R Markdown

es un lenguaje de marcado ligero que nos permite escribir informes que contengan código Markdown permite crear documentos HTML, PDF y MS Word Beamer, diapositivas HTML5, folletos de estilo Tufte, libros, tableros, aplicaciones brillantes, artículos científicos, sitios web y más. Para más información ingrese a: http://rmarkdown.rstudio.com.

Usa R como una calculadora

Coloca aquí­ tus anotaciones…

Operador Operación Ejemplo Resultado
+ Suma 10 + 3 13
- Resta 10 - 3 7
* Multiplicación 10 * 3 30
/ División 10/3 3.33333333
^ Potencia 10 ^ 3 1000
%/% División entera 10 %/% 3 3
%% Residuo 10 %% 3 1

Data Set - Galton

Galton es un conjunto de datos datos tabulados utilizados en 1885 para estudiar la relación entre la altura de los padres y hijos.

summary(Galton)
##      parent          child      
##  Min.   :64.00   Min.   :61.70  
##  1st Qu.:67.50   1st Qu.:66.20  
##  Median :68.50   Median :68.20  
##  Mean   :68.31   Mean   :68.09  
##  3rd Qu.:69.50   3rd Qu.:70.20  
##  Max.   :73.00   Max.   :73.70

Visualización de gráficos

se pueden elabor infinidad de graficos:

Gráfico de girasol

sunflowerplot(Galton, cex=1.5, col="Green", seg.lnd=0.7, seg.col="blue")

Gráfico de histograma

temp <- airquality$Temp 
hist(temp, main = "", xlab = "Temperatura", 
     ylab = "Frecuencia",
     breaks=10, 
     xlim = c(50,100))

Density Plot

cambiar los meses numéricos a nombres y definir mes como factor

airquality[, "Month"] <- factor(airquality$Month,
                                labels = c("Mayo","Junio",
                                           "Julio","Agosto",
                                           "Septiembre"))

Graficar:

ggplot(airquality,aes(x = Temp, 
                      fill = Month,
                      colour = Month)) +
  geom_density(alpha = 0.1, 
               lwd=1) +
  xlim(50, 100) + 
  labs(x="Temperatura", y="Densidad", 
       col="Meses", fill="Meses")

Box Plot

ggplot(data = chickwts, aes(x = feed, y = weight)) +
       stat_boxplot(geom = "errorbar", 
                    width = 0.2) +
       geom_boxplot(fill = "#4271AE", colour = "#1F3552", 
                    alpha = 0.9, outlier.colour = "red") +
       scale_y_continuous(name = "Peso") +  
       scale_x_discrete(name = "Alimentación") +   
       theme(axis.line = element_line(colour = "black",
                                      size = 0.25))

Gráfico de violin

data_wide <- iris[ , 1:4]
data_wide %>% 
  gather(key="MesureType", value="Val") %>%
  ggplot( aes(x=MesureType, y=Val, fill=MesureType)) +
    geom_violin()

Gráfico de puntos

ggplot(iris, aes(x=Sepal.Length, y=Petal.Length))+
  geom_point()+
  labs(title="100")

Gráfico de puntos (2)

ggplot(data = iris, aes(x=Sepal.Length, y=Sepal.Width)) + 
  geom_point() +
  theme_light() 

Gráficos de disperción

ggplot(data=gapminder)+
  geom_point(aes(x=gdpPercap, y=lifeExp, colour = continent))+
  facet_wrap(~continent)

Gráfico de lineas

ggplot(diamonds, aes(x = price, y = cut, fill = cut)) +
  geom_density_ridges() +
  theme_ridges() + 
  theme(legend.position = "none")

Mapa de calor

# Se crea la data
set.seed(2022) 
data <- data.frame(x = rnorm(150), y = rnorm(150)) 
data$z <- with(data, x * y + rnorm(150, sd = 1)) 

# Mostrar los puntos de a data de la misma color
levelplot(z ~ x * y, data, panel = panel.levelplot.points, 
          cex = 1.2) + 
  layer_(panel.2dsmoother(..., n = 200))

Gráfico de barras

ggplot(data = iris, aes(x=Sepal.Length)) + 
  geom_bar() +
  theme_light() +
  xlab("Sepal Lenght")

Gráfico de barras (2)

ggplot(data=diamantes)+
  geom_bar(mapping = aes(x=corte,  fill=claridad), position = "dodge")

