 149
## 0.985996326 0.326778102 1.144208312 0.998734969 0.833667703 0.964800619
## 151 152 153 154 155 156
## 0.495100598 0.353448027 1.095934808 0.105024928 0.172895087 -0.062319266
## 157 160 161 162 163 164
## 1.088127241 0.475381778 0.223215312 -0.035609478 -0.025986224 0.347743194
## 165 167 169 170 171 172
## 1.185144255 0.862420442 1.020506443 0.083811290 1.144748202 0.367484764
## 173 174 175 177 179 181
## 0.161023613 0.382011997 0.873326090 1.050474523 0.977685792 1.068458446
## 182 184 186 188 189 190
## 0.219306413 0.065975291 1.162452856 -0.046875618 0.323553680 1.051255395
## 192 193 195 196 197 201
## 0.971385149 1.034752825 -0.131368529 0.727905197 1.075937122 0.334525251
## 202 203 204 205 206 209
## -0.049245545 0.964899581 0.339504544 0.165663473 0.869069408 0.997032936
## 210 211 212 213 215 216
## 1.092240303 0.029945495 0.943525237 -0.076420874 0.033660073 0.534960008
## 217 218 219 221 222 226
## 0.972939451 1.031936805 0.856318493 -0.075247357 0.163469652 0.517580378
## 227 228 229 233 234 235
## 0.887160363 1.090066009 0.279575096 0.762226287 -0.077799416 0.882414145
## 238 239 240 244 245 246
## 0.568165646 0.637835296 0.021694891 0.038885829 0.300211400 0.159855661
## 247 248 249 250 251 252
## 1.094601544 0.134770595 1.067805137 0.555323389 0.111079458 0.945358414
## 254 256 257 258 259 261
## 0.773799647 0.096085270 -0.034128662 1.072510931 0.021054480 0.122764329
## 262 264 265 266 267 269
## 0.955026143 1.191479092 -0.097677311 0.784329383 0.580129505 0.784662194
## 270 271 273 274 275 277
## 0.093360761 0.980746932 -0.086816814 0.465635814 -0.020138949 -0.017094579
## 278 279 280 281 282 283
## 0.110468398 0.287219246 0.078123586 1.109798840 0.718765230 1.101031377
## 285 287 288 289 290 291
## 1.128292538 0.838503460 0.082265627 1.056088335 0.536491318 0.714793456
## 292 293 294 296 297 298
## 0.029508276 0.753628872 -0.020440883 0.015828316 0.050693220 0.108808806
## 299 301 305 306 307 309
## 0.056505821 -0.018278803 1.093360054 0.167892429 0.013460850 0.158336420
## 310 311 312 313 315 317
## 0.913916595 0.066139664 0.207123198 0.295556533 -0.008332428 0.185513769
## 319 320 321 322 323 324
## 0.208609458 1.035442903 0.928130183 0.148418443 0.171064714 0.132168789
## 326 327 329 330 333 334
## 0.816720967 0.850958936 0.156945740 0.575920578 0.960326436 -0.107216874
## 335 336 337 339 340 341
## 0.164817103 1.092721540 0.164908972 0.157983640 0.199265719 1.070901774
## 342 343 344 345 347 348
## 0.870582946 -0.079691660 -0.002508884 0.709428613 0.071569584 0.951412162
## 349 350 352 354 355 356
## 0.368609405 0.389069069 0.065110844 0.133855279 0.804597543 -0.066755487
## 357 358 361 362 363 364
## 1.060726922 1.126702557 0.977544453 0.941832991 0.121899642 0.603754258
## 365 366 367 368 371 372
## 0.186612900 0.757997710 0.224350759 -0.072987655 1.089042480 1.119660887
## 373 374 375 376 377 378
## 0.069613604 1.128442819 0.132304578 0.096868726 -0.086326946 0.813495805
## 379 380 381 385 386 388
## 0.730256234 -0.100966221 -0.004304640 0.790469582 0.054271567 1.079236394
## 389 390 391 392 395 397
## 0.203864696 0.780867165 -0.020545009 0.170306750 0.851997186 0.961200717
## 398 399 400 401 402 403
## 0.422701372 0.251885504 0.106130637 1.061111051 -0.067414849 1.103396552
## 405 408 409 411 412 413
## 1.072455141 0.868054684 0.376837307 