library(tidyverse)
library(bibliometrix)
library(tidygraph)
library(igraph)
library(tidytext)
library(wordcloud)
source("verbs.R") # https://github.com/coreofscience/tidyscience/blob/main/verbs.RCreando ambiente de trabajo
Cargar las librerías y cargar el código.
Cargar los datos
scopus_df <-
bibliometrix::convert2df(file = "scientometrics.bib",
dbsource = "scopus",
format = "bibtex")
Converting your scopus collection into a bibliographic dataframe
Done!
Generating affiliation field tag AU_UN from C1: Done!
Organizar
references_df <-
get_references(data = scopus_df)Análisis
Crear una red de citacion
citation_network <-
get_citation_network(scopus_df = scopus_df,
references_df = references_df)Limpiamos la red, de acuerdo a la propuesta de:
https://hemeroteca.unad.edu.co/index.php/nova/article/view/1735/1983
citation_network_tos <-
get_citation_network_tos(citation_network = citation_network)Export data to gephi
citation_network_tos %>%
tidygraph::as.igraph() %>%
igraph::write_graph("citation.network_tos.graphml", "graphml")Numbe de palabras del primer clúster
pal <- brewer.pal(8,"Dark2")
citation_network_tos %>%
activate(nodes) %>%
filter(subfield == 1) %>%
select(TI) %>%
as_tibble() %>%
unnest_tokens(output = word,
input = TI) %>%
dplyr::anti_join(stop_words) %>%
count(word, sort = TRUE) %>%
filter(word == str_remove(word, pattern = "scientometrics")) %>%
with(wordcloud(word,
n,
random.order = FALSE,
max.words = 50,
colors=pal))Joining, by = "word"