Ecuaciones - Formulas - Sintaxis y Comandos LaTex

Superindice - Potencia

\[ e=m^2 \]


\[ a^2 + b^2= c^2 \]


Subindice

\[ H_20 \]


\[ NH_3 \]

Fracciones - Casos y ejemplos

\[ \frac{1}{2} \]

\[ \frac{5}{6} + \frac{1}{2} \]

\[ \frac{1}{2}+\frac{8}{9} \]

\[ \frac{3}{3} \times \frac{5}{6} \]

\[ \frac{9}{8} \cdot \frac{5}{3} \]

\[ \frac{5}{1}*\frac{7}{2} \]

\[ \frac{5}{7} \div \frac{7}{5} \]

\[ (\frac{3}{2}) \]

\[ \left(\frac{6}{7}\right)^2 \]

Dada la fraccion \(\frac{8}{7}\), podemos determinar el valor de la variable…

Dada la fraccion \(\tfrac{1}{2}\), podemos determinar el valor de la variable…

Dada la fraccion \(\dfrac{5}{6}\), podemos determinar el valor de la variable…

Raices

\[ \sqrt{2} = 1.41 \]

\[ \sqrt{3} = 1.73 \]

\[ \sqrt{4} = 2 \]

Sumatoria

\[ \sum_{i=3}^{5}{45} \]

\[ \sum_{i=3}^{5}{63} \]

\[ \sum_{i=8}^{5}{8-i} \]

\[ \sum_{i=2}^{6} {\frac{6}{5}} \]

Logaritmos

\[ \log_7{49}=2 \]

\[ \log_6{216}=3 \]

\[ \log_3{81}=4 \]

Matrices

\[ \begin{matrix} 1 & 9 & 6 \\ 2 & 8 & 4 \\ 3 & 5 & 7 \end{matrix} \]

\[ \begin{pmatrix} 2&7&9\\ 5&8&3\\ 2&7&5 \end{pmatrix} \]

\[ \begin{bmatrix} 2&7&9\\ 5&8&3\\ 2&7&5 \end{bmatrix} \]

\[ \begin{Bmatrix} 2&7&9\\ 5&8&3\\ 2&7&5 \end{Bmatrix} \]

\[ \begin{vmatrix} 2&7&9\\ 5&8&3\\ 2&7&5 \end{vmatrix} \]

\[ \begin{Vmatrix} 2&7&9\\ 5&8&3\\ 2&7&5 \end{Vmatrix} \]

