Abstract
This is an undergrad student level exercise for class use. We analyse soy data, 117 observations.This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
License: CC BY-SA 4.0
Sugestão de citação: FIGUEIREDO, Adriano Marcos Rodrigues. Econometria: Exercício soja (apostila) em Python. Campo Grande-MS,Brasil: RStudio/Rpubs, 2022. Disponível em http://rpubs.com/amrofi/exercicio_soja_apostila_python.
Este exercício acompanha o publicado em Figueiredo (2020), mas agora executado em Python no Rmarkdown que pode ser baixado no alto do post. Os dados foram inicialmente carregados do Excel e depois incorporados no script abaixo.
import numpy as np
import pandas as pd
# Carrega os dados
# precisei instalar openpyxl (para xlsx) e xlrd (para xls)
df = pd.read_excel (r'soja_apostila.xlsx', sheet_name='dados')
#data_as_dict= print(df.to_dict())
#df = pd.DataFrame.from_dict(data_as_dict)
import pandas as pd
dados = pd.DataFrame.from_dict(
{'OBS': {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 7, 7: 8, 8: 9, 9: 10, 10: 11, 11: 12, 12: 13, 13: 14, 14: 15, 15: 16, 16: 17, 17: 18, 18: 19, 19: 20, 20: 21, 21: 22, 22: 23, 23: 24, 24: 25, 25: 26, 26: 27, 27: 28, 28: 29, 29: 30, 30: 31, 31: 32, 32: 33, 33: 34, 34: 35, 35: 36, 36: 37, 37: 38, 38: 39, 39: 40, 40: 41, 41: 42, 42: 43, 43: 44, 44: 45, 45: 46, 46: 47, 47: 48, 48: 49, 49: 50, 50: 51, 51: 52, 52: 53, 53: 54, 54: 55, 55: 56, 56: 57, 57: 58, 58: 59, 59: 60, 60: 61, 61: 62, 62: 63, 63: 64, 64: 65, 65: 66, 66: 67, 67: 68, 68: 69, 69: 70, 70: 71, 71: 72, 72: 73, 73: 74, 74: 75, 75: 76, 76: 77, 77: 78, 78: 79, 79: 80, 80: 81, 81: 82, 82: 83, 83: 84, 84: 85, 85: 86, 86: 87, 87: 88, 88: 89, 89: 90, 90: 91, 91: 92, 92: 93, 93: 94, 94: 95, 95: 96, 96: 97, 97: 98, 98: 99, 99: 100, 100: 101, 101: 102, 102: 103, 103: 104, 104: 105, 105: 106, 106: 107, 107: 108, 108: 109, 109: 110, 110: 111, 111: 112, 112: 113, 113: 114, 114: 115, 115: 116, 116: 117}, 'QSOJA': {0: 436.631327347, 1: 373.648319403, 2: 394.422208122, 3: 343.569529223, 4: 303.766149519, 5: 301.164159253, 6: 288.948162961, 7: 330.653425923, 8: 312.790481897, 9: 326.337437514, 10: 393.924244131, 11: 472.095484821, 12: 506.519816219, 13: 351.622349614, 14: 381.683735178, 15: 383.16244294, 16: 411.039886175, 17: 393.721292241, 18: 434.570723074, 19: 433.61603289, 20: 397.521061235, 21: 392.667303139, 22: 388.161060061, 23: 370.962499467, 24: 392.989989558, 25: 364.608287145, 26: 346.432408617, 27: 418.249947335, 28: 406.403616915, 29: 335.565654517, 30: 372.389277147, 31: 355.138034335, 32: 350.368666514, 33: 333.22912698, 34: 331.404160354, 35: 350.215587437, 36: 347.930917294, 37: 429.353837601, 38: 312.648633868, 39: 320.1290397, 40: 367.600375264, 41: 370.58115319, 42: 318.293875369, 43: 360.716491231, 44: 344.127888634, 45: 348.460445231, 46: 339.909909323, 47: 355.115806958, 48: 333.991242698, 49: 324.352196839, 50: 326.362748629, 51: 337.522873509, 52: 326.439134587, 53: 315.883680773, 54: 309.389262881, 55: 309.992167966, 56: 294.858595183, 57: 319.126938705, 58: 321.075126328, 59: 324.617110436, 60: 326.498169984, 61: 323.024096765, 62: 306.607962724, 63: 316.685380598, 64: 306.63234033, 65: 347.051171678, 66: 281.018277888, 67: 306.438241825, 68: 310.158071775, 69: 308.554712739, 70: 317.988817729, 71: 309.3024648, 72: 301.907326808, 73: 293.695986672, 74: 286.246007121, 75: 284.741951642, 76: 281.541824884, 