Pertama-tama kita memasukkan library dan dataset-dataset yang diperlukan:
library(readr)
## Warning: package 'readr' was built under R version 4.1.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.1.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.1.3
library(openintro)
## Warning: package 'openintro' was built under R version 4.1.3
## Loading required package: airports
## Warning: package 'airports' was built under R version 4.1.3
## Loading required package: cherryblossom
## Warning: package 'cherryblossom' was built under R version 4.1.3
## Loading required package: usdata
## Warning: package 'usdata' was built under R version 4.1.3
cars <- read.csv("https://assets.datacamp.com/production/course_1796/datasets/cars04.csv")
comics <- read.csv("https://assets.datacamp.com/production/course_1796/datasets/comics.csv")
life <- read.csv("https://assets.datacamp.com/production/course_1796/datasets/life_exp_raw.csv")
#Print the first rows of the data
head(comics)
## name id align eye hair
## 1 Spider-Man (Peter Parker) Secret Good Hazel Eyes Brown Hair
## 2 Captain America (Steven Rogers) Public Good Blue Eyes White Hair
## 3 Wolverine (James \\"Logan\\" Howlett) Public Neutral Blue Eyes Black Hair
## 4 Iron Man (Anthony \\"Tony\\" Stark) Public Good Blue Eyes Black Hair
## 5 Thor (Thor Odinson) No Dual Good Blue Eyes Blond Hair
## 6 Benjamin Grimm (Earth-616) Public Good Blue Eyes No Hair
## gender gsm alive appearances first_appear publisher
## 1 Male <NA> Living Characters 4043 Aug-62 marvel
## 2 Male <NA> Living Characters 3360 Mar-41 marvel
## 3 Male <NA> Living Characters 3061 Oct-74 marvel
## 4 Male <NA> Living Characters 2961 Mar-63 marvel
## 5 Male <NA> Living Characters 2258 Nov-50 marvel
## 6 Male <NA> Living Characters 2255 Nov-61 marvel
# Check levels of align
al <- as.factor(comics$align) #ubah ke factor agar data terbaca
levels(al)
## [1] "Bad" "Good" "Neutral"
## [4] "Reformed Criminals"
EXPLANATION: Terdapat empat unique value di variable/attribute align pada dataset comics yaitu; bad, neutral, good, dan reformed criminals.
# Check the levels of gender
gen <- as.factor(comics$gender) #ubah ke factor agar data terbaca
levels(gen)
## [1] "Female" "Male" "Other"
EXPLANATION: Terdapat tiga unique value di variable/attribute gender pada dataset comics yaitu; female, male, dan other
# Create a 2-way contingency table
table(al, gen)
## gen
## al Female Male Other
## Bad 1573 7561 32
## Good 2490 4809 17
## Neutral 836 1799 17
## Reformed Criminals 1 2 0
EXPLANATION: Dari data di atas kita membuat table dari dua buah data yaitu variabel align dan gender. Disini kita juga dapat menyimpulkan bahwa dalam dataset ini kebanyakan male.
# Load dplyr
# Print tab
tab <- table(al, gen)
tab
## gen
## al Female Male Other
## Bad 1573 7561 32
## Good 2490 4809 17
## Neutral 836 1799 17
## Reformed Criminals 1 2 0
EXPLANATION: Disini kita hanya mengecek apakah tab sudah sesuai atau belum.
# Remove align level
comics <- comics %>% filter(align != 'Reformed Criminals') %>% droplevels()
levels(as.factor(comics$align)) #gunakan as factor agar terbaca
## [1] "Bad" "Good" "Neutral"
EXPLANATION: Lalu ketika ‘Reformed Criminals’ sudah terhapus maka hanya akan menyisakan 3 unique value yaitu; bad, good, dan neutral.
