#source('create_datasets.R')
library(readr)
## Warning: package 'readr' was built under R version 4.1.3
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(ggplot2)
library(openintro)
## Warning: package 'openintro' was built under R version 4.1.3
## Loading required package: airports
## Warning: package 'airports' was built under R version 4.1.3
## Loading required package: cherryblossom
## Warning: package 'cherryblossom' was built under R version 4.1.3
## Loading required package: usdata
## Warning: package 'usdata' was built under R version 4.1.3
library(gapminder)
## Warning: package 'gapminder' was built under R version 4.1.3
cars <- read.csv("https://assets.datacamp.com/production/course_1796/datasets/cars04.csv")
comics <- read.csv("https://assets.datacamp.com/production/course_1796/datasets/comics.csv")
life <- read.csv("https://assets.datacamp.com/production/course_1796/datasets/life_exp_raw.csv")
#Print the first rows of the data
head(comics)
## name id align eye hair
## 1 Spider-Man (Peter Parker) Secret Good Hazel Eyes Brown Hair
## 2 Captain America (Steven Rogers) Public Good Blue Eyes White Hair
## 3 Wolverine (James \\"Logan\\" Howlett) Public Neutral Blue Eyes Black Hair
## 4 Iron Man (Anthony \\"Tony\\" Stark) Public Good Blue Eyes Black Hair
## 5 Thor (Thor Odinson) No Dual Good Blue Eyes Blond Hair
## 6 Benjamin Grimm (Earth-616) Public Good Blue Eyes No Hair
## gender gsm alive appearances first_appear publisher
## 1 Male <NA> Living Characters 4043 Aug-62 marvel
## 2 Male <NA> Living Characters 3360 Mar-41 marvel
## 3 Male <NA> Living Characters 3061 Oct-74 marvel
## 4 Male <NA> Living Characters 2961 Mar-63 marvel
## 5 Male <NA> Living Characters 2258 Nov-50 marvel
## 6 Male <NA> Living Characters 2255 Nov-61 marvel
There are 11 attributes in this comics dataset: name, id, align, eye, hair, gender, gsm, alive, appearances, first appear, and publisher. Except for the appearances property, all of the attributes in this dataset are of the character data type.
#Check levels of align
comics$align = as.factor(comics$align)
levels(comics$align)
## [1] "Bad" "Good" "Neutral"
## [4] "Reformed Criminals"
To examine the align attribute’s level, first convert the align attribute’s data type from character to factor. After inspecting the levels of the align attribute in the comic dataset, it is discovered that there are four levels: “Bad”, “Good”, “Neutral”, and “Reformed Criminals.”
#Check the levels of gender
comics$gender = as.factor(comics$gender)
levels(comics$gender)
## [1] "Female" "Male" "Other"
To examine the gender attribute’s level, first convert the gender attribute’s data type from character to factor. After inspecting the levels of the gender attribute in the comic dataset, it is discovered that there are three levels: “Female”, “Male”,and “Reformed Criminals.”
#Create a 2-way contingency table
table(comics$align, comics$gender)
##
## Female Male Other
## Bad 1573 7561 32
## Good 2490 4809 17
## Neutral 836 1799 17
## Reformed Criminals 1 2 0
Contingency table is use to represent the total counts of observations that fall into each combination of the levels of categorical variables. 1. According to the result above, the most common or most prevalent category is gender “Male” with align “Bad” with the value 7561. 2. The lowest category is gender “Other” with align “Reformed Criminals” with a value of 0. 3. Gender “Female” and align “Bad” have a total of 1573 instances in this comics data, Gender “Female” and align “Good” have a total of 2490 instances in this comics data, and so on. 4. The gender attribute has a low contingency on the align attribute with the “Reformed Criminals” level.
#Load dplyr
#Print tab
tab <- table(comics$align, comics$gender)
tab
##
## Female Male Other
## Bad 1573 7561 32
## Good 2490 4809 17
## Neutral 836 1799 17
## Reformed Criminals 1 2 0
The output above is the original contingency table between the align and gender attributes in the data.