77: 276.076484065, 78: 225.250102468, 79: 221.579142339, 80: 222.819046328, 81: 210.465091286, 82: 204.579726173, 83: 210.208100729, 84: 214.619137203, 85: 249.68373735, 86: 234.056997721, 87: 237.782743552, 88: 247.783594823, 89: 243.326935015, 90: 250.517759798, 91: 245.477283956, 92: 242.547637962, 93: 235.139515392, 94: 246.077631412, 95: 300.660379261, 96: 311.547314244, 97: 311.592498254, 98: 311.661546245, 99: 313.521069724, 100: 324.623216411, 101: 325.219601572, 102: 316.051963666, 103: 315.23510561, 104: 313.039404973, 105: 311.256344161, 106: 314.759829619, 107: 319.859862035, 108: 315.86486682, 109: 313.067146865, 110: 305.235250016, 111: 299.911393983, 112: 292.819273066, 113: 288.374750217, 114: 282.574142328, 115: 280.040196223, 116: 272.093598783}, 'FERTILIZANTE': {0: 19.0271541214, 1: 17.896131535, 2: 16.7816326404, 3: 13.4907436954, 4: 9.8792199643, 5: 9.47578570764, 6: 11.3642792008, 7: 15.1279345194, 8: 15.3328667597, 9: 12.851502126, 10: 11.5137639555, 11: 12.855099231, 12: 13.0130463524, 13: 13.4551480743, 14: 14.3478259384, 15: 13.4461834272, 16: 12.8505836532, 17: 11.878680085, 18: 8.97428388969, 19: 11.2853667097, 20: 10.3459526645, 21: 10.1678109845, 22: 12.599515057, 23: 18.0635955859, 24: 22.5905514861, 25: 27.0789975599, 26: 25.8933999151, 27: 24.670302157, 28: 22.3482879799, 29: 23.0661021802, 30: 23.46202603, 31: 23.3742807993, 32: 23.6293106114, 33: 21.5085651347, 34: 20.4244350802, 35: 18.8640383209, 36: 18.2649424041, 37: 16.1258445984, 38: 15.3872613296, 39: 15.7475620647, 40: 14.8983557849, 41: 18.5713738614, 42: 19.782502768, 43: 19.9334418708, 44: 20.8217736318, 45: 20.2664704198, 46: 18.7039332243, 47: 16.9397047639, 48: 15.2224405941, 49: 15.3900606317, 50: 15.4866979181, 51: 14.1888364722, 52: 17.5057959027, 53: 18.4499760981, 54: 18.0443380567, 55: 18.7653974258, 56: 17.733992169, 57: 14.4708212634, 58: 19.1906127545, 59: 23.6107568782, 60: 22.4809389477, 61: 19.9623501966, 62: 24.292193006, 63: 23.7774100871, 64: 20.902854945, 65: 17.6135324226, 66: 18.2422805406, 67: 18.4963907183, 68: 20.1887054098, 69: 17.2164566133, 70: 18.2228548842, 71: 17.63412, 72: 17.3651340732, 73: 21.165752859, 74: 20.6546570465, 75: 20.5382250175, 76: 20.2625821575, 77: 20.0316705895, 78: 19.6747891284, 79: 19.2320746157, 80: 19.1556951795, 81: 18.6659751037, 82: 18.2573530021, 83: 18.0250472242, 84: 18.2220357618, 85: 18.1808546614, 86: 17.9427350427, 87: 17.8936494922, 88: 17.5782913467, 89: 17.4452921577, 90: 17.4075434149, 91: 17.287132673, 92: 17.0010026609, 93: 16.7956796708, 94: 16.6141444443, 95: 16.6135183413, 96: 16.5922588804, 97: 22.0744924554, 98: 22.0123280182, 99: 21.8207871467, 100: 21.4818658909, 101: 21.3918043526, 102: 21.1455500396, 103: 21.0219803014, 104: 20.9587175263, 105: 20.8135574015, 106: 22.8749876176, 107: 22.8850270408, 108: 22.7508743781, 109: 22.6733292656, 110: 22.4866071739, 111: 22.3322073706, 112: 22.1375395445, 113: 22.1331443789, 114: 22.081593902, 115: 22.1113459316, 116: 22.0611011027}, 'TRATOR': {0: 3.1712177231, 1: 2.9130726375, 2: 2.79693877341, 3: 2.89345709284, 4: 3.09884379577, 5: 3.55341964037, 6: 3.9774977203, 7: 4.86255038122, 8: 5.27067294863, 9: 5.29179499304, 10: 4.38619579258, 11: 3.61549665871, 12: 3.18096688613, 13: 3.31203644906, 14: 3.58695648459, 15: 3.36154585679, 16: 2.79360514201, 17: 3.25443289999, 18: 2.69228516691, 19: 