# Load ggplot2
# Create side-by-side barchart of gender by alignment
ggplot(comics, aes(x = align, fill = gender)) + geom_bar(position = "dodge")
# Create side-by-side barchart of alignment by gender
ggplot(comics, aes(x = gender, fill = align)) + geom_bar(positio = "dodge") + theme(axis.text.x = element_text(angle = 90))
EXPLANATION: Disini kita mendapat konfirmasi bahwa
lebih banyak male character dibandingkan female character di dalam
dataset ini. Kemudian pada character dengan ‘Neutral’ alignment, male
lebih banyak dijumpai. Dengan begitu, kita juga dapat menyimpulkan bahwa
ada asosiasi antara variabel/atribut gender dan alignment.
# simplify display format
options(scipen = 999, digits = 3)
## create table of counts
tbl_cnt <- table(comics$id, comics$align)
tbl_cnt
##
## Bad Good Neutral
## No Dual 474 647 390
## Public 2172 2930 965
## Secret 4493 2475 959
## Unknown 7 0 2
EXPLANATION: Dari data di atas kita membuat table dari dua buah data yaitu variabel id dan align dari data set comics.
# Proportional table
# All values add up to 1
prop.table(tbl_cnt)
##
## Bad Good Neutral
## No Dual 0.030553 0.041704 0.025139
## Public 0.140003 0.188862 0.062202
## Secret 0.289609 0.159533 0.061815
## Unknown 0.000451 0.000000 0.000129
EXPLANATION:
sum(prop.table(tbl_cnt))
## [1] 1
# All rows add up to 1
prop.table(tbl_cnt, 1)
##
## Bad Good Neutral
## No Dual 0.314 0.428 0.258
## Public 0.358 0.483 0.159
## Secret 0.567 0.312 0.121
## Unknown 0.778 0.000 0.222
# Coluns add up to 1
prop.table(tbl_cnt, 2)
##
## Bad Good Neutral
## No Dual 0.066331 0.106907 0.168394
## Public 0.303946 0.484137 0.416667
## Secret 0.628743 0.408956 0.414076
## Unknown 0.000980 0.000000 0.000864
EXPLANATION: Terlihat bahwa ada beberapa character id = unknown.
ggplot(comics, aes(x = id, fill = align)) + geom_bar(position = "fill") + ylab("proportion")
EXPLANATION: Tukar c dan variabel fill, dan dari disini
kita dapat melihat bahwa bad character rata-rata adalah secret. Disini
kita juga dapat melihat lebih jelas bahwa beberapa character id =
unknown.
ggplot(comics, aes(x = align, fill = id)) + geom_bar(position = "fill") + ylab("proportion")
EXPLANATION: Disini, selain mendapat konfirmasi lagi
bahwa bad character rata-rata adalah secret. Kita juga dapat melihat
bahwa no dual pada neutral lebih banyak dibanding dua lainnya, dan
public pada good lebih banyak dibanding neutral dan bad.
tab <- table(comics$align, comics$gender)
options(scipen = 999, digits = 3) # Print fewer digits
prop.table(tab) # Joint proportions
##
## Female Male Other
## Bad 0.082210 0.395160 0.001672
## Good 0.130135 0.251333 0.000888
## Neutral 0.043692 0.094021 0.000888
prop.table(tab, 2)
##
## Female Male Other
## Bad 0.321 0.534 0.485
## Good 0.508 0.339 0.258
## Neutral 0.171 0.127 0.258
EXPLANATION: Dari kedua hasil di atas kita dapat menyimpulkan bahwa proporsi kira-kira dari character female yang good adalah sebesar 51%.
# Plot of gender by align
ggplot(comics, aes(x = align, fill = gender)) + geom_bar()
# Plot proportion of gender, conditional on align
ggplot(comics, aes(x = align, fill = gender)) + geom_bar(position = "fill")
# Can use table function on just one variable
# This is called a marginal distribution
table(comics$id)
##
## No Dual Public Secret Unknown
## 1511 6067 7927 9
EXPLANATION: Terdapat 1511 No Dual, 6067 Public, 7927 Secret, dan 9 Unknown.
