Licença

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

License: CC BY-SA 4.0

Citação

Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Econometria: Exercício soja (apostila) em Python. Campo Grande-MS,Brasil: RStudio/Rpubs, 2022. Disponível em http://rpubs.com/amrofi/exercicio_soja_apostila_python.

1 Introdução

Este exercício acompanha o publicado em Figueiredo (2020), mas agora executado em Python no Rmarkdown que pode ser baixado no alto do post. Os dados foram inicialmente carregados do Excel e depois incorporados no script abaixo.

import numpy as np
import pandas as pd
# Carrega os dados

# precisei instalar openpyxl (para xlsx) e xlrd (para xls)
df = pd.read_excel (r'soja_apostila.xlsx', sheet_name='dados')
#data_as_dict= print(df.to_dict())
#df = pd.DataFrame.from_dict(data_as_dict)
import pandas as pd
dados = pd.DataFrame.from_dict(
  {'OBS': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 12, 12: 13, 13: 14, 14: 15, 15: 16, 16: 17, 17: 18, 18: 19, 19: 20, 20: 21, 21: 22, 22: 23, 23: 24, 24: 25, 25: 26, 26: 27, 27: 28, 28: 29, 29: 30, 30: 31, 31: 32, 32: 33, 33: 34, 34: 35, 35: 36, 36: 37, 37: 38, 38: 39, 39: 40, 40: 41, 41: 42, 42: 43, 43: 44, 44: 45, 45: 46, 46: 47, 47: 48, 48: 49, 49: 50, 50: 51, 51: 52, 52: 53, 53: 54, 54: 55, 55: 56, 56: 57, 57: 58, 58: 59, 59: 60, 60: 61, 61: 62, 62: 63, 63: 64, 64: 65, 65: 66, 66: 67, 67: 68, 68: 69, 69: 70, 70: 71, 71: 72, 72: 73, 73: 74, 74: 75, 75: 76, 76: 77, 77: 78, 78: 79, 79: 80, 80: 81, 81: 82, 82: 83, 83: 84, 84: 85, 85: 86, 86: 87, 87: 88, 88: 89, 89: 90, 90: 91, 91: 92, 92: 93, 93: 94, 94: 95, 95: 96, 96: 97, 97: 98, 98: 99, 99: 100, 100: 101, 101: 102, 102: 103, 103: 104, 104: 105, 105: 106, 106: 107, 107: 108, 108: 109, 109: 110, 110: 111, 111: 112, 112: 113, 113: 114, 114: 115, 115: 116, 116: 117}, 'QSOJA': {0: 436.631327347, 1: 373.648319403, 2: 394.422208122, 3: 343.569529223, 4: 303.766149519, 5: 301.164159253, 6: 288.948162961, 7: 330.653425923, 8: 312.790481897, 9: 326.337437514, 10: 393.924244131, 11: 472.095484821, 12: 506.519816219, 13: 351.622349614, 14: 381.683735178, 15: 383.16244294, 16: 411.039886175, 17: 393.721292241, 18: 434.570723074, 19: 433.61603289, 20: 397.521061235, 21: 392.667303139, 22: 388.161060061, 23: 370.962499467, 24: 392.989989558, 25: 364.608287145, 26: 346.432408617, 27: 418.249947335, 28: 406.403616915, 29: 335.565654517, 30: 372.389277147, 31: 355.138034335, 32: 350.368666514, 33: 333.22912698, 34: 331.404160354, 35: 350.215587437, 36: 347.930917294, 37: 429.353837601, 38: 312.648633868, 39: 320.1290397, 40: 367.600375264, 41: 370.58115319, 42: 318.293875369, 43: 360.716491231, 44: 344.127888634, 45: 348.460445231, 46: 339.909909323, 47: 355.115806958, 48: 333.991242698, 49: 324.352196839, 50: 326.362748629, 51: 337.522873509, 52: 326.439134587, 53: 315.883680773, 54: 309.389262881, 55: 309.992167966, 56: 294.858595183, 57: 319.126938705, 58: 321.075126328, 59: 324.617110436, 60: 326.498169984, 61: 323.024096765, 62: 306.607962724, 63: 316.685380598, 64: 306.63234033, 65: 347.051171678, 66: 281.018277888, 67: 306.438241825, 68: 310.158071775, 69: 308.554712739, 70: 317.988817729, 71: 309.3024648, 72: 301.907326808, 73: 293.695986672, 74: 286.246007121, 75: 284.741951642, 76: 281.541824884, 77: 276.076484065, 78: 225.250102468, 79: 221.579142339, 80: 222.819046328, 81: 210.465091286, 82: 204.579726173, 83: 210.208100729, 84: 214.619137203, 85: 249.68373735, 86: 234.056997721, 87: 237.782743552, 88: 247.783594823, 89: 243.326935015, 90: 250.517759798, 91: 245.477283956, 92: 242.547637962, 93: 235.139515392, 94: 246.077631412, 95: 300.660379261, 96: 311.547314244, 97: 311.592498254, 98: 311.661546245, 99: 313.521069724, 100: 324.623216411, 101: 325.219601572, 102: 316.051963666, 103: 315.23510561, 104: 313.039404973, 105: 311.256344161, 106: 314.759829619, 107: 319.859862035, 108: 315.86486682, 109: 313.067146865, 110: 305.235250016, 111: 299.911393983, 112: 292.819273066, 113: 288.374750217, 114: 282.574142328, 115: 280.040196223, 116: 272.093598783}, 'FERTILIZANTE': {0: 19.0271541214, 1: 17.896131535, 2: 16.7816326404, 3: 13.4907436954, 4: 9.8792199643, 5: 9.47578570764, 6: 11.3642792008, 7: 15.1279345194, 8: 15.3328667597, 9: 12.851502126, 10: 11.5137639555, 11: 12.855099231, 12: 13.0130463524, 13: 13.4551480743, 14: 14.3478259384, 15: 13.4461834272, 16: 12.8505836532, 17: 11.878680085, 18: 8.97428388969, 19: 11.2853667097, 20: 10.3459526645, 21: 10.1678109845, 22: 12.599515057, 23: 18.0635955859, 24: 22.5905514861, 25: 27.0789975599, 26: 25.8933999151, 27: 24.670302157, 28: 22.3482879799, 29: 23.0661021802, 30: 23.46202603, 31: 23.3742807993, 32: 23.6293106114, 33: 21.5085651347, 34: 20.4244350802, 35: 18.8640383209, 36: 18.2649424041, 37: 16.1258445984, 38: 15.3872613296, 39: 15.7475620647, 40: 14.8983557849, 41: 18.5713738614, 42: 19.782502768, 43: 19.9334418708, 44: 20.8217736318, 45: 20.2664704198, 46: 18.7039332243, 47: 16.9397047639, 48: 15.2224405941, 49: 15.3900606317, 50: 15.4866979181, 51: 14.1888364722, 52: 17.5057959027, 53: 18.4499760981, 54: 18.0443380567, 55: 18.7653974258, 56: 17.733992169, 57: 14.4708212634, 58: 19.1906127545, 59: 23.6107568782, 60: 22.4809389477, 61: 19.9623501966, 62: 24.292193006, 63: 23.7774100871, 64: 20.902854945, 65: 17.6135324226, 66: 18.2422805406, 67: 18.4963907183, 68: 20.1887054098, 69: 17.2164566133, 70: 18.2228548842, 71: 17.63412, 72: 17.3651340732, 73: 21.165752859, 74: 20.6546570465, 75: 20.5382250175, 76: 20.2625821575, 77: 20.0316705895, 78: 19.6747891284, 79: 19.2320746157, 80: 19.1556951795, 81: 18.6659751037, 82: 18.2573530021, 83: 18.0250472242, 84: 18.2220357618, 85: 18.1808546614, 