# Remove align level
comics <- comics %>% filter(align != 'Reformed Criminals') %>% droplevels()
levels(comics$align)
## [1] "Bad" "Good" "Neutral"
# Load ggplot2
# Create side-by-side barchart of gender by alignment
ggplot(comics, aes(x = align, fill = gender)) + geom_bar(position = "dodge")
The output above is the outcome of the visualization of the contingency table that was created earlier, with the x representing the align property, which is filled with the gender attribute to make it easier to understand. 1. According to the result, align “Bad” and gender “Male” have the largest number when compared to other align and gender combinations.Then, followed by align “Good” with the gender “Male,” and finally, align “Neutral” with the gender “Male.”
Furthermore, when compared to other align and gender combinations, align “Good” and gender “Female” have the highest number. Then, followed by align “Bad” with the gender “Female,” and finally align “Neutral” with the gender “Female.”
Also, when compared to other align and gender combinations, align “Bad” and gender “NA” have the highest number. Then, followed by align “Good” with the gender “NA,” and finally, align “Neutral” with the gender “NA.”
The number between align and gender “Other” has the fewest others until the bar is no longer visible.
# Create side-by-side barchart of alignment by gender
ggplot(comics, aes(x = gender, fill = align)) + geom_bar(positio = "dodge") + theme(axis.text.x = element_text(angle = 90))
The output above is the outcome of the preceding visualization of the contingency table, but it differs from the prior visualization, where the x that has the gender property now and its contains the align attribute’s values. But, for the explanation is the same as the previous visualization explanation.
# simplify display format
options(scipen = 999, digits = 3)
## create table of counts
tbl_cnt <- table(comics$id, comics$align)
tbl_cnt
##
## Bad Good Neutral
## No Dual 474 647 390
## Public 2172 2930 965
## Secret 4493 2475 959
## Unknown 7 0 2
The output above is a table of the number of cases based on id and align. 1. From the output above, which has the highest number of cases is id “Secret” with align “Bad”, followed by id “Public” with align “Good”. Then id “Secret” and align “Good”, and so on.
From the output above, which has the lowest number of cases is id “Unknown” with align “Good” with the value of 0.
The number of cases between id “Unknown” and all align’s attribute level is small, with a value less than 10.
# Proportional table
# All values add up to 1
prop.table(tbl_cnt)
##
## Bad Good Neutral
## No Dual 0.030553 0.041704 0.025139
## Public 0.140003 0.188862 0.062202
## Secret 0.289609 0.159533 0.061815
## Unknown 0.000451 0.000000 0.000129
The output above is the proportion of all cases that fall into each category. 1. The largest single category is id “Secret” and align “Bad,” which stand for around 29% of id.
sum(prop.table(tbl_cnt))
## [1] 1
The result above shows that the total of all the proportions in the whole dataset is worth 1.
# All rows add up to 1
prop.table(tbl_cnt, 1)
##
## Bad Good Neutral
## No Dual 0.314 0.428 0.258
## Public 0.358 0.483 0.159
## Secret 0.567 0.312 0.121
## Unknown 0.778 0.000 0.222
Following that, conditional proportions are needed to determine the systematic relationship between variables such as the output above. 1. From the output above, it can be seen that about 57% of all “Secret” id(s) have “Bad” align.
# Columns add up to 1
prop.table(tbl_cnt, 2)
##
## Bad Good Neutral
## No Dual 0.066331 0.106907 0.168394
## Public 0.303946 0.484137 0.416667
## Secret 0.628743 0.408956 0.414076
## Unknown 0.000980 0.000000 0.000864
We add 1 to each row to condition the id property. Instead, we add argument 2 to prop.table() to condition the column. 1. According to the result above, the proportion of align “Bad” whose ID is “hidden”Secret” is roughly 63 percent.
ggplot(comics, aes(x = id, fill = align)) + geom_bar(position = "fill") + ylab("proportion")
The proportion is visualized above to help you comprehend it. Above is a visualization with x as the id attribute filled with align attribute.
ggplot(comics, aes(x = align, fill = id)) + geom_bar(position = "fill") +ylab("proportion")
Above is a visualization with x as the align attribute filled with id attribute. 1. According to both visualization findings above, the id “Secret” has the worst alignment (align “Bad”). Id “No Dual” and Id “Public” have good alignment
tab <- table(comics$align, comics$gender)
options(scipen = 999, digits = 3) # Print fewer digits
prop.table(tab) # Joint proportions
##
## Female Male Other
## Bad 0.082210 0.395160 0.001672
## Good 0.130135 0.251333 0.000888
## Neutral 0.043692 0.094021 0.000888
The output above is the proportion of all cases that fall into each category between align attribute and gender attribute.
prop.table(tab, 2)
##
## Female Male Other
## Bad 0.321 0.534 0.485
## Good 0.508 0.339 0.258
## Neutral 0.171 0.127 0.258
From the output above, there are 51% proportion of all female characters are good.