# Simple barchart
ggplot(comics, aes(x = id)) + geom_bar()
EXPLANATION: Dari sini kita dapat meilhat variables
secara individual dan filtering jauh lebih gampang. Dengan begitu kita
dapat membuat fakta dengan alignment daripada mewarnai
gambar/stacknya.
ggplot(comics, aes(x = id)) + geom_bar() + facet_wrap(~align)
EXPLANATION: Di atas adalah hasil simple barchart tiap
tiap kategori.
# Change the order of the levels in align
comics$align <- factor(comics$align,
levels = c("Bad", "Neutral", "Good"))
# Create plot of align
ggplot(comics, aes(x = align)) +
geom_bar()
EXPLANATION: Menggunakan marginal barchart jauh lebih
masuk akal untuk menaruh neutral diantara bad dan good, dengan begitu
kita perlu melakukan reorder tiap level agar chart menghasilkan gambar
seperti di atas. Jika tidak, maka hasil akan default yang dimana diatur
secara alphabetical.
# Plot of alignment broken down by gender
ggplot(comics, aes(x = align)) +
geom_bar() +
facet_wrap(~ gender)
EXPLANATION: Berikut adalah conditional barchart dari
alignment yang dimana diatur secara gender.
# Put levels of flavor in decending order
lev <- c("apple", "key lime", "boston creme", "blueberry", "cherry", "pumpkin", "strawberry")
pies <- data.frame(flavors = as.factor(rep(c("apple", "blueberry", "boston creme", "cherry", "key lime", "pumpkin", "strawberry"), times = c(17, 14, 15, 13, 16, 12, 11))))
pies$flavor <- factor(pies$flavor, levels = lev)
head(pies$flavor)
## [1] apple apple apple apple apple apple
## Levels: apple key lime boston creme blueberry cherry pumpkin strawberry
EXPLANATION: Di atas adalah sebuah data set yang bernama pies yang dimana data set tersebut memiliki 7 levels yaitu; apple, key lime, boston creme, blueberry, cherry, pumpkin, dan strawberry.
# Create barchart of flavor
ggplot(pies, aes(x = flavor)) + geom_bar(fill = "chartreuse") + theme(axis.text.x = element_text(angle = 90))
EXPLANATION: Di atas adalah barchart dari dataset pies
yang diurutkan berdasarkan flavour. Dari grafik tersebut, apel memiliki
kuantitas paling banyak kemudian diikuti oleh key lime dan boston
creme.
ggplot(cars, aes(x = weight)) + geom_dotplot(dotsize = 0.4)
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing non-finite values (stat_bindot).
EXPLANATION: Dot plot biasanya digunakan untuk
menunjukkan semua titik data.
ggplot(cars, aes(x = weight)) + geom_histogram(dotsize = 0.4, binwidth = 500)
## Warning: Ignoring unknown parameters: dotsize
## Warning: Removed 2 rows containing non-finite values (stat_bin).
EXPLANATION: Histogram mengelompokkan points ke bins
agar tidak kewalahan/tidak berlebihan.
ggplot(cars, aes(x = weight)) + geom_density()
## Warning: Removed 2 rows containing non-finite values (stat_density).
EXPLANATION: Plot density memberikan gambaran yang
lebih besar atas representasi dari distribusinya. Plot density juga
sangat membantu jika memiliki data yang sangat banyak.
ggplot(cars, aes(x = 1, y = weight)) + geom_boxplot() +coord_flip()
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
EXPLANATION: Boxplot adalah cara yang baik untuk
menampilkan ringkasan dari sebuah distribusi.
