Location of Amazon Warehouses in California (work in progress)

library(nominatimlite)
amazon <- read.csv("~/UCSD-Scripps/R Files 2022/Warehouse EJ/amazon.csv")

Geocode Addresses

library(sf)
latlon <- geo_lite_sf(amazon$address.zip, full_results = TRUE, limit = 1, return_addresses = TRUE)
amazon_latlon <- st_as_sf(cbind(amazon, latlon))

Map Locations

library(tidyverse)
library(leaflet)

pal <- colorFactor(
  palette = "Spectral",
  domain = amazon_latlon$Year)

amazon_latlon %>%
  leaflet(width = "100%") %>%
  addProviderTiles(providers$Esri.WorldImagery, group = "World Imagery") %>%
  addProviderTiles(providers$Stamen.TonerLite, group = "Toner Lite") %>%
  addLayersControl(baseGroups = c("Toner Lite", "World Imagery")) %>%
  addCircleMarkers(label = ~address.zip,
                   color = ~pal(Year),
                   #fillColor = "goldenrod",
                   fillOpacity = 0.8,
                   stroke = F) %>%
  addLegend("bottomleft", pal = pal, values = ~Year,
            title = "Amazon Warehouses </br> Year Opened/Planned",
           opacity = 1  )  %>%
setView(lng = -117.5, lat = 33.9, zoom = 8)
Data contains 17 rows with either missing or invalid lat/lon values and will be ignoredn too large, allowed maximum for palette Spectral is 11
Returning the palette you asked for with that many colors
n too large, allowed maximum for palette Spectral is 11
Returning the palette you asked for with that many colors
n too large, allowed maximum for palette Spectral is 11
Returning the palette you asked for with that many colors
LS0tDQp0aXRsZTogIldhcmVob3VzZXMiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpMb2NhdGlvbiBvZiBBbWF6b24gV2FyZWhvdXNlcyBpbiBDYWxpZm9ybmlhICh3b3JrIGluIHByb2dyZXNzKQ0KYGBge3J9DQpsaWJyYXJ5KG5vbWluYXRpbWxpdGUpDQphbWF6b24gPC0gcmVhZC5jc3YoIn4vVUNTRC1TY3JpcHBzL1IgRmlsZXMgMjAyMi9XYXJlaG91c2UgRUovYW1hem9uLmNzdiIpDQpgYGANCg0KR2VvY29kZSBBZGRyZXNzZXMNCmBgYHtyfQ0KbGlicmFyeShzZikNCmxhdGxvbiA8LSBnZW9fbGl0ZV9zZihhbWF6b24kYWRkcmVzcy56aXAsIGZ1bGxfcmVzdWx0cyA9IFRSVUUsIGxpbWl0ID0gMSwgcmV0dXJuX2FkZHJlc3NlcyA9IFRSVUUpDQphbWF6b25fbGF0bG9uIDwtIHN0X2FzX3NmKGNiaW5kKGFtYXpvbiwgbGF0bG9uKSkNCmBgYA0KDQpNYXAgTG9jYXRpb25zDQpgYGB7cn0NCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShsZWFmbGV0KQ0KDQpwYWwgPC0gY29sb3JGYWN0b3IoDQogIHBhbGV0dGUgPSAiU3BlY3RyYWwiLA0KICBkb21haW4gPSBhbWF6b25fbGF0bG9uJFllYXIpDQoNCmFtYXpvbl9sYXRsb24gJT4lDQogIGxlYWZsZXQod2lkdGggPSAiMTAwJSIpICU+JQ0KICBhZGRQcm92aWRlclRpbGVzKHByb3ZpZGVycyRFc3JpLldvcmxkSW1hZ2VyeSwgZ3JvdXAgPSAiV29ybGQgSW1hZ2VyeSIpICU+JQ0KICBhZGRQcm92aWRlclRpbGVzKHByb3ZpZGVycyRTdGFtZW4uVG9uZXJMaXRlLCBncm91cCA9ICJUb25lciBMaXRlIikgJT4lDQogIGFkZExheWVyc0NvbnRyb2woYmFzZUdyb3VwcyA9IGMoIlRvbmVyIExpdGUiLCAiV29ybGQgSW1hZ2VyeSIpKSAlPiUNCiAgYWRkQ2lyY2xlTWFya2VycyhsYWJlbCA9IH5hZGRyZXNzLnppcCwNCiAgICAgICAgICAgICAgICAgICBjb2xvciA9IH5wYWwoWWVhciksDQogICAgICAgICAgICAgICAgICAgI2ZpbGxDb2xvciA9ICJnb2xkZW5yb2QiLA0KICAgICAgICAgICAgICAgICAgIGZpbGxPcGFjaXR5ID0gMC44LA0KICAgICAgICAgICAgICAgICAgIHN0cm9rZSA9IEYpICU+JQ0KICBhZGRMZWdlbmQoImJvdHRvbWxlZnQiLCBwYWwgPSBwYWwsIHZhbHVlcyA9IH5ZZWFyLA0KICAgICAgICAgICAgdGl0bGUgPSAiQW1hem9uIFdhcmVob3VzZXMgPC9icj4gWWVhciBPcGVuZWQvUGxhbm5lZCIsDQogICAgICAgICAgIG9wYWNpdHkgPSAxICApICAlPiUNCnNldFZpZXcobG5nID0gLTExNy41LCBsYXQgPSAzMy45LCB6b29tID0gOCkNCg0KYGBgDQoNCg==