0.718015713 0.099844935 0.139085156
## 415 416 417 418 419 420
## 0.034397087 1.153037033 0.715709140 0.097627810 0.172123786 0.528526429
## 421 422 424 426 427 428
## 1.058135183 0.068579362 0.842835714 0.925522127 0.772864897 -0.037608171
## 429 431 432 433 434 435
## 0.823435321 -0.069160096 -0.083333732 0.091720169 0.009457445 0.013951348
## 436 437 438 441 442 443
## 0.903540165 0.141026706 0.081293220 0.917571482 -0.016500145 1.082748583
## 444 445 446 447 448 449
## 1.052554293 1.042383343 -0.104249556 0.646490647 0.242979292 1.150809954
## 450 452 453 454 455 456
## 0.229594207 0.723643391 -0.059161976 0.100712309 0.259582773 0.143148247
## 457 459 460 463 464 465
## 1.100225174 0.807879805 -0.060053836 0.284058268 0.926342275 0.169626138
## 467 468 472 473 475 477
## 0.368510198 0.704391708 0.278000493 0.064338399 0.924840774 -0.044585161
## 479 481 482 483 484 485
## 1.081461233 0.312975011 0.211510135 0.165275912 0.902230539 1.117622449
## 486 487 488 489 491 493
## 0.774982274 0.363629239 0.107000206 1.141821949 1.099067980 0.419510859
## 495 496 497 498 499 500
## 0.727372254 0.028450552 -0.014033928 1.156308020 0.339775487 0.873113708
## 503 504 505 506 507 509
## 0.135171396 1.022544759 0.973904213 0.116919398 -0.017522659 0.524556637
## 511 513 514 517 519 520
## 0.629037962 -0.019690509 1.037683909 -0.136056900 1.021170463 1.091888545
## 521 524 525 526 527 530
## 1.062770202 0.815960751 -0.046431452 0.618570433 1.063027951 0.214735469
## 531 533 535 536 538 539
## 0.931274167 0.078612113 0.156616603 0.092174559 0.254160187 -0.085436732
## 541 543 544 545 547 548
## 0.063388381 0.218220479 0.904304581 0.109400993 0.068859708 -0.027133652
## 551 552 553 554 555 556
## 0.109094536 0.034391307 0.966873199 1.041771387 1.014812511 0.169273545
## 557 561 562 563 564 565
## 1.074387475 0.932955013 1.089857965 0.230853288 0.632709931 0.856987314
## 566 567 569 570 571 572
## 0.146847580 1.164245742 0.476555125 0.027720618 1.051106081 0.005214892
## 573 574 575 576 581 582
## 0.006311183 0.345726592 1.188132862 1.146653431 0.910756302 0.829755097
## 583 584 586 587 588 590
## 0.882300065 0.680095552 -0.039183513 -0.058365428 1.167983727 0.895544919
## 592 594 598 599 600 601
## 1.054845408 0.085789335 -0.020795203 0.112769242 0.753236825 0.556598346
## 602 605 606 608 609 610
## 1.121561800 0.963693769 0.843109977 0.087725059 0.904619403 0.260225578
## 611 612 613 617 619 620
## 0.963511184 0.965997603 -0.074970636 1.083368596 1.108922165 0.049246102
## 621 625 628 630 631 632
## 0.078565237 0.143314821 1.087099281 -0.048472574 0.122515513 -0.141104540
## 633 635 636 637 638 639
## 0.144211983 0.997894855 0.969497762 1.085321328 0.043965163 0.779021167
## 640 641 642 646 647 648
## 0.012685049 0.677675674 -0.010170281 0.902582254 1.171911592 0.902758354
## 650 651 652 653 655 656
## -0.077782974 0.291156824 -0.013179473 -0.087908551 -0.017605282 1.060627122
## 657 659 660 661 662 663
## 0.131333423 0.165497563 -0.011578029 0.935118538 0.381217934 1.152889519
## 664 665 666 667 668 669
## 0.753608118 0.058737158 0.452362822 -0.004883897 -0.049821139 0.217850775
## 670 671 672 673 674 675
## 0.818113394 0.120416877 0.658145537 -0.026595793 1.010226262 0.095518955
## 676 678 681 686 687 689
## -0.003619283 0.910244142 0.090098735 -0.020136807 -0.016149778 0.095200388
## 