# Load package
library(ggplot2)
# Learn data structure
str(cars)
## 'data.frame': 428 obs. of 19 variables:
## $ name : chr "Chevrolet Aveo 4dr" "Chevrolet Aveo LS 4dr hatch" "Chevrolet Cavalier 2dr" "Chevrolet Cavalier 4dr" ...
## $ sports_car : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ suv : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ wagon : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ minivan : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ pickup : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ all_wheel : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ rear_wheel : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ msrp : int 11690 12585 14610 14810 16385 13670 15040 13270 13730 15460 ...
## $ dealer_cost: int 10965 11802 13697 13884 15357 12849 14086 12482 12906 14496 ...
## $ eng_size : num 1.6 1.6 2.2 2.2 2.2 2 2 2 2 2 ...
## $ ncyl : int 4 4 4 4 4 4 4 4 4 4 ...
## $ horsepwr : int 103 103 140 140 140 132 132 130 110 130 ...
## $ city_mpg : int 28 28 26 26 26 29 29 26 27 26 ...
## $ hwy_mpg : int 34 34 37 37 37 36 36 33 36 33 ...
## $ weight : int 2370 2348 2617 2676 2617 2581 2626 2612 2606 2606 ...
## $ wheel_base : int 98 98 104 104 104 105 105 103 103 103 ...
## $ length : int 167 153 183 183 183 174 174 168 168 168 ...
## $ width : int 66 66 69 68 69 67 67 67 67 67 ...
# Create faceted histogram
ggplot(cars, aes(x = city_mpg)) + geom_histogram() + facet_wrap(~ suv)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 14 rows containing non-finite values (stat_bin).
EXPLANATION: Di atas adalah faceted histogram dari
dataset cars variabel city_mpg yang diurutkan dengan variabel suv.
unique(cars$ncyl)
## [1] 4 6 3 8 5 12 10 -1
table(cars$ncyl)
##
## -1 3 4 5 6 8 10 12
## 2 1 136 7 190 87 2 3
# Filter cars with 4, 6, 8 cylinders
common_cyl <- filter(cars, ncyl %in% c(4,6,8))
# Create box plots of city mpg by ncyl
ggplot(common_cyl, aes(x = as.factor(ncyl), y = city_mpg)) + geom_boxplot()
## Warning: Removed 11 rows containing non-finite values (stat_boxplot).
# Create overlaid density plots for same data
ggplot(common_cyl, aes(x = city_mpg, fill = as.factor(ncyl))) + geom_density(alpha = .3)
## Warning: Removed 11 rows containing non-finite values (stat_density).
EXPLANATION: Dari plot di atas kita dapat melihat bahwa
mobil dengan jarak tempuh tertinggi memiliki 4 cylinders. Kemudian
tipikal mobil 4 cylinders adalah mendapatkan jarak tempuh yang lebih
baik daripada mobil 6 cylinders, yang dimana jarak tempuh 6 cylinders
lebih baik daripada mobil 8 cylinders. Lalu dari plot ini, kita dapat
mengetahui bahwa sebagian besar mobil 4 cylinders mendapat jarak tempuh
yangh lebih baik daripada mobil 8 cylinders.
# Create hist of horsepwr
cars %>% ggplot(aes(horsepwr)) + geom_histogram() + ggtitle("Horsepower distribution")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
EXPLANATION: Plot di atas adalah histogram dari
variabel horsepower.
# Create hist of horsepwr for affordable cars
cars %>%
filter(msrp < 25000) %>%
ggplot(aes(horsepwr)) +
geom_histogram() +
xlim(c(90, 550)) +
ggtitle("Horsepower distribtion for msrp < 25000")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).
EXPLANATION: Plot di atas adalah histogram horsepower
untuk mobil yang affordable. Dari sini kita juga dapat menyimpulkan
bahwa mobil dengan higpower tertinggi dalam kisaran yang lebih murah
hanya memiliki kurang dari 250 tenaga kuda.