2.90195143963, 20: 2.95598647557, 21: 2.98255788878, 22: 3.23987530037, 23: 3.18769333868, 24: 3.80472446082, 25: 4.16599962459, 26: 4.25644930111, 27: 3.65485957882, 28: 3.42843054238, 29: 3.56476124603, 30: 4.10585455524, 31: 4.23376550096, 32: 4.21951975203, 33: 4.45534563505, 34: 4.22104991658, 35: 3.77280766418, 36: 4.05887608981, 37: 4.35397804157, 38: 3.71858815465, 39: 3.9194002239, 40: 3.86253116707, 41: 3.4489694314, 42: 3.40698658782, 43: 3.10590838452, 44: 3.40719932157, 45: 3.89739815766, 46: 3.58705568686, 47: 3.06139242721, 48: 2.56377946849, 49: 3.27038788423, 50: 3.61356284755, 51: 2.9212310384, 52: 3.72808616447, 53: 4.09999468846, 54: 4.00985290148, 55: 3.12756623763, 56: 3.66502504826, 57: 3.61770531584, 58: 2.74151610779, 59: 3.07966394064, 60: 2.24809389477, 61: 2.21803891073, 62: 3.23895906746, 63: 3.26939388698, 64: 2.71737114285, 65: 3.52270648453, 66: 2.63499607808, 67: 2.84559857204, 68: 3.02830581147, 69: 2.75463305812, 70: 3.79642810087, 71: 3.673775, 72: 4.3412835183, 73: 4.23315057181, 74: 5.50790854573, 75: 5.47686000466, 76: 5.40335524199, 77: 6.67722352984, 78: 6.5582630428, 79: 6.41069153856, 80: 6.3852317265, 81: 6.22199170124, 82: 6.08578433403, 83: 6.00834907473, 84: 6.07401192061, 85: 6.06028488713, 86: 5.98091168091, 87: 5.96454983075, 88: 5.85943044889, 89: 5.8150973859, 90: 5.80251447164, 91: 5.76237755766, 92: 5.66700088697, 93: 5.59855989028, 94: 5.53804814809, 95: 5.53783944709, 96: 5.53075296013, 97: 5.51862311384, 98: 5.50308200454, 99: 5.45519678667, 100: 5.37046647273, 101: 5.34795108814, 102: 5.28638750989, 103: 5.25549507535, 104: 5.23967938158, 105: 5.20338935039, 106: 5.19886082219, 107: 5.20114250927, 108: 5.17065326775, 109: 5.15302937855, 110: 5.11059253952, 111: 5.07550167513, 112: 6.03751078486, 113: 6.03631210335, 114: 6.02225288236, 115: 6.03036707224, 116: 6.01666393711}, 'MO': {0: 0.0680761131536, 1: 0.0680761131536, 2: 0.0680761131536, 3: 0.0680761131536, 4: 0.0715237353179, 5: 0.0833559863149, 6: 0.0985723372523, 7: 0.111410334113, 8: 0.114487135409, 9: 0.102686021888, 10: 0.121305727388, 11: 0.123194700963, 12: 0.113382190903, 13: 0.0988435877764, 14: 0.0807663035114, 15: 0.0622686351567, 16: 0.083800394246, 17: 0.0765243736067, 18: 0.0574877668834, 19: 0.0653655605136, 20: 0.0725099376921, 21: 0.0780548956575, 22: 0.0806568955951, 23: 0.0816669323964, 24: 0.0822771664653, 25: 0.0801052294483, 26: 0.0750435658726, 27: 0.0703103611476, 28: 0.0796030780377, 29: 0.0830484524405, 30: 0.093584156327, 31: 0.100913962297, 32: 0.108669511694, 33: 0.111606408158, 34: 0.118828985067, 35: 0.120133794043, 36: 0.118234214897, 37: 0.105740298613, 38: 0.093457488034, 39: 0.0841934657141, 40: 0.0798233440708, 41: 0.0747407520408, 42: 0.0708495225001, 43: 0.0672990598108, 44: 0.0611103807825, 45: 0.055394759321, 46: 0.0660366632049, 47: 0.0689438046948, 48: 0.0669589093824, 49: 0.0638618759693, 50: 0.0596771157157, 51: 0.0549263770463, 52: 0.073413760912, 53: 0.0823331322263, 54: 0.0834334103063, 55: 0.079906745817, 56: 0.0716246518416, 57: 0.0633701381158, 58: 0.0934971222594, 59: 0.104075531949, 60: 0.100833255886, 61: 0.0930097649901, 62: 0.0813417334974, 63: 0.0695736926403, 64: 0.21049581374, 65: 0.261260874072, 66: 0.258725366517, 67: 0.236599269382, 68: 0.206871841743, 69: 0.167746823366, 70: 0.126327870706, 71: 0.114329213918, 72: 0.104788717578, 73: 0.0945762804116, 