dnorm()

yields the value of the probability density function (pdf) or the y-value, given a:

Default: mean = 0, standard deviation = 1.

dnorm(-1, mean = 0, sd = 1).

[1] 0.2419707

same result:
dnorm(-1): Here x = -1. Corresponding y value = dnorm(-1).

dnorm(-1):

[1] 0.2419707

pnorm()

\(pnorm(q, \mu = 0, \sigma = 1, lower.tail = TRUE)\)
  • Yields the probability under the curve to the left of q.
    • i.e. set lower.tail = TRUE
  • \(pnorm(q, \mu = 0, \sigma = 1, lower.tail = TRUE)\) is : \(Pr(Z\le{q})\)
  • \(Pr(Z\le{q})\) is the Cumulative Distribution Function (CDF)
  • Below \(q = -1\)

q = -1
pnorm(-1): Pr(Z \(\le\) -1)

pnorm(q) 
[1] 0.1586553

lower.tail = TRUE is the default. Same result below.

pnorm(q, lower.tail = TRUE)
[1] 0.1586553

lower.tail = FALSE

Yields the probability under the curve to the RIGHT(i.e. set lower.tail = FALSE) of -1.

q = -1
pnorm(-1, lower.tail = FALSE): Pr(Z \(\ge\) -1)

pnorm(q, lower.tail = FALSE)
[1] 0.8413447

qnorm()

\(qnorm(p, \mu = 0, \sigma = 1, lower.tail = TRUE)\)

EXAMPLES:

Example 1:

Find \(z\) such that \(P(Z\le {z}) =\) 0.99

Z-score: qnorm(0.99) = 2.3263479

Z-score: z = 2.33

\(P(Z\le\) 2.33) = 0.99

Example 2:

Find z such that \(P(Z\le {z}) =\) 0.8413447

Z-score: qnorm(0.8413447) = 0.9999998

Z-score: z = 1

\(P(Z\le\) 1) = 0.8413447

Example 3:

Find z such that \(P(Z\ge {z}) =\) 0.8413447

Z-score: qnorm(0.8413447, lower.tail = FALSE) = -0.9999998

Z-score: z = -1

\(P(Z\ge\) -1) = 0.8413447

rnorm(n, mean = 0, sd = 1)

Generates n random variable from the normal distribution with mean = 0 and standard deviation = 1.

rnorm(6): yields 6 random variable from the standard normal distribution (mean = 0, s.d. = 1)

rnorm(6)
[1]  0.8217731  1.3921164 -0.4761739  0.6503486  1.3911105 -1.1107889

rnorm(6, mean = 5, sd = 2): yields 6 random variable from the normal distribution with mean = 5, standard deviation = 2

rnorm(6, mean = 5, sd = 2)
[1] 3.278415 2.736523 2.081572 5.159965 6.306409 7.401931