# Create hist of horsepwr with binwidth of 3
cars %>%
ggplot(aes(horsepwr)) +
geom_histogram(binwidth = 3) +
ggtitle("binwidth = 3")
EXPLANATION: Plot di atas adalah histogram horsepower
dengan binwidth 3.
# Create hist of horsepwr with binwidth of 30
cars %>%
ggplot(aes(horsepwr)) +
geom_histogram(binwidth = 30) +
ggtitle("binwidth = 30")
EXPLANATION: Plot di atas adalah histogram horsepower
dengan binwidth 30.
# Create hist of horsepwr with binwidth of 60
cars %>%
ggplot(aes(horsepwr)) +
geom_histogram(binwidth = 60) +
ggtitle("binwidth = 60")
EXPLANATION: Plot di atas adalah histogram horsepower
dengan binwidth 60.
# Construct box plot of msrp
cars %>%
ggplot(aes(x = 1, y = msrp)) +
geom_boxplot()
EXPLANATION: Plot di atas adalah boxplot msrp.
# Exclude outliers from data
cars_no_out <- cars %>%
filter(msrp < 100000)
# Construct box plot of msrp using the reduced dataset
cars_no_out %>%
ggplot(aes(x = 1, y = msrp)) +
geom_boxplot()
EXPLANATION: Plot di atas adalah boxplot msrp yang
outliersnya sudah dihilangkan.
# Create plot of city_mpg
cars %>%
ggplot(aes(x = 1, y = city_mpg)) +
geom_boxplot()
## Warning: Removed 14 rows containing non-finite values (stat_boxplot).
cars %>%
ggplot(aes(city_mpg)) +
geom_density()
## Warning: Removed 14 rows containing non-finite values (stat_density).
# Create plot of width
cars %>%
ggplot(aes(x = 1, y = width)) +
geom_boxplot()
## Warning: Removed 28 rows containing non-finite values (stat_boxplot).
cars %>%
ggplot(aes(x = width)) +
geom_density()
## Warning: Removed 28 rows containing non-finite values (stat_density).
# Facet hists using hwy mileage and ncyl
common_cyl %>%
ggplot(aes(x = hwy_mpg)) +
geom_histogram() +
facet_grid(ncyl ~ suv) +
ggtitle("hwy_mpg by ncyl and suv")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 11 rows containing non-finite values (stat_bin).
EXPLANATION: Baik di SUV maupun non-SUV, jarak tempuh
cenderung menurun seiring bertambahnya jumlah cylinders.
head(life)
## State County fips Year Female.life.expectancy..years.
## 1 Alabama Autauga County 1001 1985 77.0
## 2 Alabama Baldwin County 1003 1985 78.8
## 3 Alabama Barbour County 1005 1985 76.0
## 4 Alabama Bibb County 1007 1985 76.6
## 5 Alabama Blount County 1009 1985 78.9
## 6 Alabama Bullock County 1011 1985 75.1
## Female.life.expectancy..national..years.
## 1 77.8
## 2 77.8
## 3 77.8
## 4 77.8
## 5 77.8
## 6 77.8
## Female.life.expectancy..state..years. Male.life.expectancy..years.
## 1 76.9 68.1
## 2 76.9 71.1
## 3 76.9 66.8
## 4 76.9 67.3
## 5 76.9 70.6
## 6 76.9 66.6
## Male.life.expectancy..national..years. Male.life.expectancy..state..years.
## 1 70.8 69.1
## 2 70.8 69.1
## 3 70.8 69.1
## 4 70.8 69.1
## 5 70.8 69.1
## 6 70.8 69.1
x <- head(round(life$Female.life.expectancy..years.), 11)
x
## [1] 77 79 76 77 79 75 77 77 77 78 77
sum(x)/11
## [1] 77.2
mean(x)
## [1] 77.2
EXPLANATION: Mean adalah titik keseimbangan data dan biasanya sensitif terhadap nilai-nilai ekstrim.
