Importing and tidying asexual reproduction data
# data where all the controls are combined into one group
df.combinedcontrol <- read.csv(here::here("Budding Analysis/polypclonedata_combinedcontrol.csv"), stringsAsFactors = F)
df.combinedcontrol$FinalPolyp <- df.combinedcontrol$Day_27
# daily budding rate for experiment
df.combinedcontrol$DBR <- ((df.combinedcontrol$FinalPolyp - df.combinedcontrol$Day_00)/27)
# weekly budding rate for experiment
df.combinedcontrol$WBR <- (((df.combinedcontrol$FinalPolyp - df.combinedcontrol$Day_00)/27)*7)
# long format
df.combinedcontrol.gather <- df.combinedcontrol %>% gather(key = "Time", value = "Polyps", Day_00:Day_27)
# separate the days of experiment out and only keep the number of the day
df <- separate(data = df.combinedcontrol.gather, col = Time, into = c(NA,'Day'), sep = '_')
# reformat number of day to integer
df$Day <- as.integer(df$Day)
knitr::kable(head(df))
| Treatment | JarID | DishID | FinalPolyp | DBR | WBR | Day | Polyps |
|---|---|---|---|---|---|---|---|
| Control | C1 | D1 | 11 | 0.3703704 | 2.5925926 | 0 | 1 |
| Control | C1 | D2 | 4 | 0.1111111 | 0.7777778 | 0 | 1 |
| Control | C1 | D3 | 8 | 0.2592593 | 1.8148148 | 0 | 1 |
| Control | C2 | D4 | 9 | 0.2962963 | 2.0740741 | 0 | 1 |
| Control | C2 | D5 | 10 | 0.3333333 | 2.3333333 | 0 | 1 |
| Control | C2 | D6 | 7 | 0.2222222 | 1.5555556 | 0 | 1 |
Data analysis
We compared differences in weekly budding rate among the UVR treatment groups using a one-way ANOVA with treatment as the main effect.
wbraov <- aov(WBR~Treatment, data = df.combinedcontrol)
summary(wbraov)
## Df Sum Sq Mean Sq F value Pr(>F)
## Treatment 3 23.43 7.809 10.94 1.23e-05 ***
## Residuals 50 35.69 0.714
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
A post-hoc Tukey test was used when significant differences were detected.
TukeyHSD(wbraov)
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = WBR ~ Treatment, data = df.combinedcontrol)
##
## $Treatment
## diff lwr upr p adj
## AB-AA -1.8580247 -2.774636818 -0.94141256 0.0000113
## BB-AA -0.9506173 -1.867229411 -0.03400516 0.0393725
## Control-AA -0.4609053 -1.297653914 0.37584321 0.4665907
## BB-AB 0.9074074 -0.009204719 1.82401953 0.0532755
## Control-AB 1.3971193 0.560370778 2.23386791 0.0002857
## Control-BB 0.4897119 -0.347036630 1.32646050 0.4130403
Creating table of detachment data
Polyp detachment was classified binomially as either yes (polyps in dish detached at > 1 timepoints) or no (polyps in dish detached at ≤ 1 timepoints).
D <- as.table(rbind(c(11,7), c(11,1), c(4,8), c(0,12)))
dimnames(D) <- list(treatment = c("Control", "AA", "BB", "AB"), status = c("Attached", "Detached"))
knitr::kable(D)
| Attached | Detached | |
|---|---|---|
| Control | 11 | 7 |
| AA | 11 | 1 |
| BB | 4 | 8 |
| AB | 0 | 12 |
Data analysis
Chi-squared test of independence to test whether there were non-random differences in detachment probabilities across the treatment groups.
library(chisq.posthoc.test)
chisq.test(D, correct = F)
##
## Pearson's Chi-squared test
##
## data: D
## X-squared = 22.512, df = 3, p-value = 5.103e-05
Post-Hoc Comparisons
6 comparisons so alpha is 0.05/6 = 0.0083
Comparison is bolded if p value is significant
Control vs AA
chisq.test(D[c(1,2),], correct = F)
##
## Pearson's Chi-squared test
##
## data: D[c(1, 2), ]
## X-squared = 3.4375, df = 1, p-value = 0.06373
Control vs BB
chisq.test(D[c(1,3),], correct = F)
##
## Pearson's Chi-squared test
##
## data: D[c(1, 3), ]
## X-squared = 2.2222, df = 1, p-value = 0.136
Control vs AB
chisq.test(D[c(1,4),], correct = F)
##
## Pearson's Chi-squared test
##
## data: D[c(1, 4), ]
## X-squared = 11.579, df = 1, p-value = 0.000667
AA vs BB
chisq.test(D[c(2,3),], correct = F)
##
## Pearson's Chi-squared test
##
## data: D[c(2, 3), ]
## X-squared = 8.7111, df = 1, p-value = 0.003163
AA vs AB
chisq.test(D[c(2,4),], correct = F)
##
## Pearson's Chi-squared test
##
## data: D[c(2, 4), ]
## X-squared = 20.308, df = 1, p-value = 6.593e-06
BB vs AB
chisq.test(D[c(3,4),], correct = F)
##
## Pearson's Chi-squared test
##
## data: D[c(3, 4), ]
## X-squared = 4.8, df = 1, p-value = 0.02846
```
Fig 1A. Total number of polyps observed (mean +/- s.e.) under each UV treatment over the 27-day experiment.
Fig 1B. Weekly budding rates (polyps/week) for each UV treatment. Lowercase letters (a, b, c) indicate signficant differences (p < 0.5) between groups.