86: 17.9427350427, 87: 17.8936494922, 88: 17.5782913467, 89: 17.4452921577, 90: 17.4075434149, 91: 17.287132673, 92: 17.0010026609, 93: 16.7956796708, 94: 16.6141444443, 95: 16.6135183413, 96: 16.5922588804, 97: 22.0744924554, 98: 22.0123280182, 99: 21.8207871467, 100: 21.4818658909, 101: 21.3918043526, 102: 21.1455500396, 103: 21.0219803014, 104: 20.9587175263, 105: 20.8135574015, 106: 22.8749876176, 107: 22.8850270408, 108: 22.7508743781, 109: 22.6733292656, 110: 22.4866071739, 111: 22.3322073706, 112: 22.1375395445, 113: 22.1331443789, 114: 22.081593902, 115: 22.1113459316, 116: 22.0611011027}, 'TRATOR': {0: 3.1712177231, 1: 2.9130726375, 2: 2.79693877341, 3: 2.89345709284, 4: 3.09884379577, 5: 3.55341964037, 6: 3.9774977203, 7: 4.86255038122, 8: 5.27067294863, 9: 5.29179499304, 10: 4.38619579258, 11: 3.61549665871, 12: 3.18096688613, 13: 3.31203644906, 14: 3.58695648459, 15: 3.36154585679, 16: 2.79360514201, 17: 3.25443289999, 18: 2.69228516691, 19: 2.90195143963, 20: 2.95598647557, 21: 2.98255788878, 22: 3.23987530037, 23: 3.18769333868, 24: 3.80472446082, 25: 4.16599962459, 26: 4.25644930111, 27: 3.65485957882, 28: 3.42843054238, 29: 3.56476124603, 30: 4.10585455524, 31: 4.23376550096, 32: 4.21951975203, 33: 4.45534563505, 34: 4.22104991658, 35: 3.77280766418, 36: 4.05887608981, 37: 4.35397804157, 38: 3.71858815465, 39: 3.9194002239, 40: 3.86253116707, 41: 3.4489694314, 42: 3.40698658782, 43: 3.10590838452, 44: 3.40719932157, 45: 3.89739815766, 46: 3.58705568686, 47: 3.06139242721, 48: 2.56377946849, 49: 3.27038788423, 50: 3.61356284755, 51: 2.9212310384, 52: 3.72808616447, 53: 4.09999468846, 54: 4.00985290148, 55: 3.12756623763, 56: 3.66502504826, 57: 3.61770531584, 58: 2.74151610779, 59: 3.07966394064, 60: 2.24809389477, 61: 2.21803891073, 62: 3.23895906746, 63: 3.26939388698, 64: 2.71737114285, 65: 3.52270648453, 66: 2.63499607808, 67: 2.84559857204, 68: 3.02830581147, 69: 2.75463305812, 70: 3.79642810087, 71: 3.673775, 72: 4.3412835183, 73: 4.23315057181, 74: 5.50790854573, 75: 5.47686000466, 76: 5.40335524199, 77: 6.67722352984, 78: 6.5582630428, 79: 6.41069153856, 80: 6.3852317265, 81: 6.22199170124, 82: 6.08578433403, 83: 6.00834907473, 84: 6.07401192061, 85: 6.06028488713, 86: 5.98091168091, 87: 5.96454983075, 88: 5.85943044889, 89: 5.8150973859, 90: 5.80251447164, 91: 5.76237755766, 92: 5.66700088697, 93: 5.59855989028, 94: 5.53804814809, 95: 5.53783944709, 96: 5.53075296013, 97: 5.51862311384, 98: 5.50308200454, 99: 5.45519678667, 100: 5.37046647273, 101: 5.34795108814, 102: 5.28638750989, 103: 5.25549507535, 104: 5.23967938158, 105: 5.20338935039, 106: 5.19886082219, 107: 5.20114250927, 108: 5.17065326775, 109: 5.15302937855, 110: 5.11059253952, 111: 5.07550167513, 112: 6.03751078486, 113: 6.03631210335, 114: 6.02225288236, 115: 6.03036707224, 116: 6.01666393711}, 'MO': {0: 0.0680761131536, 1: 0.0680761131536, 2: 0.0680761131536, 3: 0.0680761131536, 4: 0.0715237353179, 5: 0.0833559863149, 6: 0.0985723372523, 7: 0.111410334113, 8: 0.114487135409, 9: 0.102686021888, 10: 0.121305727388, 11: 0.123194700963, 12: 0.113382190903, 13: 0.0988435877764, 14: 0.0807663035114, 15: 0.0622686351567, 16: 0.083800394246, 17: 0.0765243736067, 18: 0.0574877668834, 19: 0.0653655605136, 20: 0.0725099376921, 21: 0.0780548956575, 22: 0.0806568955951, 23: 0.0816669323964, 24: 0.0822771664653, 25: 0.0801052294483, 26: 0.0750435658726, 27: 0.0703103611476, 28: 0.0796030780377, 29: 0.0830484524405, 30: 0.093584156327, 31: 0.100913962297, 32: 0.108669511694, 33: 0.111606408158, 34: 0.118828985067, 35: 0.120133794043, 36: 0.118234214897, 37: 0.105740298613, 38: 0.093457488034, 39: 0.0841934657141, 40: 0.0798233440708, 41: 0.0747407520408, 42: 0.0708495225001, 43: 0.0672990598108, 44: 0.0611103807825, 45: 0.055394759321, 46: 0.0660366632049, 47: 0.0689438046948, 48: 0.0669589093824, 49: 0.0638618759693, 50: 0.0596771157157, 51: 0.0549263770463, 52: 0.073413760912, 53: 0.0823331322263, 54: 0.0834334103063, 55: 0.079906745817, 56: 0.0716246518416, 57: 0.0633701381158, 58: 0.0934971222594, 59: 0.104075531949, 60: 0.100833255886, 61: 0.0930097649901, 62: 0.0813417334974, 63: 0.0695736926403, 64: 0.21049581374, 65: 0.261260874072, 66: 0.258725366517, 67: 0.236599269382, 68: 0.206871841743, 69: 0.167746823366, 70: 0.126327870706, 71: 0.114329213918, 72: 0.104788717578, 73: 0.0945762804116, 74: 0.0848737411962, 75: 0.0770183438155, 76: 0.0741085180759, 77: 0.071409196083, 78: 0.0683152400292, 79: 0.0649972892104, 80: 0.0629654795252, 81: 0.0596274204703, 82: 0.0578149511733, 83: 0.0565786204537, 84: 0.0566907779257, 85: 0.0560576352059, 86: 0.0548250237417, 87: 0.0541779942959, 88: 0.0539450091897, 89: 0.0542532433056, 90: 0.0548506857575, 91: 0.0551811677564, 92: 0.0549659731863, 93: 0.0549918545222, 94: 0.0547197615699, 95: 0.0550399709491, 96: 0.0552913982385, 97: 0.0554912883605, 98: 0.0556552669895, 99: 0.0554884433151, 100: 0.0541104333052, 101: 0.0533695807757, 102: 0.0522471298894, 103: 0.0514366981903, 104: 0.0507783150735, 105: 0.049926520817, 106: 0.049902565317, 107: 0.0499439709453, 108: 0.0496705879533, 109: 0.0495206123279, 110: 0.0491319590269, 111: 0.0488136373605, 112: 0.0483839405954, 113: 0.0483701426115, 114: 0.0482533012199, 115: 0.0483141284115, 116: 0.0482001633184}})
dados
     OBS       QSOJA  FERTILIZANTE    TRATOR        MO
0      1  436.631327     19.027154  3.171218  0.068076
1      2  373.648319     17.896132  2.913073  0.068076
2      3  394.422208     16.781633  2.796939  0.068076
3      4  343.569529     13.490744  2.893457  0.068076
4      5  303.766150      9.879220  3.098844  0.071524
..   ...         ...           ...       ...       ...