The highest proportion are 53% that all male characters are Bad.
The lowest proportion are 13% that all male characters are Neutral.
# Plot of gender by align
ggplot(comics, aes(x = align, fill = gender)) + geom_bar()
The output above is the outcome of the visualization with the x representing the align attribute, which is filled with the gender attribute but with no position “fill”.
# Plot proportion of gender, conditional on align
ggplot(comics, aes(x = align, fill = gender)) + geom_bar(position = "fill")
The output above is the outcome of the visualization with the x representing the align attribute, which is filled with the gender attribute but with position “fill”. The result is the same but only the difference is that the bar is full or not with a different y value. If given the attribute position=“fill” the value on the y-axis will be decimal, but if not then vice versa.
# Can use table function on just one variable
# This is called a marginal distribution
table(comics$id)
##
## No Dual Public Secret Unknown
## 1511 6067 7927 9
# Simple barchart
ggplot(comics, aes(x = id)) + geom_bar()
- You can also facet to see variables indidually - A little easier than
filtering each and plotting. - This is a rearrangement of the bar chart
we plotted earlier - We facte by alignment rather then coloring the
stack. - This can make it a little easier to answer some questions.
ggplot(comics, aes(x = id)) + geom_bar() + facet_wrap(~align)
# Change the order of the levels in align
comics$align <- factor(comics$align, levels = c("Bad", "Neutral", "Good"))
# Create plot of align
ggplot(comics, aes(x = align)) + geom_bar()
# Plot of alignment broken down by gender
ggplot(comics, aes(x = align)) + geom_bar() + facet_wrap(~ gender)
pies <- data.frame(flavors = as.factor(rep(c("apple", "blueberry", "boston creme", "cherry", "key lime", "pumpkin", "strawberry"), times = c(17, 14, 15, 13, 16, 12, 11))))
#Put levels of flavor in decending order
lev <- c("apple", "key lime", "boston creme", "blueberry", "cherry", "pumpkin", "strawberry")
pies$flavor <- factor(pies$flavor, levels = lev)
head(pies$flavor)
## [1] apple apple apple apple apple apple
## Levels: apple key lime boston creme blueberry cherry pumpkin strawberry
#Create barchart of flavor
ggplot(pies, aes(x = flavor)) + geom_bar(fill = "chartreuse") + theme(axis.text.x = element_text(angle = 90))
# A dot plot shows all the datapoints
ggplot(cars, aes(x = weight)) + geom_dotplot(dotsize = 0.4)
## Bin width defaults to 1/30 of the range of the data. Pick better value with `binwidth`.
## Warning: Removed 2 rows containing non-finite values (stat_bindot).
# A histogram groups the points into bins so it does not get overwhelming
ggplot(cars, aes(x = weight)) + geom_histogram(dotsize = 0.4, binwidth = 500)
## Warning: Ignoring unknown parameters: dotsize
## Warning: Removed 2 rows containing non-finite values (stat_bin).
# A density plot gives a bigger picture representation of the distribution
# It more helpful when there is a lot of data
ggplot(cars, aes(x = weight)) + geom_density()
## Warning: Removed 2 rows containing non-finite values (stat_density).
# A boxplot is a good way to just show the summary info of the distriubtion
ggplot(cars, aes(x = 1, y = weight)) + geom_boxplot() + coord_flip()
## Warning: Removed 2 rows containing non-finite values (stat_boxplot).
# Load package
library(ggplot2)
# Learn data structure
str(cars)
## 'data.frame': 428 obs. of 19 variables:
## $ name : chr "Chevrolet Aveo 4dr" "Chevrolet Aveo LS 4dr hatch" "Chevrolet Cavalier 2dr" "Chevrolet Cavalier 4dr" ...
## $ sports_car : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ suv : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ wagon : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ minivan : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ pickup : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ all_wheel : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ rear_wheel : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