690 692 693 694 695 698
## -0.021139954 -0.113989044 0.560597798 0.791505663 0.299416484 0.008251566
## 700 701 702 705 708 709
## 0.026126331 0.316567501 0.864704421 0.170899875 0.064338923 0.854311763
## 711 712 714 715 717 718
## 1.181486295 0.173719257 1.132418420 0.056062132 1.048295927 0.096742511
## 719 720 721 723 724 725
## 0.520484522 0.918499604 -0.024219038 0.987963263 0.590680392 -0.067239658
## 727 728 732 734 736 737
## 0.086169726 -0.091378744 0.123152412 1.138418729 -0.055582934 -0.078567418
## 739 740 741 742 743 744
## 0.617007743 0.060159315 1.041258239 0.294894324 0.243521936 0.934785649
## 745 746 747 748 749 750
## 0.752888212 1.037508644 0.043366949 1.025668868 0.896432657 0.800109713
## 751 753 754 755 756 757
## 0.878839543 0.303558226 0.216673037 0.162060332 0.194568818 1.008168366
## 758 759 760 762 764 765
## 0.979217638 0.759345255 0.327150142 0.293319654 0.735487291 1.102179944
## 768 769 770 771 773 775
## 1.072446726 0.516399572 0.132714555 0.122057679 0.021361600 1.013965034
## 776 777 778 779 780 781
## 1.004513951 0.697531009 0.106327585 0.690904001 0.061031901 0.354506218
## 783 785 788 789 790 791
## -0.050769759 1.064906559 0.455841741 0.070594826 1.030616671 0.892703302
## 792 793 794 795 796 797
## 1.076245096 0.370967291 0.936601680 1.176252343 0.127224582 0.092526092
## 799 802 804 805 807 808
## 0.449103759 1.000011296 1.174345868 0.977149212 0.996248391 1.138484945
## 810 812 813 814 815 816
## 0.827311666 -0.125700392 0.220058992 0.177386009 -0.092457303 0.029267951
## 819 821 822 823 824 825
## 0.070928069 1.042494410 -0.066875501 -0.093752805 0.078141402 0.131879117
## 826 827 829 830 831 832
## 0.176763995 -0.064253476 0.872750564 1.086378648 0.933729623 1.033024713
## 834 835 837 838 839 841
## 1.022681102 0.123230132 1.175252348 1.066732385 1.089301379 0.806723350
## 842 843 845 846 848 849
## 1.029239752 0.101420960 -0.098526965 1.079256170 0.234294691 -0.085709138
## 851 854 855 857 858 859
## -0.129006398 -0.031593229 -0.067199240 -0.066178003 0.046607345 1.096337633
## 860 862 863 864 865 866
## -0.073655050 0.180051984 0.261639406 -0.001144183 0.105858510 1.016285409
## 868 871 872 873 874 875
## -0.019390825 0.714430397 -0.045339236 0.282015697 -0.049141784 0.388088428
## 876 877 878 879 883 884
## 0.828512196 0.948389543 0.367565425 -0.048371047 -0.001124544 1.009177378
## 886 887 888 889 890 891
## 1.157645088 1.131463854 1.084011274 0.057555607 1.010504779 -0.021787375
## 892 893 894 895 896 900
## 0.528421882 0.867230872 0.004498831 0.108927709 0.010511706 1.157402306
## 901 902 904 906 907 909
## 1.161768512 0.739621056 0.185393516 -0.072237917 0.827390906 0.931919710
## 910 911 912 913 914 915
## 0.002163779 0.916660097 0.957089413 1.059070211 -0.005553042 1.111614871
## 916 917 920 921 922 924
## 0.921822320 1.036056973 0.363859425 -0.096219269 0.988130343 1.107218253
## 925 926 927 929 930 931
## 0.832240535 1.158040529 0.155750756 0.186594422 0.614213234 -0.046283200
## 932 940 947 948 949 952
## 0.897773537 0.354104693 0.282881545 0.941596295 0.513957334 0.825799688
## 953 955 956 957 958 959
## 0.220323193 0.265908365 1.118731950 0.962690235 -0.001477796 -0.094187964
## 960 962 963 964 966 967
## 0.301142596 0.142487565 0.132723878 0.218151883 0.971315346 1.021016830
## 968 971 972 973 974 975
## 0.290344318 0.951151992 1.125522233 0.933997392 0.086456531 1.134036461
## 976 977 979 980 981 982
## 1.159887201 1.010674628 0.441669240 -0.055181207 0.693616852 0.002162546
## 984 986 990 991 992 993
## -0.112512468 0.772122647 -0.041055513 1.036725180 1.076985027 0.797242007
## 995 997 998 999
## 0.776515306 0.999829537 1.125825680 0.447814298
# Evaluating the Algorithm
error <- y_pred - data_num$Clicked.on.Ad