sort(x)
## [1] 75 76 77 77 77 77 77 77 78 79 79
median(x)
## [1] 77
EXPLANATION: Median adalah nilai tengah dari sebuah data, kuat untuk nilai-nilai ekstrim, dan sangat sesuai untuk data yang skewed.
table(x)
## x
## 75 76 77 78 79
## 1 1 6 1 2
EXPLANATION: Mode adalah nilai yang paling sering muncul.
library(gapminder)
## Warning: package 'gapminder' was built under R version 4.1.3
str(gapminder)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
# Create dataset of 2007 data
gap2007 <- filter(gapminder, year == 2007)
# Compute groupwise mean and median lifeExp
gap2007 %>%
group_by(continent) %>%
summarize(mean(lifeExp),
median(lifeExp))
## # A tibble: 5 x 3
## continent `mean(lifeExp)` `median(lifeExp)`
## <fct> <dbl> <dbl>
## 1 Africa 54.8 52.9
## 2 Americas 73.6 72.9
## 3 Asia 70.7 72.4
## 4 Europe 77.6 78.6
## 5 Oceania 80.7 80.7
# Generate box plots of lifeExp for each continent
gap2007 %>%
ggplot(aes(x = continent, y = lifeExp)) +
geom_boxplot()
x
## [1] 77 79 76 77 79 75 77 77 77 78 77
EXPLANATION: Hanya dengan melihat data kita dapat menginisiasi untuk break down data menjadi satu nomor agar kita bisa membandingkan sample distribusi.
# Look at the difference between each point and the mean
sum(x - mean(x))
## [1] -0.0000000000000568
EXPLANATION: Kita dapat menyimpulkan bahwa kita dapat menyamakan perbedaannya tetapi hal ini menjadi pain untuk kita karena angka ini akan menjadi lebih besar jika kita menambahkan observasinya. Kita ingin sesuatu yang stabil.
# Square each difference to get rid of negatives then sum
sum((x - mean(x))^2)
## [1] 13.6
sum((x - mean(x))^2)/(length(x) - 1)
## [1] 1.36
var(x)
## [1] 1.36
EXPLANATION: Lalu kita mencoba untuk membagi dengan n-1 dan ini disebut sampel variance. Variance adalah salah satu ukuran yang paling berguna dari distribusi sampel.
sqrt(sum((x - mean(x))^2)/(length(x) - 1))
## [1] 1.17
sd(x)
## [1] 1.17
EXPLANATION: Salah satu perhitungan yang berguna lainnya adalah standard deviation, yang dimana hanya akar kuadrat dari variance.
summary(x)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 75.0 77.0 77.0 77.2 77.5 79.0
IQR(x)
## [1] 0.5
EXPLANATION: Kemudian IQR adalah 50% tengah dari data. IQR tidaklah sensitif terhadap nilai-nilai ekstrim.
max(x)
## [1] 79
min(x)
## [1] 75
diff(range(x))
## [1] 4
EXPLANATION: Max dan min juga menarik sama seperti rentang (perbedaan antara max dan min).
str(gap2007)
## tibble [142 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 4 1 1 2 5 4 3 3 4 ...
## $ year : int [1:142] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
## $ lifeExp : num [1:142] 43.8 76.4 72.3 42.7 75.3 ...
## $ pop : int [1:142] 31889923 3600523 33333216 12420476 40301927 20434176 8199783 708573 150448339 10392226 ...
## $ gdpPercap: num [1:142] 975 5937 6223 4797 12779 ...
# Compute groupwise measures of spread
gap2007 %>%
group_by(continent) %>%
summarize(sd(lifeExp),
IQR(lifeExp),
n())
## # A tibble: 5 x 4
## continent `sd(lifeExp)` `IQR(lifeExp)` `n()`
## <fct> <dbl> <dbl> <int>
## 1 Africa 9.63 11.6 52
## 2 Americas 4.44 4.63 25
## 3 Asia 7.96 10.2 33
## 4 Europe 2.98 4.78 30
## 5 Oceania 0.729 0.516 2
# Generate overlaid density plots
gap2007 %>%
ggplot(aes(x = lifeExp, fill = continent)) +
geom_density(alpha = 0.3)
## Choose measures for center and spread
# Compute stats for lifeExp in Americas
head(gap2007)