## $ msrp : int 11690 12585 14610 14810 16385 13670 15040 13270 13730 15460 ...
## $ dealer_cost: int 10965 11802 13697 13884 15357 12849 14086 12482 12906 14496 ...
## $ eng_size : num 1.6 1.6 2.2 2.2 2.2 2 2 2 2 2 ...
## $ ncyl : int 4 4 4 4 4 4 4 4 4 4 ...
## $ horsepwr : int 103 103 140 140 140 132 132 130 110 130 ...
## $ city_mpg : int 28 28 26 26 26 29 29 26 27 26 ...
## $ hwy_mpg : int 34 34 37 37 37 36 36 33 36 33 ...
## $ weight : int 2370 2348 2617 2676 2617 2581 2626 2612 2606 2606 ...
## $ wheel_base : int 98 98 104 104 104 105 105 103 103 103 ...
## $ length : int 167 153 183 183 183 174 174 168 168 168 ...
## $ width : int 66 66 69 68 69 67 67 67 67 67 ...
# Create faceted histogram
ggplot(cars, aes(x = city_mpg)) + geom_histogram() + facet_wrap(~ suv)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 14 rows containing non-finite values (stat_bin).
unique(cars$ncyl)
## [1] 4 6 3 8 5 12 10 -1
table(cars$ncyl)
##
## -1 3 4 5 6 8 10 12
## 2 1 136 7 190 87 2 3
# Filter cars with 4, 6, 8 cylinders
common_cyl <- filter(cars, ncyl %in% c(4,6,8))
# Create box plots of city mpg by ncyl
ggplot(common_cyl, aes(x = as.factor(ncyl), y = city_mpg)) + geom_boxplot()
## Warning: Removed 11 rows containing non-finite values (stat_boxplot).
# Create overlaid density plots for same data
ggplot(common_cyl, aes(x = city_mpg, fill = as.factor(ncyl))) + geom_density(alpha = .3)
## Warning: Removed 11 rows containing non-finite values (stat_density).
# Create hist of horsepwr
cars %>% ggplot(aes(horsepwr)) + geom_histogram() + ggtitle("Horsepower distribution")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Create hist of horsepwr for affordable cars
cars %>% filter(msrp < 25000) %>% ggplot(aes(horsepwr)) + geom_histogram() + xlim(c(90, 550)) + ggtitle("Horsepower distribtion for msrp < 25000")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1 rows containing non-finite values (stat_bin).
## Warning: Removed 2 rows containing missing values (geom_bar).
# Create hist of horsepwr with binwidth of 3
cars %>% ggplot(aes(horsepwr)) + geom_histogram(binwidth = 3) + ggtitle("binwidth = 3")
# Create hist of horsepwr with binwidth of 30
cars %>% ggplot(aes(horsepwr)) + geom_histogram(binwidth = 30) + ggtitle("binwidth = 30")
# Create hist of horsepwr with binwidth of 60
cars %>% ggplot(aes(horsepwr)) + geom_histogram(binwidth = 60) + ggtitle("binwidth = 60")
# Construct box plot of msrp
cars %>% ggplot(aes(x = 1, y = msrp)) + geom_boxplot()
# Exclude outliers from data
cars_no_out <- cars %>%
filter(msrp < 100000)
# Construct box plot of msrp using the reduced dataset
cars_no_out %>%
ggplot(aes(x = 1, y = msrp)) +
geom_boxplot()
# Create plot of city_mpg
cars %>% ggplot(aes(x = 1, y = city_mpg)) +geom_boxplot()
## Warning: Removed 14 rows containing non-finite values (stat_boxplot).
cars %>% ggplot(aes(city_mpg)) + geom_density()
## Warning: Removed 14 rows containing non-finite values (stat_density).
# Create plot of width
cars %>% ggplot(aes(x = 1, y = width)) + geom_boxplot()
## Warning: Removed 28 rows containing non-finite values (stat_boxplot).
cars %>% ggplot(aes(x = width)) + geom_density()
## Warning: Removed 28 rows containing non-finite values (stat_density).
# Facet hists using hwy mileage and ncyl
common_cyl %>% ggplot(aes(x = hwy_mpg)) + geom_histogram() + facet_grid(ncyl ~ suv) + ggtitle("hwy_mpg by ncyl and suv")
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 11 rows containing non-finite values (stat_bin).