74: 0.0848737411962, 75: 0.0770183438155, 76: 0.0741085180759, 77: 0.071409196083, 78: 0.0683152400292, 79: 0.0649972892104, 80: 0.0629654795252, 81: 0.0596274204703, 82: 0.0578149511733, 83: 0.0565786204537, 84: 0.0566907779257, 85: 0.0560576352059, 86: 0.0548250237417, 87: 0.0541779942959, 88: 0.0539450091897, 89: 0.0542532433056, 90: 0.0548506857575, 91: 0.0551811677564, 92: 0.0549659731863, 93: 0.0549918545222, 94: 0.0547197615699, 95: 0.0550399709491, 96: 0.0552913982385, 97: 0.0554912883605, 98: 0.0556552669895, 99: 0.0554884433151, 100: 0.0541104333052, 101: 0.0533695807757, 102: 0.0522471298894, 103: 0.0514366981903, 104: 0.0507783150735, 105: 0.049926520817, 106: 0.049902565317, 107: 0.0499439709453, 108: 0.0496705879533, 109: 0.0495206123279, 110: 0.0491319590269, 111: 0.0488136373605, 112: 0.0483839405954, 113: 0.0483701426115, 114: 0.0482533012199, 115: 0.0483141284115, 116: 0.0482001633184}})
dados
OBS QSOJA FERTILIZANTE TRATOR MO
0 1 436.631327 19.027154 3.171218 0.068076
1 2 373.648319 17.896132 2.913073 0.068076
2 3 394.422208 16.781633 2.796939 0.068076
3 4 343.569529 13.490744 2.893457 0.068076
4 5 303.766150 9.879220 3.098844 0.071524
.. ... ... ... ... ...
112 113 292.819273 22.137540 6.037511 0.048384
113 114 288.374750 22.133144 6.036312 0.048370
114 115 282.574142 22.081594 6.022253 0.048253
115 116 280.040196 22.111346 6.030367 0.048314
116 117 272.093599 22.061101 6.016664 0.048200
[117 rows x 5 columns]
dados.info() # Ve a estrutura dos dados
<class 'pandas.core.frame.DataFrame'>
Int64Index: 117 entries, 0 to 116
Data columns (total 5 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 OBS 117 non-null int64
1 QSOJA 117 non-null float64
2 FERTILIZANTE 117 non-null float64
3 TRATOR 117 non-null float64
4 MO 117 non-null float64
dtypes: float64(4), int64(1)
memory usage: 5.5 KB
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import statsmodels.formula.api as sm
eq1 = sm.ols(formula="QSOJA~FERTILIZANTE+TRATOR+MO", data=dados).fit()
print(eq1.summary())
OLS Regression Results
==============================================================================
Dep. Variable: QSOJA R-squared: 0.465
Model: OLS Adj. R-squared: 0.451
Method: Least Squares F-statistic: 32.75
Date: Sat, 04 Jun 2022 Prob (F-statistic): 2.61e-15
Time: 15:48:35 Log-Likelihood: -599.90
No. Observations: 117 AIC: 1208.
Df Residuals: 113 BIC: 1219.
Df Model: 3
Covariance Type: nonrobust
================================================================================
coef std err t P>|t| [0.025 0.975]
--------------------------------------------------------------------------------
Intercept 494.9657 25.572 19.356 0.000 444.302 545.629
FERTILIZANTE -0.5535 1.059 -0.523 0.602 -2.651 1.544
TRATOR -33.6899 3.741 -9.006 0.000 -41.102 -26.278
MO -209.1407 107.893 -1.938 0.055 -422.896 4.614
==============================================================================
Omnibus: 14.471 Durbin-Watson: 0.674
Prob(Omnibus): 0.001 Jarque-Bera (JB): 16.751
Skew: 0.745 Prob(JB): 0.000230
Kurtosis: 4.103 Cond. No. 548.
==============================================================================
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
FIGUEIREDO, Adriano Marcos Rodrigues. Econometria: exercicio_soja_apostila. Campo Grande-MS,Brasil: RStudio/Rpubs, 2020. Disponível em http://rpubs.com/amrofi/exercicio_soja_apostila.