## # A tibble: 6 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 2007 43.8 31889923 975.
## 2 Albania Europe 2007 76.4 3600523 5937.
## 3 Algeria Africa 2007 72.3 33333216 6223.
## 4 Angola Africa 2007 42.7 12420476 4797.
## 5 Argentina Americas 2007 75.3 40301927 12779.
## 6 Australia Oceania 2007 81.2 20434176 34435.
gap2007 %>%
filter(continent == "Americas") %>%
summarize(mean(lifeExp),
sd(lifeExp))
## # A tibble: 1 x 2
## `mean(lifeExp)` `sd(lifeExp)`
## <dbl> <dbl>
## 1 73.6 4.44
# Compute stats for population
gap2007 %>%
summarize(median(pop),
IQR(pop))
## # A tibble: 1 x 2
## `median(pop)` `IQR(pop)`
## <dbl> <dbl>
## 1 10517531 26702008.
# Create density plot of old variable
gap2007 %>%
ggplot(aes(x = pop)) +
geom_density()
# Transform the skewed pop variable
gap2007 <- gap2007 %>%
mutate(log_pop = log(pop))
# Create density plot of new variable
gap2007 %>%
ggplot(aes(x = log_pop)) +
geom_density()
# Filter for Asia, add column indicating outliers
str(gapminder)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
gap_asia <- gap2007 %>%
filter(continent == "Asia") %>%
mutate(is_outlier = lifeExp < 50)
# Remove outliers, create box plot of lifeExp
gap_asia %>%
filter(!is_outlier) %>%
ggplot(aes(x = 1, y = lifeExp)) +
geom_boxplot()
# ggplot2, dplyr, and openintro are loaded
# Compute summary statistics
email %>%
group_by(spam) %>%
summarize(
median(num_char),
IQR(num_char))
## # A tibble: 2 x 3
## spam `median(num_char)` `IQR(num_char)`
## <fct> <dbl> <dbl>
## 1 0 6.83 13.6
## 2 1 1.05 2.82
str(email)
## tibble [3,921 x 21] (S3: tbl_df/tbl/data.frame)
## $ spam : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ to_multiple : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 2 1 1 ...