head(life)
## State County fips Year Female.life.expectancy..years.
## 1 Alabama Autauga County 1001 1985 77.0
## 2 Alabama Baldwin County 1003 1985 78.8
## 3 Alabama Barbour County 1005 1985 76.0
## 4 Alabama Bibb County 1007 1985 76.6
## 5 Alabama Blount County 1009 1985 78.9
## 6 Alabama Bullock County 1011 1985 75.1
## Female.life.expectancy..national..years.
## 1 77.8
## 2 77.8
## 3 77.8
## 4 77.8
## 5 77.8
## 6 77.8
## Female.life.expectancy..state..years. Male.life.expectancy..years.
## 1 76.9 68.1
## 2 76.9 71.1
## 3 76.9 66.8
## 4 76.9 67.3
## 5 76.9 70.6
## 6 76.9 66.6
## Male.life.expectancy..national..years. Male.life.expectancy..state..years.
## 1 70.8 69.1
## 2 70.8 69.1
## 3 70.8 69.1
## 4 70.8 69.1
## 5 70.8 69.1
## 6 70.8 69.1
x <- head(round(life$Female.life.expectancy..years.), 11)
x
## [1] 77 79 76 77 79 75 77 77 77 78 77
sum(x)/11
## [1] 77.2
mean(x)
## [1] 77.2
sort(x)
## [1] 75 76 77 77 77 77 77 77 78 79 79
median(x)
## [1] 77
table(x)
## x
## 75 76 77 78 79
## 1 1 6 1 2
str(gapminder)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
# Create dataset of 2007 data
gap2007 <- filter(gapminder, year == 2007)
# Compute groupwise mean and median lifeExp
gap2007 %>% group_by(continent) %>% summarize(mean(lifeExp), median(lifeExp))
## # A tibble: 5 x 3
## continent `mean(lifeExp)` `median(lifeExp)`
## <fct> <dbl> <dbl>
## 1 Africa 54.8 52.9
## 2 Americas 73.6 72.9
## 3 Asia 70.7 72.4
## 4 Europe 77.6 78.6
## 5 Oceania 80.7 80.7
# Generate box plots of lifeExp for each continent
gap2007 %>% ggplot(aes(x = continent, y = lifeExp)) + geom_boxplot()
x
## [1] 77 79 76 77 79 75 77 77 77 78 77
# Look at the difference between each point and the mean
sum(x - mean(x))
## [1] -0.0000000000000568
# Square each difference to get rid of negatives then sum
sum((x - mean(x))^2)
## [1] 13.6
sum((x - mean(x))^2)/(length(x) - 1)
## [1] 1.36
var(x)
## [1] 1.36
sqrt(sum((x - mean(x))^2)/(length(x) - 1))
## [1] 1.17
sd(x)
## [1] 1.17
summary(x)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 75.0 77.0 77.0 77.2 77.5 79.0
IQR(x)
## [1] 0.5
max(x)
## [1] 79
min(x)
## [1] 75
diff(range(x))
## [1] 4
str(gap2007)
## tibble [142 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 4 1 1 2 5 4 3 3 4 ...
## $ year : int [1:142] 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 ...
## $ lifeExp : num [1:142] 43.8 76.4 72.3 42.7 75.3 ...
## $ pop : int [1:142] 31889923 3600523 33333216 12420476 40301927 20434176 8199783 708573 150448339 10392226 ...
## $ gdpPercap: num [1:142] 975 5937 6223 4797 12779 ...
# Compute groupwise measures of spread
gap2007 %>% group_by(continent) %>% summarize(sd(lifeExp), IQR(lifeExp), n())
## # A tibble: 5 x 4
## continent `sd(lifeExp)` `IQR(lifeExp)` `n()`
## <fct> <dbl> <dbl> <int>
## 1 Africa 9.63 11.6 52
## 2 Americas 4.44 4.63 25
## 3 Asia 7.96 10.2 33
## 4 Europe 2.98 4.78 30
## 5 Oceania 0.729 0.516 2
# Generate overlaid density plots
gap2007 %>% ggplot(aes(x = lifeExp, fill = continent)) + geom_density(alpha = 0.3)
# Compute stats for lifeExp in Americas
head(gap2007)