LS0tDQp0aXRsZTogIlNpbnRheGlzIHkgY29tYW5kb3MgY2xhdmVzIg0Kc3VidGl0bGU6ICJMYXRleCAtIE1hcmtkb3duIg0KYXV0aG9yOiAiTHVpcyBIdWF5aHVhIENvbmRvcmkiDQpkYXRlOiAiMjAyMi8wNi8wMSINCm91dHB1dDoNCiAgaHRtbF9kb2N1bWVudDoNCiAgICBjb2RlX2Rvd25sb2FkOiBUUlVFDQotLS0NCg0KPCEtLSBBw7FhZGlyIGVjdWFjaW9uZXMgeSBmb3JtdWxhcyBlbiBNYXJrZG93biBoYWNpZW5kbyB1c28gZGUgTGFUZXggLS0+DQoNCiMgRWN1YWNpb25lcyAtIEZvcm11bGFzIC0gU2ludGF4aXMgeSBDb21hbmRvcyBMYVRleA0KDQojIyBTdXBlcmluZGljZSAtIFBvdGVuY2lhDQoNCiQkDQplPW1eMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiQkDQphXjIgKyBiXjI9IGNeMg0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiMjIFN1YmluZGljZQ0KDQokJA0KSF8yMA0KJCQNCg0KLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tDQoNCiQkDQpOSF8zDQokJA0KDQojIyBGcmFjY2lvbmVzIC0gQ2Fzb3MgeSBlamVtcGxvcw0KDQokJA0KXGZyYWN7MX17Mn0NCiQkDQoNCiQkDQpcZnJhY3s1fXs2fSArIFxmcmFjezF9ezJ9DQokJA0KDQokJA0KXGZyYWN7MX17Mn0rXGZyYWN7OH17OX0NCiQkDQoNCiQkDQpcZnJhY3szfXszfSBcdGltZXMgXGZyYWN7NX17Nn0NCiQkDQoNCiQkDQpcZnJhY3s5fXs4fSBcY2RvdCBcZnJhY3s1fXszfQ0KJCQNCg0KJCQNClxmcmFjezV9ezF9KlxmcmFjezd9ezJ9DQokJA0KDQokJA0KXGZyYWN7NX17N30gXGRpdiBcZnJhY3s3fXs1fQ0KJCQNCg0KJCQNCihcZnJhY3szfXsyfSkNCiQkDQoNCiQkDQpcbGVmdChcZnJhY3s2fXs3fVxyaWdodCleMg0KJCQNCg0KRGFkYSBsYSBmcmFjY2lvbiAkXGZyYWN7OH17N30kLCBwb2RlbW9zIGRldGVybWluYXIgZWwgdmFsb3IgZGUgbGEgdmFyaWFibGUuLi4NCg0KRGFkYSBsYSBmcmFjY2lvbiAkXHRmcmFjezF9ezJ9JCwgcG9kZW1vcyBkZXRlcm1pbmFyIGVsIHZhbG9yIGRlIGxhIHZhcmlhYmxlLi4uDQoNCkRhZGEgbGEgZnJhY2Npb24gJFxkZnJhY3s1fXs2fSQsIHBvZGVtb3MgZGV0ZXJtaW5hciBlbCB2YWxvciBkZSBsYSB2YXJpYWJsZS4uLg0KDQojIyBSYWljZXMNCg0KJCQNClxzcXJ0ezJ9ID0gMS40MQ0KJCQNCg0KJCQNClxzcXJ0ezN9ID0gMS43Mw0KJCQNCg0KJCQNClxzcXJ0ezR9ID0gMg0KJCQNCg0KIyMgU3VtYXRvcmlhDQoNCiQkDQpcc3VtX3tpPTN9Xns1fXs0NX0NCiQkDQoNCiQkDQpcc3VtX3tpPTN9Xns1fXs2M30NCiQkDQoNCiQkDQpcc3VtX3tpPTh9Xns1fXs4LWl9DQokJA0KDQokJA0KXHN1bV97aT0yfV57Nn0ge1xmcmFjezZ9ezV9fQ0KJCQNCg0KIyMgTG9nYXJpdG1vcw0KDQokJA0KXGxvZ183ezQ5fT0yDQokJA0KDQokJA0KXGxvZ182ezIxNn09Mw0KJCQNCg0KJCQNClxsb2dfM3s4MX09NA0KJCQNCg0KIyMgTWF0cmljZXMNCg0KJCQNClxiZWdpbnttYXRyaXh9DQoxICYgOSAmIDYgXFwNCjIgJiA4ICYgNCBcXA0KMyAmIDUgJiA3IA0KXGVuZHttYXRyaXh9DQokJA0KDQokJA0KXGJlZ2lue3BtYXRyaXh9DQoyJjcmOVxcDQo1JjgmM1xcDQoyJjcmNQ0KXGVuZHtwbWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntibWF0cml4fQ0KMiY3JjlcXA0KNSY4JjNcXA0KMiY3JjUNClxlbmR7Ym1hdHJpeH0NCiQkDQoNCiQkDQpcYmVnaW57Qm1hdHJpeH0NCjImNyY5XFwNCjUmOCYzXFwNCjImNyY1DQpcZW5ke0JtYXRyaXh9DQokJA0KDQokJA0KXGJlZ2lue3ZtYXRyaXh9DQoyJjcmOVxcDQo1JjgmM1xcDQoyJjcmNQ0KXGVuZHt2bWF0cml4fQ0KJCQNCg0KJCQNClxiZWdpbntWbWF0cml4fQ0KMiY3JjlcXA0KNSY4JjNcXA0KMiY3JjUNClxlbmR7Vm1hdHJpeH0NCiQkDQo=