## $ from : Factor w/ 2 levels "0","1": 2 2 2 2 2 2 2 2 2 2 ...
## $ cc : int [1:3921] 0 0 0 0 0 0 0 1 0 0 ...
## $ sent_email : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 2 1 1 ...
## $ time : POSIXct[1:3921], format: "2012-01-01 13:16:41" "2012-01-01 14:03:59" ...
## $ image : num [1:3921] 0 0 0 0 0 0 0 1 0 0 ...
## $ attach : num [1:3921] 0 0 0 0 0 0 0 1 0 0 ...
## $ dollar : num [1:3921] 0 0 4 0 0 0 0 0 0 0 ...
## $ winner : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
## $ inherit : num [1:3921] 0 0 1 0 0 0 0 0 0 0 ...
## $ viagra : num [1:3921] 0 0 0 0 0 0 0 0 0 0 ...
## $ password : num [1:3921] 0 0 0 0 2 2 0 0 0 0 ...
## $ num_char : num [1:3921] 11.37 10.5 7.77 13.26 1.23 ...
## $ line_breaks : int [1:3921] 202 202 192 255 29 25 193 237 69 68 ...
## $ format : Factor w/ 2 levels "0","1": 2 2 2 2 1 1 2 2 1 2 ...
## $ re_subj : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ exclaim_subj: num [1:3921] 0 0 0 0 0 0 0 0 0 0 ...
## $ urgent_subj : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...
## $ exclaim_mess: num [1:3921] 0 1 6 48 1 1 1 18 1 0 ...
## $ number : Factor w/ 3 levels "none","small",..: 3 2 2 2 1 1 3 2 2 2 ...
table(email$spam)
##
## 0 1
## 3554 367
email <- email %>%
mutate(spam = factor(ifelse(spam == 0, "not-spam", "spam")))
# Create plot
email %>%
mutate(log_num_char = log(num_char)) %>%
ggplot(aes(x = spam, y = log_num_char)) +
geom_boxplot()
# Compute center and spread for exclaim_mess by spam
email %>%
group_by(spam) %>%
summarize(
median(exclaim_mess),
IQR(exclaim_mess))
## # A tibble: 2 x 3
## spam `median(exclaim_mess)` `IQR(exclaim_mess)`
## <fct> <dbl> <dbl>
## 1 not-spam 1 5
## 2 spam 0 1
table(email$exclaim_mess)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## 1435 733 507 128 190 113 115 51 93 45 85 17 56 20 43 11
## 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
## 29 12 26 5 29 9 15 3 11 6 11 1 6 8 13 12
## 32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48
## 13 3 3 2 3 3 1 2 1 1 3 3 5 3 2 1
## 49 52 54 55 57 58 62 71 75 78 89 94 96 139 148 157
## 3 1 1 4 2 2 2 1 1 1 1 1 1 1 1 1
## 187 454 915 939 947 1197 1203 1209 1236
## 1 1 1 1 1 1 2 1 1
# Create plot for spam and exclaim_mess
email %>%
mutate(log_exclaim_mess = log(exclaim_mess)) %>%
ggplot(aes(x = log_exclaim_mess)) +
geom_histogram() +
facet_wrap(~ spam)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1435 rows containing non-finite values (stat_bin).
table(email$image)
##
## 0 1 2 3 4 5 9 20
## 3811 76 17 11 2 2 1 1
# Create plot of proportion of spam by image
email %>%
mutate(has_image = image > 0) %>%
ggplot(aes(x = has_image, fill = spam)) +
geom_bar(position = "fill")
## Data Integrity
# Test if images count as attachments
sum(email$image > email$attach)
## [1] 0
## Within non-spam emails, is the typical length of emails shorter for
## those that were sent to multiple people?
email %>%
filter(spam == "not-spam") %>%
group_by(to_multiple) %>%
summarize(median(num_char))
## # A tibble: 2 x 2
## to_multiple `median(num_char)`
## <fct> <dbl>
## 1 0 7.20
## 2 1 5.36
# Question 1
## For emails containing the word "dollar", does the typical spam email
## contain a greater number of occurences of the word than the typical non-spam email?
table(email$dollar)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## 3175 120 151 10 146 20 44 12 35 10 22 10 20 7 14 5
## 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32
## 23 2 14 1 10 7 12 7 7 3 7 1 5 1 1 2
## 34 36 40 44 46 48 54 63 64
## 1 2 3 3 2 1 1 1 3
email %>%
filter(dollar > 0) %>%
group_by(spam) %>%
summarize(median(dollar))
## # A tibble: 2 x 2
## spam `median(dollar)`
## <fct> <dbl>
## 1 not-spam 4
## 2 spam 2
# Question 2
## If you encounter an email with greater than 10 occurrences of the word "dollar",
## is it more likely to be spam or not -spam?
email %>%
filter(dollar > 10) %>%
ggplot(aes(x = spam)) +
geom_bar()
levels(email$number)
## [1] "none" "small" "big"
table(email$number)
##
## none small big
## 549 2827 545
# Reorder levels
email$number <- factor(email$number, levels = c("none","small","big"))
# Construct plot of number
ggplot(email, aes(x = number)) +
geom_bar() +
facet_wrap( ~ spam)