setwd("/Volumes/GoogleDrive/Mi unidad/Agrosavia/Env_muestra/data")
datos<-read.table("testagran.csv", header=T, sep=',')
datos$curva <- factor(datos$curva, levels = c("1", "2"),
labels = c("P3", "P1"))
datos$gen<-as.factor(datos$gen)
datos$curva<-as.factor(datos$curva)
datos$id<-as.factor(datos$id)
datos$muestra<-as.factor(datos$muestra)
datos$dia<-as.factor(datos$dia)
library(ggplot2)
library(Rmisc)
## Loading required package: lattice
## Loading required package: plyr
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyverse)
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
## ✓ tibble 3.1.6 ✓ purrr 0.3.4
## ✓ tidyr 1.1.4 ✓ stringr 1.4.0
## ✓ readr 2.1.1 ✓ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## x dplyr::arrange() masks plyr::arrange()
## x purrr::compact() masks plyr::compact()
## x dplyr::count() masks plyr::count()
## x dplyr::failwith() masks plyr::failwith()
## x dplyr::filter() masks stats::filter()
## x dplyr::id() masks plyr::id()
## x dplyr::lag() masks stats::lag()
## x dplyr::mutate() masks plyr::mutate()
## x dplyr::rename() masks plyr::rename()
## x dplyr::summarise() masks plyr::summarise()
## x dplyr::summarize() masks plyr::summarize()
library(ggpubr)
##
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
##
## mutate
library(rstatix)
##
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
##
## desc, mutate
## The following object is masked from 'package:stats':
##
## filter
## Gráficas por réplica y genotipo
datos$dia<-as.numeric(as.character(datos$dia))
##Gráfica por réplica compuesta
pht<- ggplot(datos, aes(x = dia)) +
facet_grid(curva~gen*muestra) +
geom_line(aes(y=cd.testa, colour = "cd.testa")) +
geom_point(aes(y=cd.testa, colour = "cd.testa")) +
scale_y_continuous(name = expression("Cd (mg*Kg"^"-1)")) + # Etiqueta de la variable continua
scale_x_continuous(name = "dÃa", breaks=seq(0,7,1)) + # Etiqueta de los grupos
theme(legend.position="bottom") +
theme(axis.line = element_line(colour = "black", # Personalización del tema
size = 0.25)) +
theme(text = element_text(size = 12))
pht+ geom_line(aes(y = cd.grano, colour="cd.grano")) + geom_point(aes(y=cd.grano, colour = "cd.grano")) +
theme(legend.position="bottom")

## Gráfica por genotipo
datos4<-summarySE (datos, measurevar = "cd.testa", groupvars = c("curva", "gen","dia"))
datos5<-summarySE (datos, measurevar = "cd.grano", groupvars = c("curva", "gen","dia"))
datos4$ID <- seq.int(nrow(datos4))
datos5$ID <- seq.int(nrow(datos5))
total2 <- merge (datos4, datos5, by = "ID")
pht2<- ggplot(total2, aes(x = dia.x)) +
facet_grid(curva.x~gen.x) +
geom_errorbar(aes(ymin=cd.testa-ci.x, ymax=cd.testa+ci.x, colour="cd.testa"), width=.1) +
geom_line(aes(y=cd.testa, colour="cd.testa")) +
geom_point(aes(y=cd.testa, colour="cd.testa")) +
scale_y_continuous(name = expression("Cd (mg*Kg"^"-1)")) + # Etiqueta de la variable continua
scale_x_continuous(name = "dÃa", breaks=seq(0,7,1)) + # Etiqueta de los grupos
theme(legend.position="bottom") +
theme(axis.line = element_line(colour = "black", # Personalización del tema
size = 0.25)) +
theme(text = element_text(size = 15))
pht2+ geom_errorbar(aes(ymin=cd.grano-ci.y, ymax=cd.grano+ci.y, colour="cd.grano"), width=.1) +
geom_line(aes(y=cd.grano, colour="cd.grano")) +
geom_point(aes(y=cd.grano, colour = "cd.grano"))
