# install.packages("tidyverse")
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.7 v dplyr 1.0.9
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.3
## Warning: package 'tibble' was built under R version 4.1.3
## Warning: package 'tidyr' was built under R version 4.1.3
## Warning: package 'readr' was built under R version 4.1.3
## Warning: package 'purrr' was built under R version 4.1.3
## Warning: package 'dplyr' was built under R version 4.1.3
## Warning: package 'stringr' was built under R version 4.1.3
## Warning: package 'forcats' was built under R version 4.1.3
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
airquality <- airquality
str(airquality)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 5 ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
airquality$Month[airquality$Month == 5]<- "May"
airquality$Month[airquality$Month == 6]<- "June"
airquality$Month[airquality$Month == 7]<- "July"
airquality$Month[airquality$Month == 8]<- "August"
airquality$Month[airquality$Month == 9]<- "September"
str(airquality)
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : chr "May" "May" "May" "May" ...
## $ Day : int 1 2 3 4 5 6 7 8 9 10 ...
airquality$Month<-factor(airquality$Month, levels=c("May", "June","July", "August", "September"))
Plot 1: Create a histogram categorized by Month with qplot
p1 <- qplot(data = airquality,Temp,fill = Month,geom = "histogram", bins = 20)
p1

Plot 2: Make a histogram using ggplot
p2 <- airquality %>%
ggplot(aes(x=Temp, fill=Month)) +
geom_histogram(position="identity", alpha=0.8, binwidth = 5, color = "black")+
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p2

Plot 3: Create side-by-side boxplots categorized by Month
p3 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Temperatures") +
xlab("Monthly Temperatures") +
ylab("Frequency") +
geom_boxplot() +
scale_fill_discrete(name = "Month", labels = c("May", "June","July", "August", "September"))
p3

Plot 4: Make the same side-by-side boxplots, but in grey-scale
p4 <- airquality %>%
ggplot(aes(Month, Temp, fill = Month)) +
ggtitle("Monthly Temperature Variations") +
xlab("Monthly Temperatures") +
ylab("Frequency") +
geom_boxplot()+
scale_fill_grey(name = "Month", labels = c("May", "June","July", "August", "September"))
p4

Plot 5: Scatterplot
ggplot(data = airquality) +
ggtitle("Monthly Temperature/Wind Variations") +
geom_point(mapping = aes(x = Temp, y = Wind, color = Month))

The scatterplot above depicts the correlation between the
temperature and the wind speed measures for May through September. The
scatterplot shows a negative association between wind and temperature.
It also shows that May had the highest wind speed, while August had the
lowest.