## Warning in y_pred - data_num$Clicked.on.Ad: longer object length is not a
## multiple of shorter object length
rmse <- sqrt(mean(error^2))
rmse
## [1] 0.6554185
The algorithm is a good fit
(ii) KNN
# Finding value of k to use
round(sqrt(1000), digits = 0)
## [1] 32
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(class)
# Fitting the model
knn_classifier <- knn(train_scale, test_scale, cl = train_set$Clicked.on.Ad, k = 32)
# Evaluating the algorithm
conf_matrix<-table(test_set$Clicked.on.Ad, knn_classifier)
confusionMatrix(conf_matrix)
## Confusion Matrix and Statistics
##
## knn_classifier
## 0 1
## 0 150 0
## 1 2 148
##
## Accuracy : 0.9933
## 95% CI : (0.9761, 0.9992)
## No Information Rate : 0.5067
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9867
##
## Mcnemar's Test P-Value : 0.4795
##
## Sensitivity : 0.9868
## Specificity : 1.0000
## Pos Pred Value : 1.0000
## Neg Pred Value : 0.9867
## Prevalence : 0.5067
## Detection Rate : 0.5000
## Detection Prevalence : 0.5000
## Balanced Accuracy : 0.9934
##
## 'Positive' Class : 0
##
_ The accuracy score is 99.3%, the model could be subject to overfitting.
(iii) Decision Trees
library(rpart)
library(e1071)
# Fitting the model
classifier = rpart(Clicked.on.Ad ~ Daily.Time.Spent.on.Site + Age + Area.Income + Daily.Internet.Usage, data = data_num)
# Plotting the tree
plot(classifier)
text(classifier)
(iii)SVM
# Splitting data into train and test sets
intrain <- createDataPartition(y = data_num$Clicked.on.Ad, p= 0.7, list = FALSE)
train_svm <- data_num[intrain,]
test_svm <- data_num[-intrain,]
# Previewing size of train and test sets
dim(train_svm)
## [1] 700 6
dim(test_svm)
## [1] 300 6
# Fitting the Model
svm_linear = svm(formula = Clicked.on.Ad ~ .,data = test_svm,type = 'C-classification',kernel = 'linear')
# Making Prediction
pred = predict(svm_linear, data = test_svm)
pred
## 1 3 4 5 10 13 17 18 19 20 30 36 38 39 41 45 51 52 54 56
## 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 0 1 0
## 58 62 63 69 72 74 78 81 82 84 85 88 89 92 94 102 111 115 116 118
## 1 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 1 0 0 1
## 120 124 125 133 137 138 139 140 141 142 149 156 157 158 173 179 181 184 188 190
## 1 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1
## 193 194 204 206 207 208 209 210 211 218 226 229 238 239 241 244 246 248 257 258
## 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 1 0 0 1
## 262 263 265 266 267 271 272 274 275 281 286 287 291 301 302 307 308 315 317 322
## 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 0 0
## 324 325 326 328 329 334 335 339 341 342 344 345 347 352 359 360 361 362 365 366
## 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1
## 371 385 388 393 398 399 405 411 417 424 429 434 438 439 443 446 448 453 455 461
## 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1
## 465 467 469 472 475 481 483 484 487 494 499 504 505 507 509 513 518 519 526 527
## 