Source: https://www.statology.org/dnorm-pnorm-rnorm-qnorm-in-r/

LS0tDQp0aXRsZTogImRub3JtLCBwbm9ybSwgcW5vcm0sIHJub3JtIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KDQoNCmBgYHtyIGluY2x1ZGU9RkFMU0V9DQoNCiNodHRwczovL3d3dy5zdGF0b2xvZ3kub3JnL2Rub3JtLXBub3JtLXJub3JtLXFub3JtLWluLXIvDQoNCiMjIyBXcml0ZSBoZWxwZXIgZnVuY3Rpb25zDQoNCiMjUGxvdCBub3JtYWwgZGVuc2l0eS4gRmluZCBkZW5zaXR5IGZvciBnaXZlbiB4IHZhbHVlICh2YWwpDQpgYGANCg0KDQojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIw0KYGBge3IgaW5jbHVkZSA9IEZBTFNFLCBlY2hvPUZBTFNFfQ0KYWRkX2xpbmUgPC0gZnVuY3Rpb24odmFsLCB4MSA9IC0zLCB4MiA9IDMpew0KICANCiAgI3Bsb3Qgbm9ybWFsIGRlbnNpdHkgZnVuY3Rpb24NCiAgZGVuIDwtIHBsb3QoZG5vcm0sIHgxLCB4MikNCiAgDQogICNEcmF3IHZlcnRpY2FsIGxpbmUNCiAgcG9seWdvbihjKHZhbCwgdmFsKSwNCiAgICAgICAgICBjKDAsIGRub3JtKHZhbCkpLA0KICAgICAgICAgIGNvbCA9ICdibHVlJywNCiAgICAgICAgICBib3JkZXIgPSAncmVkJywNCiAgICAgICAgICBsd2QgPSAyDQogICAgICAgICAgKQ0KICAjRHJhdyBob3JpemFudGFsIGxpbmUNCiAgcG9seWdvbihjKHZhbCwgeDEpLA0KICAgICAgICAgIGMoZG5vcm0odmFsKSwgZG5vcm0odmFsKSksDQogICAgICAgICAgY29sID0gJ2JsdWUnLA0KICAgICAgICAgIGJvcmRlciA9ICdyZWQnLA0KICAgICAgICAgIGx3ZCA9IDINCiAgICAgICAgICApDQogIA0KICAjRHJhdyBkYXNoZWQgaG9yaXphbnRhbCBhbmQgdmVydGljYWwgbGluZXMNCiAgYWJsaW5lKHYgPSB2YWwsDQogICAgICAgICBoID0gZG5vcm0odmFsKSwNCiAgICAgICAgIGNvbCA9IGMoImxpZ2h0Z3JheSIsICJsaWdodGdyYXkiKSwNCiAgICAgICAgIGx0eSA9IGMoMiwyKQ0KICAgICAgICAgKQ0KfQ0KDQoNCiMgYWRkX2xpbmUoLTEpDQpgYGANCg0KDQojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjDQoNCmBgYHtyIGluY2x1ZGU9RkFMU0UsIGVjaG89RkFMU0V9DQoNCiNQbG90IGRlbnNpdHkgZnVuY3Rpb24gc2hhZGUgYXBwcm9yaWF0ZSBzZWN0aW9uIG9mIHBkZg0KDQpzaGFkZV9yZWdpb24gPC0gZnVuY3Rpb24odmFsLCB4MSA9IC0zLCB4MiA9IDMsIGxvd2VyLnRhaWwgPSBUUlVFKXsNCiAgDQogIGRlbiA8LSBwbG90KGRub3JtLCB4MSwgeDIsIHhsYWIgPSAneicpDQogIA0KICBpZihsb3dlci50YWlsID09IFRSVUUpew0KICAgIHBvbHlnb24oYyhkZW4keFtkZW4keCA8IHZhbF0sIHZhbCksDQogICAgICAgICAgICBjKGRlbiR5W2RlbiR4IDwgdmFsXSwgMCksDQogICAgICAgICAgICBjb2wgPSAnYmx1ZScsDQogICAgICAgICAgICAjYm9yZGVyID0gJ3JlZCcsDQogICAgICAgICAgICBsd2QgPSAyDQogICAgKQ0KICB9DQogIGlmKGxvd2VyLnRhaWwgPT0gRkFMU0Upew0KICAgIHBvbHlnb24oYyhkZW4keFtkZW4keCA+IHZhbF0sIHZhbCksDQogICAgICAgICAgICBjKGRlbiR5W2RlbiR4ID4gdmFsXSwgMCksDQogICAgICAgICAgICBjb2wgPSAnYmx1ZScsDQogICAgICAgICAgICAjYm9yZGVyID0gJ3JlZCcsDQogICAgICAgICAgICBsd2QgPSAyDQogICAgKQ0KICB9DQp9DQpgYGANCg0KDQojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjDQoNCmBgYHtyIGVjaG89RkFMU0V9DQojUGxvdCBkZW5zaXR5IGZ1bmN0aW9uIHNoYWRlIGFwcHJvcmlhdGUgc2VjdGlvbiBvZiBwZGYNCg0KcW5vcm1fcmVnaW9uIDwtIGZ1bmN0aW9uKHZhbCA9IDAuODQxMzQ0NywgeDEgPSAtMywgeDIgPSAzLCBsb3dlcl90YWlsID0gVFJVRSl7DQogIHYgPSBsb3dlcl90YWlsDQogIHNoYWRlX3JlZ2lvbihpZmVsc2UodiA9PSBUUlVFLCBxbm9ybSh2YWwpLCAtcW5vcm0odmFsKSksIHgxLCB4MiwgdikNCiAgDQogIHggPSBxbm9ybSh2YWwpIC0gMC41DQogIHRleHQoeCA9IHgsDQogICAgICAgeSA9IGRub3JtKHgtMC41KSwNCiAgICAgICBwYXN0ZTAoJycsIHZhbCksIA0KICAgICAgIGZhbWlseSA9ICdzYW5zJykNCn0NCg0KDQojIHFub3JtX3JlZ2lvbigpDQpgYGANCg0KDQoNCiMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMNCg0KDQoNCg0KYGBge3IgaW5jbHVkZSA9IEZBTFNFLCBlY2hvID0gRkFMU0V9DQojIyMgc2V0IHF1YW50aWxlIHZhcmlhYmxlLCBxID0gLTENCiNzZXQgdmFyaWFibGVzDQpxID0gIC0xDQpgYGANCg0KDQojIyBkbm9ybSgpDQoNCnlpZWxkcyB0aGUgdmFsdWUgb2YgdGhlIHByb2JhYmlsaXR5IGRlbnNpdHkgZnVuY3Rpb24gKHBkZikgb3IgdGhlIHktdmFsdWUsIGdpdmVuIGE6DQoNCiAgKiByYW5kb20gdmFyaWFibGUgeC4NCiAgKiBwb3B1bGF0aW9uIG1lYW4gPSAkXG11JA0KICAqIHN0YW5kYXJkIGRldmlhdGlvbiA9ICRcc2lnbWEkDQoNCg0KYGBge3IgaW5jbHVkZT1UUlVFLCBlY2hvPUZBTFNFfQ0KYWRkX2xpbmUocSkNCg0KYGBgDQoNCkRlZmF1bHQ6IG1lYW4gPSAwLCBzdGFuZGFyZCBkZXZpYXRpb24gPSAxLiAgDQoNCmRub3JtKGByIHFgLCBtZWFuID0gMCwgc2QgPSAxKS4NCmBgYHtyIGVjaG8gPSBGQUxTRX0NCiNzYW1lIHJlc3VsdA0KZG5vcm0ocSwgbWVhbiA9IDAsIHNkID0gMSkNCmBgYA0KDQoqKnNhbWUgcmVzdWx0OioqICANCmRub3JtKGByIHFgKTogSGVyZSB4ID0gYHIgcWAuIENvcnJlc3BvbmRpbmcgeSB2YWx1ZSA9IGBkbm9ybShgciBxYClgLiAgDQoNCmRub3JtKGByIHFgKToNCmBgYHtyIGVjaG8gPSBGQUxTRX0NCmRub3JtKHEpDQpgYGANCg0KDQojIyBwbm9ybSgpDQojIyMjIyAqKiRwbm9ybShxLCBcbXUgPSAwLCBcc2lnbWEgPSAxLCBsb3dlci50YWlsID0gVFJVRSkkKioNCg0KKiBZaWVsZHMgdGhlIHByb2JhYmlsaXR5IHVuZGVyIHRoZSBjdXJ2ZSB0byB0aGUgbGVmdCBvZiBxLg0KICAgIC0gaS5lLiBzZXQgbG93ZXIudGFpbCA9IFRSVUUgDQoNCiogKiokcG5vcm0ocSwgXG11ID0gMCwgXHNpZ21hID0gMSwgbG93ZXIudGFpbCA9IFRSVUUpJCoqIGlzIDogJFByKFpcbGV7cX0pJA0KKiAkUHIoWlxsZXtxfSkkIGlzIHRoZSBDdW11bGF0aXZlIERpc3RyaWJ1dGlvbiBGdW5jdGlvbiAoQ0RGKQ0KKiBCZWxvdyAkcSA9IC0xJA0KDQpgYGB7ciBlY2hvPUZBTFNFfQ0Kc2hhZGVfcmVnaW9uKHEsIGxvd2VyLnRhaWwgPSBUUlVFKQ0KYGBgDQpxID0gYHIgcWAgIA0KcG5vcm0oYHIgcWApOiAgUHIoWiAkXGxlJCBgciBxYCkNCg0KYGBge3J9DQpwbm9ybShxKSANCmBgYA0KYGxvd2VyLnRhaWwgPSBUUlVFYCBpcyB0aGUgZGVmYXVsdC4gU2FtZSByZXN1bHQgYmVsb3cuDQpgYGB7cn0NCnBub3JtKHEsIGxvd2VyLnRhaWwgPSBUUlVFKQ0KYGBgDQoNCg0KIyMjIGxvd2VyLnRhaWwgPSBGQUxTRQ0KWWllbGRzIHRoZSBwcm9iYWJpbGl0eSB1bmRlciB0aGUgY3VydmUgdG8gdGhlIFJJR0hUKGkuZS4gc2V0IGxvd2VyLnRhaWwgPSBGQUxTRSkgb2YgYHIgcWAuDQpgYGB7ciBlY2hvPUZBTFNFfQ0Kc2hhZGVfcmVnaW9uKHEsIGxvd2VyLnRhaWwgPSBGQUxTRSkNCmBgYA0KcSA9IGByIHFgICANCnBub3JtKGByIHFgLCBsb3dlci50YWlsID0gRkFMU0UpOiBQcihaICRcZ2UkIGByIHFgKQ0KYGBge3J9DQpwbm9ybShxLCBsb3dlci50YWlsID0gRkFMU0UpDQpgYGANCg0KDQoNCiMjIHFub3JtKCkNCg0KDQoqKiRxbm9ybShwLCBcbXUgPSAwLCBcc2lnbWEgPSAxLCBsb3dlci50YWlsID0gVFJVRSkkKioNCg0KKiBGaW5kIHRoZSBaLXNjb3JlIGNvcnJlc3BvbmRpbmcgdG8gdGhlICRwXnt0aH0kIHF1YW50aWxlIG9mIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uDQoNCiogWWllbGRzIHRoZSB6IHNjb3JlIGNvcnJlc3BvbmRpbmcgdG8gdGhlIGdpdmVuIHByb2JhYmlsaXR5IChhcmVhIHVuZGVyIHRoZSBjdXJ2ZSkNCg0KKiB5aWVsZHMgeiBzY29yZSAodmFsdWUgb24geiBheGlzIGNvcnJlc3BvbmRpbmcgdG8gdGhlIGdpdmVuIHNoYWRlZCByZWdpb24gcHJvYmFiaWxpdHkpDQoqIEFsbCBwYXJhbWV0ZXJzIGV4Y2VwdCB0aGUgcXVhbnRpbGUgcCBoYXZlIGEgZGVmYXVsdCB2YWx1ZQ0KDQoNCg0KYGBge3IgaW5jbHVkZT1GQUxTRX0NCnAxID0gMC45OQ0KcDIgPSAwLjg0MTM0NDcNCnAzID0gMSAqIHAyDQpgYGANCg0KIyMgRVhBTVBMRVM6ICANCg0KIyMjIEV4YW1wbGUgMToNCiMjIyMgRmluZCAkeiQgc3VjaCB0aGF0ICRQKFpcbGUge3p9KSA9JCBgciBwMWANCg0KYGBge3IgZWNobz1GQUxTRX0NCnFub3JtX3JlZ2lvbihwMSkNCmBgYA0KDQoqKlotc2NvcmU6KiogcW5vcm0oYHIgcDFgKSA9IGByIHFub3JtKHAxKWAgICANCg0KKipaLXNjb3JlOioqIHogPSBgciByb3VuZChxbm9ybShwMSksMilgDQoNCioqJFAoWlxsZSQgYHIgcm91bmQocW5vcm0ocDEpLCAyKWApKiogPSBgciBwMWANCg0KDQoNCiMjIyBFeGFtcGxlIDI6DQojIyMjIEZpbmQgeiBzdWNoIHRoYXQgJFAoWlxsZSB7en0pID0kIGByIHAyYA0KDQpgYGB7ciBlY2hvID0gRkFMU0V9DQpxbm9ybV9yZWdpb24ocDIpDQoNCmBgYA0KDQoNCioqWi1zY29yZToqKiBxbm9ybShgciBwMmApID0gYHIgcW5vcm0ocDIpYCAgIA0KDQoNCioqWi1zY29yZToqKiB6ID0gYHIgcm91bmQocW5vcm0ocDIpLDIpYA0KDQoNCioqJFAoWlxsZSQgYHIgcm91bmQocW5vcm0ocDIpLCAyKWApKiogPSBgciBwMmANCg0KDQoNCiMjIyBFeGFtcGxlIDM6DQojIyMgRmluZCB6IHN1Y2ggdGhhdCAkUChaXGdlIHt6fSkgPSQgYHIgcDJgDQoNCmBgYHtyIGVjaG8gPSBGQUxTRX0NCnFub3JtX3JlZ2lvbihwMiwgbG93ZXJfdGFpbCA9IEZBTFNFKQ0KDQpgYGANCg0KDQoqKlotc2NvcmU6KiogcW5vcm0oYHIgcDJgLCBsb3dlci50YWlsID0gRkFMU0UpID0gYHIgcW5vcm0ocDIsIGxvd2VyLnRhaWwgPSBGQUxTRSlgICAgDQoNCg0KKipaLXNjb3JlOioqIHogPSBgciByb3VuZChxbm9ybShwMiwgbG93ZXIudGFpbCA9IEZBTFNFKSwyKWANCg0KDQoqKiRQKFpcZ2UkIGByIHJvdW5kKHFub3JtKHAyLCBsb3dlci50YWlsID0gRkFMU0UpLCAyKWApICoqPSBgciBwMmANCg0KDQoNCg0KIyMgcm5vcm0obiwgbWVhbiA9IDAsIHNkID0gMSkNCg0KR2VuZXJhdGVzIG4gcmFuZG9tIHZhcmlhYmxlIGZyb20gdGhlIG5vcm1hbCBkaXN0cmlidXRpb24gd2l0aCBtZWFuID0gMCBhbmQgc3RhbmRhcmQgZGV2aWF0aW9uID0gMS4NCg0Kcm5vcm0oNik6IHlpZWxkcyA2IHJhbmRvbSB2YXJpYWJsZSBmcm9tIHRoZSBzdGFuZGFyZCBub3JtYWwgZGlzdHJpYnV0aW9uIChtZWFuID0gMCwgcy5kLiA9IDEpDQpgYGB7cn0NCnJub3JtKDYpDQpgYGANCg0Kcm5vcm0oNiwgbWVhbiA9IDUsIHNkID0gMik6IHlpZWxkcyA2IHJhbmRvbSB2YXJpYWJsZSBmcm9tIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uIHdpdGggbWVhbiA9IDUsIHN0YW5kYXJkIGRldmlhdGlvbiA9IDINCg0KYGBge3J9DQpybm9ybSg2LCBtZWFuID0gNSwgc2QgPSAyKQ0KYGBgDQoNCg0KDQpTb3VyY2U6IGh0dHBzOi8vd3d3LnN0YXRvbG9neS5vcmcvZG5vcm0tcG5vcm0tcm5vcm0tcW5vcm0taW4tci8NCg0K