library(tidyverse)
## Warning: 程辑包'tidyverse'是用R版本4.1.3 来建造的
## -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
## v ggplot2 3.3.6 v purrr 0.3.4
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2 v forcats 0.5.1
## Warning: 程辑包'ggplot2'是用R版本4.1.3 来建造的
## Warning: 程辑包'tidyr'是用R版本4.1.3 来建造的
## Warning: 程辑包'readr'是用R版本4.1.3 来建造的
## Warning: 程辑包'stringr'是用R版本4.1.3 来建造的
## Warning: 程辑包'forcats'是用R版本4.1.3 来建造的
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(modelr)
## Warning: 程辑包'modelr'是用R版本4.1.3 来建造的
options(na.action = na.warn)
library(nycflights13)
## Warning: 程辑包'nycflights13'是用R版本4.1.3 来建造的
library(lubridate)
## Warning: 程辑包'lubridate'是用R版本4.1.3 来建造的
##
## 载入程辑包:'lubridate'
## The following objects are masked from 'package:base':
##
## date, intersect, setdiff, union
library(tidyverse)
library(modelr)
options(na.action = na.warn)
library(nycflights13)
library(lubridate)
ggplot(diamonds, aes(cut, price)) + geom_boxplot()

ggplot(diamonds, aes(color, price)) + geom_boxplot()

ggplot(diamonds, aes(clarity, price)) + geom_boxplot()

ggplot(diamonds, aes(carat, price)) +
geom_hex(bins = 50)

diamonds2 <- diamonds %>%
filter(carat <= 2.5) %>%
mutate(lprice = log2(price), lcarat = log2(carat))
ggplot(diamonds2, aes(lcarat, lprice)) +
geom_hex(bins = 50)

mod_diamond <- lm(lprice ~ lcarat, data = diamonds2)
grid <- diamonds2 %>%
data_grid(carat = seq_range(carat, 20)) %>%
mutate(lcarat = log2(carat)) %>%
add_predictions(mod_diamond, "lprice") %>%
mutate(price = 2 ^ lprice)
ggplot(diamonds2, aes(carat, price)) +
geom_hex(bins = 50) +
geom_line(data = grid, color = "red", size = 1)

diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond, "lresid")
ggplot(diamonds2, aes(lcarat, lresid)) +
geom_hex(bins = 50)

ggplot(diamonds2, aes(cut, lresid)) + geom_boxplot()

ggplot(diamonds2, aes(color, lresid)) + geom_boxplot()

ggplot(diamonds2, aes(clarity, lresid)) + geom_boxplot()

mod_diamond2 <- lm(
lprice ~ lcarat + color + cut + clarity,
data = diamonds2
)
grid <- diamonds2 %>%
data_grid(cut, .model = mod_diamond2) %>%
add_predictions(mod_diamond2)
grid
## # A tibble: 5 x 5
## cut lcarat color clarity pred
## <ord> <dbl> <chr> <chr> <dbl>
## 1 Fair -0.515 G VS2 11.2
## 2 Good -0.515 G VS2 11.3
## 3 Very Good -0.515 G VS2 11.4
## 4 Premium -0.515 G VS2 11.4
## 5 Ideal -0.515 G VS2 11.4
#> # A tibble: 5 × 5
#> cut lcarat color clarity pred
#> <ord> <dbl> <chr> <chr> <dbl>
#> 1 Fair -0.515 G SI1 11.0
#> 2 Good -0.515 G SI1 11.1
#> 3 Very Good -0.515 G SI1 11.2
#> 4 Premium -0.515 G SI1 11.2
#> 5 Ideal -0.515 G SI1 11.2
ggplot(grid, aes(cut, pred)) +
geom_point()

diamonds2 <- diamonds2 %>%
add_residuals(mod_diamond2, "lresid2")
ggplot(diamonds2, aes(lcarat, lresid2)) +
geom_hex(bins = 50)

diamonds2 %>%
filter(abs(lresid2) > 1) %>%
add_predictions(mod_diamond2) %>%
mutate(pred = round(2 ^ pred)) %>%
select(price, pred, carat:table, x:z) %>%
arrange(price)
## # A tibble: 16 x 11
## price pred carat cut color clarity depth table x y z
## <int> <dbl> <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1013 264 0.25 Fair F SI2 54.4 64 4.3 4.23 2.32
## 2 1186 284 0.25 Premium G SI2 59 60 5.33 5.28 3.12
## 3 1186 284 0.25 Premium G SI2 58.8 60 5.33 5.28 3.12
## 4 1262 2644 1.03 Fair E I1 78.2 54 5.72 5.59 4.42
## 5 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 6 1415 639 0.35 Fair G VS2 65.9 54 5.57 5.53 3.66
## 7 1715 576 0.32 Fair F VS2 59.6 60 4.42 4.34 2.61
## 8 1776 412 0.29 Fair F SI1 55.8 60 4.48 4.41 2.48
## 9 2160 314 0.34 Fair F I1 55.8 62 4.72 4.6 2.6
## 10 2366 774 0.3 Very Good D VVS2 60.6 58 4.33 4.35 2.63
## 11 3360 1373 0.51 Premium F SI1 62.7 62 5.09 4.96 3.15
## 12 3807 1540 0.61 Good F SI2 62.5 65 5.36 5.29 3.33
## 13 3920 1705 0.51 Fair F VVS2 65.4 60 4.98 4.9 3.23
## 14 4368 1705 0.51 Fair F VVS2 60.7 66 5.21 5.11 3.13
## 15 10011 4048 1.01 Fair D SI2 64.6 58 6.25 6.2 4.02
## 16 10470 23622 2.46 Premium E SI2 59.7 59 8.82 8.76 5.25
#> # A tibble: 16 × 11
#> #> price pred carat cut color clarity depth table x
#> <int> <dbl> <dbl> <ord> <ord> <ord> <dbl> <dbl> <dbl>
#> 1 1013 264 0.25 Fair F SI2 54.4 64 4.30
#> 2 1186 284 0.25 Premium G SI2 59.0 60 5.33
#> 3 1186 284 0.25 Premium G SI2 58.8 60 5.33
#> 4 1262 2644 1.03 Fair E I1 78.2 54 5.72
#> 5 1415 639 0.35 Fair G VS2 65.9 54 5.57
#> 6 1415 639 0.35 Fair G VS2 65.9 54 5.57
#> # ... with 10 more rows, and 2 more variables: y <dbl>,
#> # z <dbl>