0 1 1 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1
## 528 530 532 535 538 540 546 547 552 554 558 564 575 579 584 588 592 593 596 605
## 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1
## 610 611 619 621 623 625 627 630 631 633 634 635 640 644 645 647 649 660 662 663
## 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1
## 667 674 683 689 690 691 692 696 706 716 719 722 728 733 734 738 739 741 742 747
## 0 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 1 0 0
## 748 754 759 760 765 766 767 775 776 778 780 781 794 797 798 801 802 803 809 816
## 1 0 1 0 1 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0
## 820 825 826 827 829 834 836 839 842 843 845 851 852 856 859 866 868 869 870 872
## 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1 0 0 0 0
## 878 879 885 890 895 897 902 909 915 916 920 924 929 934 935 937 938 939 940 944
## 0 0 0 1 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1
## 945 946 950 953 956 958 960 965 966 976 977 978 979 982 983 984 987 994 997 999
## 1 0 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1
## Levels: 0 1
# Evaluating Algorithm
conf_mat<-table(test_svm$Clicked.on.Ad, pred)
confusionMatrix(conf_mat)
## Confusion Matrix and Statistics
##
## pred
## 0 1
## 0 143 7
## 1 7 143
##
## Accuracy : 0.9533
## 95% CI : (0.9229, 0.9743)
## No Information Rate : 0.5
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.9067
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.9533
## Specificity : 0.9533
## Pos Pred Value : 0.9533
## Neg Pred Value : 0.9533
## Prevalence : 0.5000
## Detection Rate : 0.4767
## Detection Prevalence : 0.5000
## Balanced Accuracy : 0.9533
##
## 'Positive' Class : 0
##
The model has an accuracy score of 96.7%
(v) Naive Bayes
# Splitting data into train and test sets
indxTrain <- createDataPartition(y = data_num$Clicked.on.Ad,p = 0.7,list = FALSE)
train_naive <- data_num[indxTrain,]
test_naive <- data_num[-indxTrain,]
# Training the model
naive_model <- naiveBayes(Clicked.on.Ad ~ ., data = train_naive)
# Making Prediction
Predict <- predict(naive_model,newdata = test_naive)
Predict
## [1] 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0
## [38] 1 1 0 0 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1
## [75] 1 1 0 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0
## [112] 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 0 0 1
## [149] 1 1 1 1 0 1 0 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 1
## [186] 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0
## [223] 1 1 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0
## [260] 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1
## [297] 0 1 1 1
## Levels: 0 1
# Evaluating Algorithm
conf_mat2<- table(test_naive$Clicked.on.Ad, Predict)
confusionMatrix(conf_mat2)
## Confusion Matrix and Statistics
##
## Predict
## 0 1
## 0 144 6
## 1 6 144
##
## Accuracy : 0.96
## 95% CI : (0.9312, 0.9792)
## No Information Rate : 0.5
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.92
##
## Mcnemar's Test P-Value : 1
##
## Sensitivity : 0.96
## Specificity : 0.96
## Pos Pred Value : 0.96
## Neg Pred Value : 0.96
## Prevalence : 0.50
## Detection Rate : 0.48
## Detection Prevalence : 0.50
## Balanced Accuracy : 0.96
##
## 'Positive' Class : 0
##
- The best model to use for prediction would be the Naive Bayes