## # A tibble: 6 x 6
## country continent year lifeExp pop gdpPercap
## <fct> <fct> <int> <dbl> <int> <dbl>
## 1 Afghanistan Asia 2007 43.8 31889923 975.
## 2 Albania Europe 2007 76.4 3600523 5937.
## 3 Algeria Africa 2007 72.3 33333216 6223.
## 4 Angola Africa 2007 42.7 12420476 4797.
## 5 Argentina Americas 2007 75.3 40301927 12779.
## 6 Australia Oceania 2007 81.2 20434176 34435.
gap2007 %>% filter(continent == "Americas") %>% summarize(mean(lifeExp), sd(lifeExp))
## # A tibble: 1 x 2
## `mean(lifeExp)` `sd(lifeExp)`
## <dbl> <dbl>
## 1 73.6 4.44
# Compute stats for population
gap2007 %>% summarize(median(pop), IQR(pop))
## # A tibble: 1 x 2
## `median(pop)` `IQR(pop)`
## <dbl> <dbl>
## 1 10517531 26702008.
4 chracteristics of a distribution that are of interest: ### center -already covered ### spread or variablity -already covered ### shape -modality: number of prominent humps (uni, bi, multi, or uniform - no humps) -skew (right, left, or symetric) -Can transform to fix skew ### outliers ## – Describe the shape There are 4 types of shape : - A: unimodal, left-skewed - B: unimodal, symmetric - C: unimodal, right-skewed - D: bimodal, symmetric
# Create density plot of old variable
gap2007 %>% ggplot(aes(x = pop)) + geom_density()
# Transform the skewed pop variable
gap2007 <- gap2007 %>% mutate(log_pop = log(pop))
# Create density plot of new variable
gap2007 %>% ggplot(aes(x = log_pop)) + geom_density()
# Filter for Asia, add column indicating outliers
str(gapminder)
## tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
## $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
## $ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
## $ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
## $ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 16317921 22227415 ...
## $ gdpPercap: num [1:1704] 779 821 853 836 740 ...
gap_asia <- gap2007 %>% filter(continent == "Asia") %>% mutate(is_outlier = lifeExp < 50)
# Remove outliers, create box plot of lifeExp
gap_asia %>% filter(!is_outlier) %>% ggplot(aes(x = 1, y = lifeExp)) + geom_boxplot()
# ggplot2, dplyr, and openintro are loaded
#library(openintro)
email = read.csv("D:/KULIAH SEMESTER 2/DATA MINING AND VISUALIZATION/1. FIN SESSION/email.csv")
email$spam <- factor(email$spam, labels = c("not-spam", "spam"))
# Compute summary statistics
email %>%
group_by(spam) %>%
summarize(
median(num_char),
IQR(num_char))
## # A tibble: 2 x 3
## spam `median(num_char)` `IQR(num_char)`
## <fct> <dbl> <dbl>
## 1 not-spam 6.83 13.6
## 2 spam 1.05 2.82
str(email)