112  113  292.819273     22.137540  6.037511  0.048384
113  114  288.374750     22.133144  6.036312  0.048370
114  115  282.574142     22.081594  6.022253  0.048253
115  116  280.040196     22.111346  6.030367  0.048314
116  117  272.093599     22.061101  6.016664  0.048200

[117 rows x 5 columns]
dados.info() # Ve a estrutura dos dados
<class 'pandas.core.frame.DataFrame'>
Int64Index: 117 entries, 0 to 116
Data columns (total 5 columns):
 #   Column        Non-Null Count  Dtype  
---  ------        --------------  -----  
 0   OBS           117 non-null    int64  
 1   QSOJA         117 non-null    float64
 2   FERTILIZANTE  117 non-null    float64
 3   TRATOR        117 non-null    float64
 4   MO            117 non-null    float64
dtypes: float64(4), int64(1)
memory usage: 5.5 KB

2 Regressão inicial

import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import statsmodels.formula.api as sm
eq1 = sm.ols(formula="QSOJA~FERTILIZANTE+TRATOR+MO", data=dados).fit()
print(eq1.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  QSOJA   R-squared:                       0.465
Model:                            OLS   Adj. R-squared:                  0.451
Method:                 Least Squares   F-statistic:                     32.75
Date:                Sat, 04 Jun 2022   Prob (F-statistic):           2.61e-15
Time:                        15:48:35   Log-Likelihood:                -599.90
No. Observations:                 117   AIC:                             1208.
Df Residuals:                     113   BIC:                             1219.
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
================================================================================
                   coef    std err          t      P>|t|      [0.025      0.975]
--------------------------------------------------------------------------------
Intercept      494.9657     25.572     19.356      0.000     444.302     545.629
FERTILIZANTE    -0.5535      1.059     -0.523      0.602      -2.651       1.544
TRATOR         -33.6899      3.741     -9.006      0.000     -41.102     -26.278
MO            -209.1407    107.893     -1.938      0.055    -422.896       4.614
==============================================================================
Omnibus:                       14.471   Durbin-Watson:                   0.674
Prob(Omnibus):                  0.001   Jarque-Bera (JB):               16.751
Skew:                           0.745   Prob(JB):                     0.000230
Kurtosis:                       4.103   Cond. No.                         548.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Referências

FIGUEIREDO, Adriano Marcos Rodrigues. Econometria: exercicio_soja_apostila. Campo Grande-MS,Brasil: RStudio/Rpubs, 2020. Disponível em http://rpubs.com/amrofi/exercicio_soja_apostila.

LS0tDQp0aXRsZTogJ0Vjb25vbWV0cmlhOiBFeGVyY8OtY2lvIHNvamEgKGFwb3N0aWxhKSBlbSBQeXRob24nDQphdXRob3I6ICJBZHJpYW5vIE1hcmNvcyBSb2RyaWd1ZXMgRmlndWVpcmVkbywgKmUtbWFpbDogYWRyaWFuby5maWd1ZWlyZWRvQHVmbXMuYnIqIg0KYWJzdHJhY3Q6IA0KICBUaGlzIGlzIGFuIHVuZGVyZ3JhZCBzdHVkZW50IGxldmVsIGV4ZXJjaXNlIGZvciBjbGFzcyB1c2UuIFdlIGFuYWx5c2Ugc295IGRhdGEsIDExNyBvYnNlcnZhdGlvbnMuIA0KZGF0ZTogImByIGZvcm1hdChTeXMuRGF0ZSgpLCAnJWQgJUIgJVknKWAiDQpvdXRwdXQ6DQogIGh0bWxfZG9jdW1lbnQ6DQogICAgY29kZV9kb3dubG9hZDogeWVzDQogICAgdGhlbWU6IGRlZmF1bHQNCiAgICBudW1iZXJfc2VjdGlvbnM6IHllcw0KICAgIHRvYzogeWVzDQogICAgdG9jX2Zsb2F0OiB5ZXMNCiAgICBkZl9wcmludDogcGFnZWQNCiAgICBmaWdfY2FwdGlvbjogeWVzDQogIHBkZl9kb2N1bWVudDoNCiAgICB0b2M6IHllcw0KICB3b3JkX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQotLS0NCg0KIyBMaWNlbsOnYSB7I0xpY2Vuw6dhIC51bm51bWJlcmVkfQ0KDQpUaGlzIHdvcmsgaXMgbGljZW5zZWQgdW5kZXIgdGhlIENyZWF0aXZlIENvbW1vbnMgQXR0cmlidXRpb24tU2hhcmVBbGlrZSA0LjAgSW50ZXJuYXRpb25hbCBMaWNlbnNlLiBUbyB2aWV3IGEgY29weSBvZiB0aGlzIGxpY2Vuc2UsIHZpc2l0IDxodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1zYS80LjAvPiBvciBzZW5kIGEgbGV0dGVyIHRvIENyZWF0aXZlIENvbW1vbnMsIFBPIEJveCAxODY2LCBNb3VudGFpbiBWaWV3LCBDQSA5NDA0MiwgVVNBLg0KDQohW0xpY2Vuc2U6IENDIEJZLVNBIDQuMF0oaHR0cHM6Ly9taXJyb3JzLmNyZWF0aXZlY29tbW9ucy5vcmcvcHJlc3NraXQvYnV0dG9ucy84OHgzMS9wbmcvYnktc2EucG5nKXt3aWR0aD0iMjUlIn0NCg0KIyBDaXRhw6fDo28geyNDaXRhw6fDo28gLnVubnVtYmVyZWR9DQoNClN1Z2VzdMOjbyBkZSBjaXRhw6fDo286IEZJR1VFSVJFRE8sIEFkcmlhbm8gTWFyY29zIFJvZHJpZ3Vlcy4gRWNvbm9tZXRyaWE6IEV4ZXJjw61jaW8gc29qYSAoYXBvc3RpbGEpIGVtIFB5dGhvbi4gQ2FtcG8gR3JhbmRlLU1TLEJyYXNpbDogUlN0dWRpby9ScHVicywgMjAyMi4gRGlzcG9uw612ZWwgZW0gPGh0dHA6Ly9ycHVicy5jb20vYW1yb2ZpL2V4ZXJjaWNpb19zb2phX2Fwb3N0aWxhX3B5dGhvbj4uDQoNCmBgYHtyIGtuaXRyX2luaXQsIGVjaG89RkFMU0UsIGNhY2hlPUZBTFNFfQ0KbGlicmFyeShrbml0cikNCmxpYnJhcnkocm1hcmtkb3duKQ0KbGlicmFyeShybWRmb3JtYXRzKQ0KDQojIyBHbG9iYWwgb3B0aW9ucw0Kb3B0aW9ucyhtYXgucHJpbnQ9IjEwMCIpDQpvcHRzX2NodW5rJHNldChlY2hvPVRSVUUsDQoJICAgICAgICAgICAgIGNhY2hlPVRSVUUsDQogICAgICAgICAgICAgICBwcm9tcHQ9RkFMU0UsDQogICAgICAgICAgICAgICB0aWR5PVRSVUUsDQogICAgICAgICAgICAgICBjb21tZW50PU5BLA0KICAgICAgICAgICAgICAgbWVzc2FnZT1GQUxTRSwNCiAgICAgICAgICAgICAgIHdhcm5pbmc9RkFMU0UpDQpvcHRzX2tuaXQkc2V0KHdpZHRoPTEwMCkNCmBgYA0KDQojIEludHJvZHXDp8Ojbw0KDQpFc3RlIGV4ZXJjw61jaW8gYWNvbXBhbmhhIG8gcHVibGljYWRvIGVtIEZpZ3VlaXJlZG8gKDIwMjApLCBtYXMgYWdvcmEgZXhlY3V0YWRvIGVtIFB5dGhvbiBubyBSbWFya2Rvd24gcXVlIHBvZGUgc2VyIGJhaXhhZG8gbm8gYWx0byBkbyBwb3N0LiBPcyBkYWRvcyBmb3JhbSBpbmljaWFsbWVudGUgY2FycmVnYWRvcyBkbyBFeGNlbCBlIGRlcG9pcyBpbmNvcnBvcmFkb3Mgbm8gc2NyaXB0IGFiYWl4by4NCg0KYGBge3B5dGhvbiBkYWRvcywgZXZhbD1GfQ0KaW1wb3J0IG51bXB5IGFzIG5wDQppbXBvcnQgcGFuZGFzIGFzIHBkDQojIENhcnJlZ2Egb3MgZGFkb3MNCg0KIyBwcmVjaXNlaSBpbnN0YWxhciBvcGVucHl4bCAocGFyYSB4bHN4KSBlIHhscmQgKHBhcmEgeGxzKQ0KZGYgPSBwZC5yZWFkX2V4Y2VsIChyJ3NvamFfYXBvc3RpbGEueGxzeCcsIHNoZWV0X25hbWU9J2RhZG9zJykNCmBgYA0KDQpgYGB7cHl0aG9ufQ0KI2RhdGFfYXNfZGljdD0gcHJpbnQoZGYudG9fZGljdCgpKQ0KI2RmID0gcGQuRGF0YUZyYW1lLmZyb21fZGljdChkYXRhX2FzX2RpY3QpDQppbXBvcnQgcGFuZGFzIGFzIHBkDQpkYWRvcyA9IHBkLkRhdGFGcmFtZS5mcm9tX2RpY3QoDQogIHsnT0JTJzogezA6IDEsIDE6IDIsIDI6IDMsIDM6IDQsIDQ6IDUsIDU6IDYsIDY6IDcsIDc6IDgsIDg6IDksIDk6IDEwLCAxMDogMTEsIDExOiAxMiwgMTI6IDEzLCAxMzogMTQsIDE0OiAxNSwgMTU6IDE2LCAxNjogMTcsIDE3OiAxOCwgMTg6IDE5LCAxOTogMjAsIDIwOiAyMSwgMjE6IDIyLCAyMjogMjMsIDIzOiAyNCwgMjQ6IDI1LCAyNTogMjYsIDI2OiAyNywgMjc6IDI4LCAyODogMjksIDI5OiAzMCwgMzA6IDMxLCAzMTogMzIsIDMyOiAzMywgMzM6IDM0LCAzNDogMzUsIDM1OiAzNiwgMzY6IDM3LCAzNzogMzgsIDM4OiAzOSwgMzk6IDQwLCA0MDogNDEsIDQxOiA0MiwgNDI6IDQzLCA0MzogNDQsIDQ0OiA0NSwgNDU6IDQ2LCA0NjogNDcsIDQ3OiA0OCwgNDg6IDQ5LCA0OTogNTAsIDUwOiA1MSwgNTE6IDUyLCA1MjogNTMsIDUzOiA1NCwgNTQ6IDU1LCA1NTogNTYsIDU2OiA1NywgNTc6IDU4LCA1ODogNTksIDU5OiA2MCwgNjA6IDYxLCA2MTogNjIsIDYyOiA2MywgNjM6IDY0LCA2NDogNjUsIDY1OiA2NiwgNjY6IDY3LCA2NzogNjgsIDY4OiA2OSwgNjk6IDcwLCA3MDogNzEsIDcxOiA3MiwgNzI6IDczLCA3MzogNzQsIDc0OiA3NSwgNzU6IDc2LCA3NjogNzcsIDc3OiA3OCwgNzg6IDc5LCA3OTogODAsIDgwOiA4MSwgODE6IDgyLCA4MjogODMsIDgzOiA4NCwgODQ6IDg1LCA4NTogODYsIDg2OiA4NywgODc6IDg4LCA4ODogODksIDg5OiA5MCwgOTA6IDkxLCA5MTogOTIsIDkyOiA5MywgOTM6IDk0LCA5NDogOTUsIDk1OiA5NiwgOTY6IDk3LCA5NzogOTgsIDk4OiA5OSwgOTk6IDEwMCwgMTAwOiAxMDEsIDEwMTogMTAyLCAxMDI6IDEwMywgMTAzOiAxMDQsIDEwNDogMTA1LCAxMDU6IDEwNiwgMTA2OiAxMDcsIDEwNzogMTA4LCAxMDg6IDEwOSwgMTA5OiAxMTAsIDExMDogMTExLCAxMTE6IDExMiwgMTEyOiAxMTMsIDExMzogMTE0LCAxMTQ6IDExNSwgMTE1OiAxMTYsIDExNjogMTE3fSwgJ1FTT0pBJzogezA6IDQzNi42MzEzMjczNDcsIDE6IDM3My42NDgzMTk0MDMsIDI6IDM5NC40MjIyMDgxMjIsIDM6IDM0My41Njk1MjkyMjMsIDQ6IDMwMy43NjYxNDk1MTksIDU6IDMwMS4xNjQxNTkyNTMsIDY6IDI4OC45NDgxNjI5NjEsIDc6IDMzMC42NTM0MjU5MjMsIDg6IDMxMi43OTA0ODE4OTcsIDk6IDMyNi4zMzc0Mzc1MTQsIDEwOiAzOTMuOTI0MjQ0MTMxLCAxMTogNDcyLjA5NTQ4NDgyMSwgMTI6IDUwNi41MTk4MTYyMTksIDEzOiAzNTEuNjIyMzQ5NjE0LCAxNDogMzgxLjY4MzczNTE3OCwgMTU6IDM4My4xNjI0NDI5NCwgMTY6IDQxMS4wMzk4ODYxNzUsIDE3OiAzOTMuNzIxMjkyMjQxLCAxODogNDM0LjU3MDcyMzA3NCwgMTk6IDQzMy42MTYwMzI4OSwgMjA6IDM5Ny41MjEwNjEyMzUsIDIxOiAzOTIuNjY3MzAzMTM5LCAyMjogMzg4LjE2MTA2MDA2MSwgMjM6IDM3MC45NjI0OTk0NjcsIDI0OiAzOTIuOTg5OTg5NTU4LCAyNTogMzY0LjYwODI4NzE0NSwgMjY6IDM0Ni40MzI0MDg2MTcsIDI3OiA0MTguMjQ5OTQ3MzM1LCAyODogNDA2LjQwMzYxNjkxNSwgMjk6IDMzNS41NjU2NTQ1MTcsIDMwOiAzNzIuMzg5Mjc3MTQ3LCAzMTogMzU1LjEzODAzNDMzNSwgMzI6IDM1MC4zNjg2NjY1MTQsIDMzOiAzMzMuMjI5MTI2OTgsIDM0OiAzMzEuNDA0MTYwMzU0LCAzNTogMzUwLjIxNTU4NzQzNywgMzY6IDM0Ny45MzA5MTcyOTQsIDM3OiA0MjkuMzUzODM3NjAxLCAzODogMzEyLjY0ODYzMzg2OCwgMzk6IDMyMC4xMjkwMzk3LCA0MDogMzY3LjYwMDM3NTI2NCwgNDE6IDM3MC41ODExNTMxOSwgNDI6IDMxOC4yOTM4NzUzNjksIDQzOiAzNjAuNzE2NDkxMjMxLCA0NDogMzQ0LjEyNzg4ODYzNCwgNDU6IDM0OC40NjA0NDUyMzEsIDQ2OiAzMzkuOTA5OTA5MzIzLCA0NzogMzU1LjExNTgwNjk1OCwgNDg6IDMzMy45OTEyNDI2OTgsIDQ5OiAzMjQuMzUyMTk2ODM5LCA1MDogMzI2LjM2Mjc0ODYyOSwgNTE6IDMzNy41MjI4NzM1MDksIDUyOiAzMjYuNDM5MTM0NTg3LCA1MzogMzE1Ljg4MzY4MDc3MywgNTQ6IDMwOS4zODkyNjI4ODEsIDU1OiAzMDkuOTkyMTY3OTY2LCA1NjogMjk0Ljg1ODU5NTE4MywgNTc6IDMxOS4xMjY5Mzg3MDUsIDU4OiAzMjEuMDc1MTI2MzI4LCA1OTogMzI0LjYxNzExMDQzNiwgNjA6IDMyNi40OTgxNjk5ODQsIDYxOiAzMjMuMDI0MDk2NzY1LCA2MjogMzA2LjYwNzk2MjcyNCwgNjM6IDMxNi42ODUzODA1OTgsIDY0OiAzMDYuNjMyMzQwMzMsIDY1OiAzNDcuMDUxMTcxNjc4LCA2NjogMjgxLjAxODI3Nzg4OCwgNjc6IDMwNi40MzgyNDE4MjUsIDY4OiAzMTAuMTU4MDcxNzc1LCA2OTogMzA4LjU1NDcxMjczOSwgNzA6IDMxNy45ODg4MTc3MjksIDcxOiAzMDkuMzAyNDY0OCwgNzI6IDMwMS45MDczMjY4MDgsIDczOiAyOTMuNjk1OTg2NjcyLCA3NDogMjg2LjI0NjAwNzEyMSwgNzU6IDI4NC43NDE5NTE2NDIsIDc2OiAyODEuNTQxODI0ODg0LCA3NzogMjc2LjA3NjQ4NDA2NSwgNzg6IDIyNS4yNTAxMDI0NjgsIDc5OiAyMjEuNTc5MTQyMzM5LCA4MDogMjIyLjgxOTA0NjMyOCwgODE6IDIxMC40NjUwOTEyODYsIDgyOiAyMDQuNTc5NzI2MTczLCA4MzogMjEwLjIwODEwMDcyOSwgODQ6IDIxNC42MTkxMzcyMDMsIDg1OiAyNDkuNjgzNzM3MzUsIDg2OiAyMzQuMDU2OTk3NzIxLCA4NzogMjM3Ljc4Mjc0MzU1MiwgODg6IDI0Ny43ODM1OTQ4MjMsIDg5OiAyNDMuMzI2OTM1MDE1LCA5MDogMjUwLjUxNzc1OTc5OCwgOTE6IDI0NS40NzcyODM5NTYsIDkyOiAyNDIuNTQ3NjM3OTYyLCA5MzogMjM1LjEzOTUxNTM5MiwgOTQ6IDI0Ni4wNzc2MzE0MTIsIDk1OiAzMDAuNjYwMzc5MjYxLCA5NjogMzExLjU0NzMxNDI0NCwgOTc6IDMxMS41OTI0OTgyNTQsIDk4OiAzMTEuNjYxNTQ2MjQ1LCA5OTogMzEzLjUyMTA2OTcyNCwgMTAwOiAzMjQuNjIzMjE2NDExLCAxMDE6IDMyNS4yMTk2MDE1NzIsIDEwMjogMzE2LjA1MTk2MzY2NiwgMTAzOiAzMTUuMjM1MTA1NjEsIDEwNDogMzEzLjAzOTQwNDk3MywgMTA1OiAzMTEuMjU2MzQ0MTYxLCAxMDY6IDMxNC43NTk4Mjk2MTksIDEwNzogMzE5Ljg1OTg2MjAzNSwgMTA4OiAzMTUuODY0ODY2ODIsIDEwOTogMzEzLjA2NzE0Njg2NSwgMTEwOiAzMDUuMjM1MjUwMDE2LCAxMTE6IDI5OS45MTEzOTM5ODMsIDExMjogMjkyLjgxOTI3MzA2NiwgMTEzOiAyODguMzc0NzUwMjE3LCAxMTQ6IDI4Mi41NzQxNDIzMjgsIDExNTogMjgwLjA0MDE5NjIyMywgMTE2OiAyNzIuMDkzNTk4NzgzfSwgJ0ZFUlRJTElaQU5URSc6IHswOiAxOS4wMjcxNTQxMjE0LCAxOiAxNy44OTYxMzE1MzUsIDI6IDE2Ljc4MTYzMjY0MDQsIDM6IDEzLjQ5MDc0MzY5NTQsIDQ6IDkuODc5MjE5OTY0MywgNTogOS40NzU3ODU3MDc2NCwgNjogMTEuMzY0Mjc5MjAwOCwgNzogMTUuMTI3OTM0NTE5NCwgODogMTUuMzMyODY2NzU5NywgOTogMTIuODUxNTAyMTI2LCAxMDogMTEuNTEzNzYzOTU1NSwgMTE6IDEyLjg1NTA5OTIzMSwgMTI6IDEzLjAxMzA0NjM1MjQsIDEzOiAxMy40NTUxNDgwNzQzLCAxNDogMTQuMzQ3ODI1OTM4NCwgMTU6IDEzLjQ0NjE4MzQyNzIsIDE2OiAxMi44NTA1ODM2NTMyLCAxNzogMTEuODc4NjgwMDg1LCAxODogOC45NzQyODM4ODk2OSwgMTk6IDExLjI4NTM2NjcwOTcsIDIwOiAxMC4zNDU5NTI2NjQ1LCAyMTogMTAuMTY3ODEwOTg0NSwgMjI6IDEyLjU5OTUxNTA1NywgMjM6IDE4LjA2MzU5NTU4NTksIDI0OiAyMi41OTA1NTE0ODYxLCAyNTogMjcuMDc4OTk3NTU5OSwgMjY6IDI1Ljg5MzM5OTkxNTEsIDI3OiAyNC42NzAzMDIxNTcsIDI4OiAyMi4zNDgyODc5Nzk5LCAyOTogMjMuMDY2MTAyMTgwMiwgMzA6IDIzLjQ2MjAyNjAzLCAzMTogMjMuMzc0MjgwNzk5MywgMzI6IDIzLjYyOTMxMDYxMTQsIDMzOiAyMS41MDg1NjUxMzQ3LCAzNDogMjAuNDI0NDM1MDgwMiwgMzU6IDE4Ljg2NDAzODMyMDksIDM2OiAxOC4yNjQ5NDI0MDQxLCAzNzogMTYuMTI1ODQ0NTk4NCwgMzg6IDE1LjM4NzI2MTMyOTYsIDM5OiAxNS43NDc1NjIwNjQ3LCA0MDogMTQuODk4MzU1Nzg0OSwgNDE6IDE4LjU3MTM3Mzg2MTQsIDQyOiAxOS43ODI1MDI3NjgsIDQzOiAxOS45MzM0NDE4NzA4LCA0NDogMjAuODIxNzczNjMxOCwgNDU6IDIwLjI2NjQ3MDQxOTgsIDQ2OiAxOC43MDM5MzMyMjQzLCA0NzogMTYuOTM5NzA0NzYzOSwgNDg6IDE1LjIyMjQ0MDU5NDEsIDQ5OiAxNS4zOTAwNjA2MzE3LCA1MDogMTUuNDg2Njk3OTE4MSwgNTE6IDE0LjE4ODgzNjQ3MjIsIDUyOiAxNy41MDU3OTU5MDI3LCA1MzogMTguNDQ5OTc2MDk4MSwgNTQ6IDE4LjA0NDMzODA1NjcsIDU1OiAxOC43NjUzOTc0MjU4LCA1NjogMTcuNzMzOTkyMTY5LCA1NzogMTQuNDcwODIxMjYzNCwgNTg6IDE5LjE5MDYxMjc1NDUsIDU5OiAyMy42MTA3NTY4NzgyLCA2MDogMjIuNDgwOTM4OTQ3NywgNjE6IDE5Ljk2MjM1MDE5NjYsIDYyOiAyNC4yOTIxOTMwMDYsIDYzOiAyMy43Nzc0MTAwODcxLCA2NDogMjAuOTAyODU0OTQ1LCA2NTogMTcuNjEzNTMyNDIyNiwgNjY6IDE4LjI0MjI4MDU0MDYsIDY3OiAxOC40OTYzOTA3MTgzLCA2ODogMjAuMTg4NzA1NDA5OCwgNjk6IDE3LjIxNjQ1NjYxMzMsIDcwOiAxOC4yMjI4NTQ4ODQyLCA3MTogMTcuNjM0MTIsIDcyOiAxNy4zNjUxMzQwNzMyLCA3MzogMjEuMTY1NzUyODU5LCA3NDogMjAuNjU0NjU3MDQ2NSwgNzU6IDIwLjUzODIyNTAxNzUsIDc2OiAyMC4yNjI1ODIxNTc1LCA3NzogMjAuMDMxNjcwNTg5NSwgNzg6IDE5LjY3NDc4OTEyODQsIDc5OiAxOS4yMzIwNzQ2MTU3LCA4MDogMTkuMTU1Njk1MTc5NSwgODE6IDE4LjY2NTk3NTEwMzcsIDgyOiAxOC4yNTczNTMwMDIxLCA4MzogMTguMDI1MDQ3MjI0MiwgODQ6IDE4LjIyMjAzNTc2MTgsIDg1OiAxOC4xODA4NTQ2NjE0LCA4NjogMTcuOTQyNzM1MDQyNywgODc6IDE3Ljg5MzY0OTQ5MjIsIDg4OiAxNy41NzgyOTEzNDY3LCA4OTogMTcuNDQ1MjkyMTU3NywgOTA6IDE3LjQwNzU0MzQxNDksIDkxOiAxNy4yODcxMzI2NzMsIDkyOiAxNy4wMDEwMDI2NjA5LCA5MzogMTYuNzk1Njc5NjcwOCwgOTQ6IDE2LjYxNDE0NDQ0NDMsIDk1OiAxNi42MTM1MTgzNDEzLCA5NjogMTYuNTkyMjU4ODgwNCwgOTc6IDIyLjA3NDQ5MjQ1NTQsIDk4OiAyMi4wMTIzMjgwMTgyLCA5OTogMjEuODIwNzg3MTQ2NywgMTAwOiAyMS40ODE4NjU4OTA5LCAxMDE6IDIxLjM5MTgwNDM1MjYsIDEwMjogMjEuMTQ1NTUwMDM5NiwgMTAzOiAyMS4wMjE5ODAzMDE0LCAxMDQ6IDIwLjk1ODcxNzUyNjMsIDEwNTogMjAuODEzNTU3NDAxNSwgMTA2OiAyMi44NzQ5ODc2MTc2LCAxMDc6IDIyLjg4NTAyNzA0MDgsIDEwODogMjIuNzUwODc0Mzc4MSwgMTA5OiAyMi42NzMzMjkyNjU2LCAxMTA6IDIyLjQ4NjYwNzE3MzksIDExMTogMjIuMzMyMjA3MzcwNiwgMTEyOiAyMi4xMzc1Mzk1NDQ1LCAxMTM6IDIyLjEzMzE0NDM3ODksIDExNDogMjIuMDgxNTkzOTAyLCAxMTU6IDIyLjExMTM0NTkzMTYsIDExNjogMjIuMDYxMTAxMTAyN30sICdUUkFUT1InOiB7MDogMy4xNzEyMTc3MjMxLCAxOiAyLjkxMzA3MjYzNzUsIDI6IDIuNzk2OTM4NzczNDEsIDM6IDIuODkzNDU3MDkyODQsIDQ6IDMuMDk4ODQzNzk1NzcsIDU6IDMuNTUzNDE5NjQwMzcsIDY6IDMuOTc3NDk3NzIwMywgNzogNC44NjI1NTAzODEyMiwgODogNS4yNzA2NzI5NDg2MywgOTogNS4yOTE3OTQ5OTMwNCwgMTA6IDQuMzg2MTk1NzkyNTgsIDExOiAzLjYxNTQ5NjY1ODcxLCAxMjogMy4xODA5NjY4ODYxMywgMTM6IDMuMzEyMDM2NDQ5MDYsIDE0OiAzLjU4Njk1NjQ4NDU5LCAxNTogMy4zNjE1NDU4NTY3OSwgMTY6IDIuNzkzNjA1MTQyMDEsIDE3OiAzLjI1NDQzMjg5OTk5LCAxODogMi42OTIyODUxNjY5MSwgMTk6IDIuOTAxOTUxNDM5NjMsIDIwOiAyLjk1NTk4NjQ3NTU3LCAyMTogMi45ODI1NTc4ODg3OCwgMjI6IDMuMjM5ODc1MzAwMzcsIDIzOiAzLjE4NzY5MzMzODY4LCAyNDogMy44MDQ3MjQ0NjA4MiwgMjU6IDQuMTY1OTk5NjI0NTksIDI2OiA0LjI1NjQ0OTMwMTExLCAyNzogMy42NTQ4NTk1Nzg4MiwgMjg6IDMuNDI4NDMwNTQyMzgsIDI5OiAzLjU2NDc2MTI0NjAzLCAzMDogNC4xMDU4NTQ1NTUyNCwgMzE6IDQuMjMzNzY1NTAwOTYsIDMyOiA0LjIxOTUxOTc1MjAzLCAzMzogNC40NTUzNDU2MzUwNSwgMzQ6IDQuMjIxMDQ5OTE2NTgsIDM1OiAzLjc3MjgwNzY2NDE4LCAzNjogNC4wNTg4NzYwODk4MSwgMzc6IDQuMzUzOTc4MDQxNTcsIDM4OiAzLjcxODU4ODE1NDY1LCAzOTogMy45MTk0MDAyMjM5LCA0MDogMy44NjI1MzExNjcwNywgNDE6IDMuNDQ4OTY5NDMxNCwgNDI6IDMuNDA2OTg2NTg3ODIsIDQzOiAzLjEwNTkwODM4NDUyLCA0NDogMy40MDcxOTkzMjE1NywgNDU6IDMuODk3Mzk4MTU3NjYsIDQ2OiAzLjU4NzA1NTY4Njg2LCA0NzogMy4wNjEzOTI0MjcyMSwgNDg6IDIuNTYzNzc5NDY4NDksIDQ5OiAzLjI3MDM4Nzg4NDIzLCA1MDogMy42MTM1NjI4NDc1NSwgNTE6IDIuOTIxMjMxMDM4NCwgNTI6IDMuNzI4MDg2MTY0NDcsIDUzOiA0LjA5OTk5NDY4ODQ2LCA1NDogNC4wMDk4NTI5MDE0OCwgNTU6IDMuMTI3NTY2MjM3NjMsIDU2OiAzLjY2NTAyNTA0ODI2LCA1NzogMy42MTc3MDUzMTU4NCwgNTg6IDIuNzQxNTE2MTA3NzksIDU5OiAzLjA3OTY2Mzk0MDY0LCA2MDogMi4yNDgwOTM4OTQ3NywgNjE6IDIuMjE4MDM4OTEwNzMsIDYyOiAzLjIzODk1OTA2NzQ2LCA2MzogMy4yNjkzOTM4ODY5OCwgNjQ6IDIuNzE3MzcxMTQyODUsIDY1OiAzLjUyMjcwNjQ4NDUzLCA2NjogMi42MzQ5OTYwNzgwOCwgNjc6IDIuODQ1NTk4NTcyMDQsIDY4OiAzLjAyODMwNTgxMTQ3LCA2OTogMi43NTQ2MzMwNTgxMiwgNzA6IDMuNzk2NDI4MTAwODcsIDcxOiAzLjY3Mzc3NSwgNzI6IDQuMzQxMjgzNTE4MywgNzM6IDQuMjMzMTUwNTcxODEsIDc0OiA1LjUwNzkwODU0NTczLCA3NTogNS40NzY4NjAwMDQ2NiwgNzY6IDUuNDAzMzU1MjQxOTksIDc3OiA2LjY3NzIyMzUyOTg0LCA3ODogNi41NTgyNjMwNDI4LCA3OTogNi40MTA2OTE1Mzg1NiwgODA6IDYuMzg1MjMxNzI2NSwgODE6IDYuMjIxOTkxNzAxMjQsIDgyOiA2LjA4NTc4NDMzNDAzLCA4MzogNi4wMDgzNDkwNzQ3MywgODQ6IDYuMDc0MDExOTIwNjEsIDg1OiA2LjA2MDI4NDg4NzEzLCA4NjogNS45ODA5MTE2ODA5MSwgODc6IDUuOTY0NTQ5ODMwNzUsIDg4OiA1Ljg1OTQzMDQ0ODg5LCA4OTogNS44MTUwOTczODU5LCA5MDogNS44MDI1MTQ0NzE2NCwgOTE6IDUuNzYyMzc3NTU3NjYsIDkyOiA1LjY2NzAwMDg4Njk3LCA5MzogNS41OTg1NTk4OTAyOCwgOTQ6IDUuNTM4MDQ4MTQ4MDksIDk1OiA1LjUzNzgzOTQ0NzA5LCA5NjogNS41MzA3NTI5NjAxMywgOTc6IDUuNTE4NjIzMTEzODQsIDk4OiA1LjUwMzA4MjAwNDU0LCA5OTogNS40NTUxOTY3ODY2NywgMTAwOiA1LjM3MDQ2NjQ3MjczLCAxMDE6IDUuMzQ3OTUxMDg4MTQsIDEwMjogNS4yODYzODc1MDk4OSwgMTAzOiA1LjI1NTQ5NTA3NTM1LCAxMDQ6IDUuMjM5Njc5MzgxNTgsIDEwNTogNS4yMDMzODkzNTAzOSwgMTA2OiA1LjE5ODg2MDgyMjE5LCAxMDc6IDUuMjAxMTQyNTA5MjcsIDEwODogNS4xNzA2NTMyNjc3NSwgMTA5OiA1LjE1MzAyOTM3ODU1LCAxMTA6IDUuMTEwNTkyNTM5NTIsIDExMTogNS4wNzU1MDE2NzUxMywgMTEyOiA2LjAzNzUxMDc4NDg2LCAxMTM6IDYuMDM2MzEyMTAzMzUsIDExNDogNi4wMjIyNTI4ODIzNiwgMTE1OiA2LjAzMDM2NzA3MjI0LCAxMTY6IDYuMDE2NjYzOTM3MTF9LCAnTU8nOiB7MDogMC4wNjgwNzYxMTMxNTM2LCAxOiAwLjA2ODA3NjExMzE1MzYsIDI6IDAuMDY4MDc2MTEzMTUzNiwgMzogMC4wNjgwNzYxMTMxNTM2LCA0OiAwLjA3MTUyMzczNTMxNzksIDU6IDAuMDgzMzU1OTg2MzE0OSwgNjogMC4wOTg1NzIzMzcyNTIzLCA3OiAwLjExMTQxMDMzNDExMywgODogMC4xMTQ0ODcxMzU0MDksIDk6IDAuMTAyNjg2MDIxODg4LCAxMDogMC4xMjEzMDU3MjczODgsIDExOiAwLjEyMzE5NDcwMDk2MywgMTI6IDAuMTEzMzgyMTkwOTAzLCAxMzogMC4wOTg4NDM1ODc3NzY0LCAxNDogMC4wODA3NjYzMDM1MTE0LCAxNTogMC4wNjIyNjg2MzUxNTY3LCAxNjogMC4wODM4MDAzOTQyNDYsIDE3OiAwLjA3NjUyNDM3MzYwNjcsIDE4OiAwLjA1NzQ4Nzc2Njg4MzQsIDE5OiAwLjA2NTM2NTU2MDUxMzYsIDIwOiAwLjA3MjUwOTkzNzY5MjEsIDIxOiAwLjA3ODA1NDg5NTY1NzUsIDIyOiAwLjA4MDY1Njg5NTU5NTEsIDIzOiAwLjA4MTY2NjkzMjM5NjQsIDI0OiAwLjA4MjI3NzE2NjQ2NTMsIDI1OiAwLjA4MDEwNTIyOTQ0ODMsIDI2OiAwLjA3NTA0MzU2NTg3MjYsIDI3OiAwLjA3MDMxMDM2MTE0NzYsIDI4OiAwLjA3OTYwMzA3ODAzNzcsIDI5OiAwLjA4MzA0ODQ1MjQ0MDUsIDMwOiAwLjA5MzU4NDE1NjMyNywgMzE6IDAuMTAwOTEzOTYyMjk3LCAzMjogMC4xMDg2Njk1MTE2OTQsIDMzOiAwLjExMTYwNjQwODE1OCwgMzQ6IDAuMTE4ODI4OTg1MDY3LCAzNTogMC4xMjAxMzM3OTQwNDMsIDM2OiAwLjExODIzNDIxNDg5NywgMzc6IDAuMTA1NzQwMjk4NjEzLCAzODogMC4wOTM0NTc0ODgwMzQsIDM5OiAwLjA4NDE5MzQ2NTcxNDEsIDQwOiAwLjA3OTgyMzM0NDA3MDgsIDQxOiAwLjA3NDc0MDc1MjA0MDgsIDQyOiAwLjA3MDg0OTUyMjUwMDEsIDQzOiAwLjA2NzI5OTA1OTgxMDgsIDQ0OiAwLjA2MTExMDM4MDc4MjUsIDQ1OiAwLjA1NTM5NDc1OTMyMSwgNDY6IDAuMDY2MDM2NjYzMjA0OSwgNDc6IDAuMDY4OTQzODA0Njk0OCwgNDg6IDAuMDY2OTU4OTA5MzgyNCwgNDk6IDAuMDYzODYxODc1OTY5MywgNTA6IDAuMDU5Njc3MTE1NzE1NywgNTE6IDAuMDU0OTI2Mzc3MDQ2MywgNTI6IDAuMDczNDEzNzYwOTEyLCA1MzogMC4wODIzMzMxMzIyMjYzLCA1NDogMC4wODM0MzM0MTAzMDYzLCA1NTogMC4wNzk5MDY3NDU4MTcsIDU2OiAwLjA3MTYyNDY1MTg0MTYsIDU3OiAwLjA2MzM3MDEzODExNTgsIDU4OiAwLjA5MzQ5NzEyMjI1OTQsIDU5OiAwLjEwNDA3NTUzMTk0OSwgNjA6IDAuMTAwODMzMjU1ODg2LCA2MTogMC4wOTMwMDk3NjQ5OTAxLCA2MjogMC4wODEzNDE3MzM0OTc0LCA2MzogMC4wNjk1NzM2OTI2NDAzLCA2NDogMC4yMTA0OTU4MTM3NCwgNjU6IDAuMjYxMjYwODc0MDcyLCA2NjogMC4yNTg3MjUzNjY1MTcsIDY3OiAwLjIzNjU5OTI2OTM4MiwgNjg6IDAuMjA2ODcxODQxNzQzLCA2OTogMC4xNjc3NDY4MjMzNjYsIDcwOiAwLjEyNjMyNzg3MDcwNiwgNzE6IDAuMTE0MzI5MjEzOTE4LCA3MjogMC4xMDQ3ODg3MTc1NzgsIDczOiAwLjA5NDU3NjI4MDQxMTYsIDc0OiAwLjA4NDg3Mzc0MTE5NjIsIDc1OiAwLjA3NzAxODM0MzgxNTUsIDc2OiAwLjA3NDEwODUxODA3NTksIDc3OiAwLjA3MTQwOTE5NjA4MywgNzg6IDAuMDY4MzE1MjQwMDI5MiwgNzk6IDAuMDY0OTk3Mjg5MjEwNCwgODA6IDAuMDYyOTY1NDc5NTI1MiwgODE6IDAuMDU5NjI3NDIwNDcwMywgODI6IDAuMDU3ODE0OTUxMTczMywgODM6IDAuMDU2NTc4NjIwNDUzNywgODQ6IDAuMDU2NjkwNzc3OTI1NywgODU6IDAuMDU2MDU3NjM1MjA1OSwgODY6IDAuMDU0ODI1MDIzNzQxNywgODc6IDAuMDU0MTc3OTk0Mjk1OSwgODg6IDAuMDUzOTQ1MDA5MTg5NywgODk6IDAuMDU0MjUzMjQzMzA1NiwgOTA6IDAuMDU0ODUwNjg1NzU3NSwgOTE6IDAuMDU1MTgxMTY3NzU2NCwgOTI6IDAuMDU0OTY1OTczMTg2MywgOTM6IDAuMDU0OTkxODU0NTIyMiwgOTQ6IDAuMDU0NzE5NzYxNTY5OSwgOTU6IDAuMDU1MDM5OTcwOTQ5MSwgOTY6IDAuMDU1MjkxMzk4MjM4NSwgOTc6IDAuMDU1NDkxMjg4MzYwNSwgOTg6IDAuMDU1NjU1MjY2OTg5NSwgOTk6IDAuMDU1NDg4NDQzMzE1MSwgMTAwOiAwLjA1NDExMDQzMzMwNTIsIDEwMTogMC4wNTMzNjk1ODA3NzU3LCAxMDI6IDAuMDUyMjQ3MTI5ODg5NCwgMTAzOiAwLjA1MTQzNjY5ODE5MDMsIDEwNDogMC4wNTA3NzgzMTUwNzM1LCAxMDU6IDAuMDQ5OTI2NTIwODE3LCAxMDY6IDAuMDQ5OTAyNTY1MzE3LCAxMDc6IDAuMDQ5OTQzOTcwOTQ1MywgMTA4OiAwLjA0OTY3MDU4Nzk1MzMsIDEwOTogMC4wNDk1MjA2MTIzMjc5LCAxMTA6IDAuMDQ5MTMxOTU5MDI2OSwgMTExOiAwLjA0ODgxMzYzNzM2MDUsIDExMjogMC4wNDgzODM5NDA1OTU0LCAxMTM6IDAuMDQ4MzcwMTQyNjExNSwgMTE0OiAwLjA0ODI1MzMwMTIxOTksIDExNTogMC4wNDgzMTQxMjg0MTE1LCAxMTY6IDAuMDQ4MjAwMTYzMzE4NH19KQ0KZGFkb3MNCg0KZGFkb3MuaW5mbygpICMgVmUgYSBlc3RydXR1cmEgZG9zIGRhZG9zDQpgYGANCg0KIyBSZWdyZXNzw6NvIGluaWNpYWwNCg0KYGBge3B5dGhvbn0NCmltcG9ydCBudW1weSBhcyBucA0KaW1wb3J0IHBhbmRhcyBhcyBwZA0KZnJvbSBza2xlYXJuLmxpbmVhcl9tb2RlbCBpbXBvcnQgTGluZWFyUmVncmVzc2lvbg0KaW1wb3J0IHN0YXRzbW9kZWxzLmZvcm11bGEuYXBpIGFzIHNtDQplcTEgPSBzbS5vbHMoZm9ybXVsYT0iUVNPSkF+RkVSVElMSVpBTlRFK1RSQVRPUitNTyIsIGRhdGE9ZGFkb3MpLmZpdCgpDQpwcmludChlcTEuc3VtbWFyeSgpKQ0KYGBgDQoNCiMgUmVmZXLDqm5jaWFzIHsjUmVmZXLDqm5jaWFzIC51bm51bWJlcmVkfQ0KDQpGSUdVRUlSRURPLCBBZHJpYW5vIE1hcmNvcyBSb2RyaWd1ZXMuIEVjb25vbWV0cmlhOiBleGVyY2ljaW9fc29qYV9hcG9zdGlsYS4gQ2FtcG8gR3JhbmRlLU1TLEJyYXNpbDogUlN0dWRpby9ScHVicywgMjAyMC4gRGlzcG9uw612ZWwgZW0gPGh0dHA6Ly9ycHVicy5jb20vYW1yb2ZpL2V4ZXJjaWNpb19zb2phX2Fwb3N0aWxhPi4NCg==