Gráfico circular

# Creación de datos
Prop <- c(3,7,9,1,2)
myPalette <- brewer.pal(5, "Set2") 

# Gráfico
pie(Prop , labels = c("Gr-A","Gr-B","Gr-C","Gr-D","Gr-E"), border="white", col=myPalette )

Dendograma

# Creacion de data frame
d1 <- data.frame(from="origin", to=paste("group", seq(1,5), sep=""))
d2 <- data.frame(from=rep(d1$to, each=5), to=paste("subgroup", seq(1,25), sep="_"))
edges <- rbind(d1, d2)

# Creación de objetos gráficos
mygraph <- graph_from_data_frame( edges )

# Dendograma
ggraph(mygraph, layout = 'dendrogram', circular = FALSE) + 
  geom_edge_diagonal() +
  geom_node_point() +
  theme_void()

LS0tDQp0aXRsZTogIkludHJvZHVjY2nDs24gYSBSIE1hcmtkb3duIg0Kc3VidGl0bGU6ICJQcmluY2lwaW9zIGLDoXNpY29zIg0KYXV0aG9yOiAiSnVhbiBDYXJsb3MgU290byBRdWlzcGUiDQpkYXRlOiAnMjAyMi0wNi0wMycNCm91dHB1dDogDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiBUUlVFDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgdGhlbWU6IGNvc21vDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KLS0tDQoNCmBgYHtyIHNldHVwLCBpbmNsdWRlPUZBTFNFfQ0KDQpsaWJyYXJ5KGdncGxvdDIpDQoNCmxpYnJhcnkobGF0dGljZUV4dHJhKSANCg0KbGlicmFyeShnZ3JpZGdlcykNCg0KbGlicmFyeShnZ3JhcGgpDQoNCmxpYnJhcnkoaWdyYXBoKQ0KDQpsaWJyYXJ5KGRwbHlyKQ0KDQpsaWJyYXJ5KHRpZHlyKQ0KDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCg0KbGlicmFyeShSQ29sb3JCcmV3ZXIpDQoNCmxpYnJhcnkoZGF0b3MpDQoNCmxpYnJhcnkoZ2FwbWluZGVyKQ0KDQpsaWJyYXJ5KEhpc3REYXRhKQ0KDQprbml0cjo6b3B0c19jaHVuayRzZXQoZWNobyA9IFRSVUUpDQpgYGANCg0KDQoNCiMjIFIgTWFya2Rvd24NCg0KZXMgdW4gbGVuZ3VhamUgZGUgbWFyY2FkbyBsaWdlcm8gcXVlIG5vcyBwZXJtaXRlIGVzY3JpYmlyIGluZm9ybWVzIHF1ZSBjb250ZW5nYW4gY8OzZGlnbyBNYXJrZG93biBwZXJtaXRlIGNyZWFyIGRvY3VtZW50b3MgSFRNTCwgUERGIHkgTVMgV29yZCBCZWFtZXIsIGRpYXBvc2l0aXZhcyBIVE1MNSwgZm9sbGV0b3MgZGUgZXN0aWxvIFR1ZnRlLCBsaWJyb3MsIHRhYmxlcm9zLCBhcGxpY2FjaW9uZXMgYnJpbGxhbnRlcywgYXJ0w4PCrWN1bG9zIGNpZW50w4PCrWZpY29zLCBzaXRpb3Mgd2ViIHkgbcOhcy4gUGFyYSBtw4PCoXMgaW5mb3JtYWNpw7NuIGluZ3Jlc2UgYTogIDxodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tPi4NCg0KDQojIyAqKlVzYSBSIGNvbW8gdW5hIGNhbGN1bGFkb3JhKioNCg0KQ29sb2NhIGFxdcOtwq0gdHVzIGFub3RhY2lvbmVzLi4uDQoNCnwgICAgICAgICAgICB8ICAgICAgICAgICAgICAgICAgfCAgICAgICAgICAgICAgfCAgICAgICAgICAgICAgICB8DQp8LS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0tfA0KfCoqT3BlcmFkb3IqKnwgICAqKk9wZXJhY2nDs24qKiAgfCAgKipFamVtcGxvKiogfCAgKipSZXN1bHRhZG8qKiB8DQp8ICAgICBcKyAgICAgfCAgU3VtYSAgICAgICAgICAgIHwgICAxMCArIDMgICAgIHwgICAgIDEzICAgICAgICAgfA0KfCAgICAgXC0gICAgIHwgIFJlc3RhICAgICAgICAgICB8ICAgMTAgLSAzICAgICB8ICAgICA3ICAgICAgICAgIHwNCnwgICAgIFwqICAgICB8ICBNdWx0aXBsaWNhY2nDs24gIHwgICAxMCBcKiAzICAgIHwgICAgIDMwICAgICAgICAgfA0KfCAgICAgLyAgICAgIHwgIERpdmlzacOzbiAgICAgICAgfCAgIDEwLzMgICAgICAgfCAgICAgMy4zMzMzMzMzMyB8DQp8ICAgIFxeICAgICAgfCAgUG90ZW5jaWEgICAgICAgIHwgICAxMCBcXiAzICAgIHwgICAgMTAwMCAgICAgICAgfA0KfCAgICAlLyUgICAgIHwgIERpdmlzacOzbiBlbnRlcmEgfCAgIDEwICUvJSAzICAgfCAgICAzICAgICAgICAgICB8DQp8ICAgICUlICAgICAgfCAgUmVzaWR1byAgICAgICAgIHwgICAxMCAlJSAzICAgIHwgICAgMSAgICAgICAgICAgfA0KfCAgICAgICAgICAgIHwgICAgICAgICAgICAgICAgICB8ICAgICAgICAgICAgICB8ICAgICAgICAgICAgICAgIHwNCg0KDQoNCiMjIERhdGEgU2V0IC0gR2FsdG9uDQoNCioqR2FsdG9uKiogZXMgdW4gY29uanVudG8gZGUgZGF0b3MgIGRhdG9zIHRhYnVsYWRvcyB1dGlsaXphZG9zIGVuIDE4ODUgcGFyYSBlc3R1ZGlhciBsYSByZWxhY2nDs24gZW50cmUgbGEgYWx0dXJhIGRlIGxvcyBwYWRyZXMgeSAgaGlqb3MuDQoNCg0KYGBge3IgfQ0Kc3VtbWFyeShHYWx0b24pDQpgYGANCg0KIyMgKipWaXN1YWxpemFjacOzbiBkZSBncsOhZmljb3MqKg0KDQpzZSBwdWVkZW4gZWxhYm9yIGluZmluaWRhZCBkZSBncmFmaWNvczoNCg0KIyMjICoqKkdyw6FmaWNvIGRlIGdpcmFzb2wqKioNCg0KYGBge3IgR2FsdG9uLCB3YXJuaW5nPUZBTFNFLCBtZXNzYWdlPUZBTFNFfQ0Kc3VuZmxvd2VycGxvdChHYWx0b24sIGNleD0xLjUsIGNvbD0iR3JlZW4iLCBzZWcubG5kPTAuNywgc2VnLmNvbD0iYmx1ZSIpDQpgYGANCg0KDQojIyMgKioqR3LDoWZpY28gZGUgaGlzdG9ncmFtYSoqKg0KDQpgYGB7cn0NCnRlbXAgPC0gYWlycXVhbGl0eSRUZW1wIA0KaGlzdCh0ZW1wLCBtYWluID0gIiIsIHhsYWIgPSAiVGVtcGVyYXR1cmEiLCANCiAgICAgeWxhYiA9ICJGcmVjdWVuY2lhIiwNCiAgICAgYnJlYWtzPTEwLCANCiAgICAgeGxpbSA9IGMoNTAsMTAwKSkNCmBgYA0KDQoNCiMjIyAqKipEZW5zaXR5IFBsb3QqKioNCg0KY2FtYmlhciBsb3MgbWVzZXMgbnVtw6lyaWNvcyBhIG5vbWJyZXMgeSBkZWZpbmlyIG1lcyBjb21vIGZhY3Rvcg0KDQpgYGB7ciBhaXJxdWFsaXR5fQ0KYWlycXVhbGl0eVssICJNb250aCJdIDwtIGZhY3RvcihhaXJxdWFsaXR5JE1vbnRoLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBsYWJlbHMgPSBjKCJNYXlvIiwiSnVuaW8iLA0KICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICJKdWxpbyIsIkFnb3N0byIsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIlNlcHRpZW1icmUiKSkNCmBgYA0KDQpHcmFmaWNhcjoNCg0KYGBge3J9DQpnZ3Bsb3QoYWlycXVhbGl0eSxhZXMoeCA9IFRlbXAsIA0KICAgICAgICAgICAgICAgICAgICAgIGZpbGwgPSBNb250aCwNCiAgICAgICAgICAgICAgICAgICAgICBjb2xvdXIgPSBNb250aCkpICsNCiAgZ2VvbV9kZW5zaXR5KGFscGhhID0gMC4xLCANCiAgICAgICAgICAgICAgIGx3ZD0xKSArDQogIHhsaW0oNTAsIDEwMCkgKyANCiAgbGFicyh4PSJUZW1wZXJhdHVyYSIsIHk9IkRlbnNpZGFkIiwgDQogICAgICAgY29sPSJNZXNlcyIsIGZpbGw9Ik1lc2VzIikNCg0KYGBgDQoNCg0KIyMjICoqKkJveCBQbG90KioqDQoNCmBgYHtyIGlyaXN9DQpnZ3Bsb3QoZGF0YSA9IGNoaWNrd3RzLCBhZXMoeCA9IGZlZWQsIHkgPSB3ZWlnaHQpKSArDQogICAgICAgc3RhdF9ib3hwbG90KGdlb20gPSAiZXJyb3JiYXIiLCANCiAgICAgICAgICAgICAgICAgICAgd2lkdGggPSAwLjIpICsNCiAgICAgICBnZW9tX2JveHBsb3QoZmlsbCA9ICIjNDI3MUFFIiwgY29sb3VyID0gIiMxRjM1NTIiLCANCiAgICAgICAgICAgICAgICAgICAgYWxwaGEgPSAwLjksIG91dGxpZXIuY29sb3VyID0gInJlZCIpICsNCiAgICAgICBzY2FsZV95X2NvbnRpbnVvdXMobmFtZSA9ICJQZXNvIikgKyAgDQogICAgICAgc2NhbGVfeF9kaXNjcmV0ZShuYW1lID0gIkFsaW1lbnRhY2nDg8KzbiIpICsgICANCiAgICAgICB0aGVtZShheGlzLmxpbmUgPSBlbGVtZW50X2xpbmUoY29sb3VyID0gImJsYWNrIiwNCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc2l6ZSA9IDAuMjUpKQ0KYGBgDQoNCg0KIyMjICoqKkdyw6FmaWNvIGRlIHZpb2xpbioqKg0KDQpgYGB7ciB2aW9saW59DQpkYXRhX3dpZGUgPC0gaXJpc1sgLCAxOjRdDQpkYXRhX3dpZGUgJT4lIA0KICBnYXRoZXIoa2V5PSJNZXN1cmVUeXBlIiwgdmFsdWU9IlZhbCIpICU+JQ0KICBnZ3Bsb3QoIGFlcyh4PU1lc3VyZVR5cGUsIHk9VmFsLCBmaWxsPU1lc3VyZVR5cGUpKSArDQogICAgZ2VvbV92aW9saW4oKQ0KYGBgDQoNCg0KIyMjICoqKkdyw6FmaWNvIGRlIHB1bnRvcyoqKg0KDQpgYGB7cn0NCmdncGxvdChpcmlzLCBhZXMoeD1TZXBhbC5MZW5ndGgsIHk9UGV0YWwuTGVuZ3RoKSkrDQogIGdlb21fcG9pbnQoKSsNCiAgbGFicyh0aXRsZT0iMTAwIikNCmBgYA0KDQoNCiMjIyMgKioqR3LDoWZpY28gZGUgcHVudG9zICgyKSoqKg0KDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGEgPSBpcmlzLCBhZXMoeD1TZXBhbC5MZW5ndGgsIHk9U2VwYWwuV2lkdGgpKSArIA0KICBnZW9tX3BvaW50KCkgKw0KICB0aGVtZV9saWdodCgpIA0KYGBgDQoNCg0KIyMjICoqKkdyw6FmaWNvcyBkZSBkaXNwZXJjacOzbioqKg0KDQpgYGB7cn0NCmdncGxvdChkYXRhPWdhcG1pbmRlcikrDQogIGdlb21fcG9pbnQoYWVzKHg9Z2RwUGVyY2FwLCB5PWxpZmVFeHAsIGNvbG91ciA9IGNvbnRpbmVudCkpKw0KICBmYWNldF93cmFwKH5jb250aW5lbnQpDQpgYGANCg0KDQoNCiMjIyAqKipHcsOhZmljbyBkZSBsaW5lYXMqKiogDQoNCmBgYHtyIGxpbmVhcywgd2FybmluZz1GQUxTRSwgbWVzc2FnZT1GQUxTRX0NCmdncGxvdChkaWFtb25kcywgYWVzKHggPSBwcmljZSwgeSA9IGN1dCwgZmlsbCA9IGN1dCkpICsNCiAgZ2VvbV9kZW5zaXR5X3JpZGdlcygpICsNCiAgdGhlbWVfcmlkZ2VzKCkgKyANCiAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gIm5vbmUiKQ0KYGBgDQoNCg0KIyMjICoqKk1hcGEgZGUgY2Fsb3IqKioNCg0KYGBge3IgbWFwYX0NCiMgU2UgY3JlYSBsYSBkYXRhDQpzZXQuc2VlZCgyMDIyKSANCmRhdGEgPC0gZGF0YS5mcmFtZSh4ID0gcm5vcm0oMTUwKSwgeSA9IHJub3JtKDE1MCkpIA0KZGF0YSR6IDwtIHdpdGgoZGF0YSwgeCAqIHkgKyBybm9ybSgxNTAsIHNkID0gMSkpIA0KDQojIE1vc3RyYXIgbG9zIHB1bnRvcyBkZSBhIGRhdGEgZGUgbGEgbWlzbWEgY29sb3INCmxldmVscGxvdCh6IH4geCAqIHksIGRhdGEsIHBhbmVsID0gcGFuZWwubGV2ZWxwbG90LnBvaW50cywgDQogICAgICAgICAgY2V4ID0gMS4yKSArIA0KICBsYXllcl8ocGFuZWwuMmRzbW9vdGhlciguLi4sIG4gPSAyMDApKQ0KYGBgDQoNCg0KIyMjICoqKkdyw6FmaWNvIGRlIGJhcnJhcyoqKg0KDQpgYGB7cn0NCmdncGxvdChkYXRhID0gaXJpcywgYWVzKHg9U2VwYWwuTGVuZ3RoKSkgKyANCiAgZ2VvbV9iYXIoKSArDQogIHRoZW1lX2xpZ2h0KCkgKw0KICB4bGFiKCJTZXBhbCBMZW5naHQiKQ0KYGBgDQoNCg0KIyMjIyAqKipHcsOhZmljbyBkZSBiYXJyYXMgKDIpKioqDQoNCmBgYHtyfQ0KZ2dwbG90KGRhdGE9ZGlhbWFudGVzKSsNCiAgZ2VvbV9iYXIobWFwcGluZyA9IGFlcyh4PWNvcnRlLCAgZmlsbD1jbGFyaWRhZCksIHBvc2l0aW9uID0gImRvZGdlIikNCmBgYA0KDQoNCiMjIyAqKipHcsOhZmljbyBjaXJjdWxhcioqKg0KDQoNCmBgYHtyfQ0KIyBDcmVhY2nDs24gZGUgZGF0b3MNClByb3AgPC0gYygzLDcsOSwxLDIpDQpteVBhbGV0dGUgPC0gYnJld2VyLnBhbCg1LCAiU2V0MiIpIA0KDQojIEdyw6FmaWNvDQpwaWUoUHJvcCAsIGxhYmVscyA9IGMoIkdyLUEiLCJHci1CIiwiR3ItQyIsIkdyLUQiLCJHci1FIiksIGJvcmRlcj0id2hpdGUiLCBjb2w9bXlQYWxldHRlICkNCg0KYGBgDQoNCg0KIyMjICoqKkRlbmRvZ3JhbWEqKioNCg0KDQpgYGB7cn0NCiMgQ3JlYWNpb24gZGUgZGF0YSBmcmFtZQ0KZDEgPC0gZGF0YS5mcmFtZShmcm9tPSJvcmlnaW4iLCB0bz1wYXN0ZSgiZ3JvdXAiLCBzZXEoMSw1KSwgc2VwPSIiKSkNCmQyIDwtIGRhdGEuZnJhbWUoZnJvbT1yZXAoZDEkdG8sIGVhY2g9NSksIHRvPXBhc3RlKCJzdWJncm91cCIsIHNlcSgxLDI1KSwgc2VwPSJfIikpDQplZGdlcyA8LSByYmluZChkMSwgZDIpDQoNCiMgQ3JlYWNpw7NuIGRlIG9iamV0b3MgZ3LDoWZpY29zDQpteWdyYXBoIDwtIGdyYXBoX2Zyb21fZGF0YV9mcmFtZSggZWRnZXMgKQ0KDQojIERlbmRvZ3JhbWENCmdncmFwaChteWdyYXBoLCBsYXlvdXQgPSAnZGVuZHJvZ3JhbScsIGNpcmN1bGFyID0gRkFMU0UpICsgDQogIGdlb21fZWRnZV9kaWFnb25hbCgpICsNCiAgZ2VvbV9ub2RlX3BvaW50KCkgKw0KICB0aGVtZV92b2lkKCkNCmBgYA0KDQoNCg0KDQo8ZGl2IGNsYXNzPSJ0b2NpZnktZXh0ZW5kLXBhZ2UiIGRhdGEtdW5pcXVlPSJ0b2NpZnktZXh0ZW5kLXBhZ2UiIHN0eWxlPSJoZWlnaHQ6IDA7Ij48L2Rpdj4NCg==