## 'data.frame': 3921 obs. of 21 variables:
## $ spam : Factor w/ 2 levels "not-spam","spam": 1 1 1 1 1 1 1 1 1 1 ...
## $ to_multiple : int 0 0 0 0 0 0 1 1 0 0 ...
## $ from : int 1 1 1 1 1 1 1 1 1 1 ...
## $ cc : int 0 0 0 0 0 0 0 1 0 0 ...
## $ sent_email : int 0 0 0 0 0 0 1 1 0 0 ...
## $ time : chr "2012-01-01T06:16:41Z" "2012-01-01T07:03:59Z" "2012-01-01T16:00:32Z" "2012-01-01T09:09:49Z" ...
## $ image : int 0 0 0 0 0 0 0 1 0 0 ...
## $ attach : int 0 0 0 0 0 0 0 1 0 0 ...
## $ dollar : int 0 0 4 0 0 0 0 0 0 0 ...
## $ winner : chr "no" "no" "no" "no" ...
## $ inherit : int 0 0 1 0 0 0 0 0 0 0 ...
## $ viagra : int 0 0 0 0 0 0 0 0 0 0 ...
## $ password : int 0 0 0 0 2 2 0 0 0 0 ...
## $ num_char : num 11.37 10.5 7.77 13.26 1.23 ...
## $ line_breaks : int 202 202 192 255 29 25 193 237 69 68 ...
## $ format : int 1 1 1 1 0 0 1 1 0 1 ...
## $ re_subj : int 0 0 0 0 0 0 0 0 0 0 ...
## $ exclaim_subj: int 0 0 0 0 0 0 0 0 0 0 ...
## $ urgent_subj : int 0 0 0 0 0 0 0 0 0 0 ...
## $ exclaim_mess: int 0 1 6 48 1 1 1 18 1 0 ...
## $ number : chr "big" "small" "small" "small" ...
table(email$spam)
##
## not-spam spam
## 3554 367
email = read.csv("D:/KULIAH SEMESTER 2/DATA MINING AND VISUALIZATION/1. FIN SESSION/email.csv")
email <- email %>% mutate(spam = factor(ifelse(spam == 0, "not-spam", "spam")))
# Create plot
email %>% mutate(log_num_char = log(num_char)) %>%
ggplot(aes(x = spam, y = log_num_char)) +
geom_boxplot()
-The median length of not-spam emails is greater than that of spam emails ## Spam and !!!
# Compute center and spread for exclaim_mess by spam
email = read.csv("D:/KULIAH SEMESTER 2/DATA MINING AND VISUALIZATION/1. FIN SESSION/email.csv")
email <- email %>% mutate(spam = factor(ifelse(spam == 0, "not-spam", "spam")))
email %>% group_by(spam) %>%summarize(median(exclaim_mess),IQR(exclaim_mess))
## # A tibble: 2 x 3
## spam `median(exclaim_mess)` `IQR(exclaim_mess)`
## <fct> <dbl> <dbl>
## 1 not-spam 1 5
## 2 spam 0 1
table(email$exclaim_mess)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## 1435 733 507 128 190 113 115 51 93 45 85 17 56 20 43 11
## 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
## 29 12 26 5 29 9 15 3 11 6 11 1 6 8 13 12
## 32 33 34 35 36 38 39 40 41 42 43 44 45 46 47 48
## 13 3 3 2 3 3 1 2 1 1 3 3 5 3 2 1
## 49 52 54 55 57 58 62 71 75 78 89 94 96 139 148 157
## 3 1 1 4 2 2 2 1 1 1 1 1 1 1 1 1
## 187 454 915 939 947 1197 1203 1209 1236
## 1 1 1 1 1 1 2 1 1
# Create plot for spam and exclaim_mess
email %>%
mutate(log_exclaim_mess = log(exclaim_mess)) %>%
ggplot(aes(x = log_exclaim_mess)) +
geom_histogram() +
facet_wrap(~ spam)
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1435 rows containing non-finite values (stat_bin).
table(email$image)
##
## 0 1 2 3 4 5 9 20
## 3811 76 17 11 2 2 1 1
# Create plot of proportion of spam by image
email %>% mutate(has_image = image > 0) %>% ggplot(aes(x = has_image, fill = spam)) + geom_bar(position = "fill")
# Test if images count as attachments
sum(email$image > email$attach)
## [1] 0
email %>%
filter(spam == "not-spam") %>%
group_by(to_multiple) %>%
summarize(median(num_char))
## # A tibble: 2 x 2
## to_multiple `median(num_char)`
## <int> <dbl>
## 1 0 7.20
## 2 1 5.36
yes
table(email$dollar)
##
## 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
## 3175 120 151 10 146 20 44 12 35 10 22 10 20 7 14 5
## 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 32
## 23 2 14 1 10 7 12 7 7 3 7 1 5 1 1 2
## 34 36 40 44 46 48 54 63 64
## 1 2 3 3 2 1 1 1 3
email %>% filter(dollar > 0) %>% group_by(spam) %>% summarize(median(dollar))
## # A tibble: 2 x 2
## spam `median(dollar)`
## <fct> <dbl>
## 1 not-spam 4
## 2 spam 2
No
email %>% filter(dollar > 10) %>% ggplot(aes(x = spam)) + geom_bar()
Not-spam, at least in this dataset
email$number = as.factor(email$number)
levels(email$number)
## [1] "big" "none" "small"
table(email$number)
##
## big none small
## 545 549 2827
# Reorder levels
email$number <- factor(email$number, levels = c("none","small","big"))
# Construct plot of number
ggplot(email, aes(x = number)) +
geom_bar() +
facet_wrap( ~ spam)